
C++ Part III X52.9266 Starting Point

0.0.1 A Portable Interface to the Terminal
We will write a video game in C++ to explore objects, inheritance, templates, exceptions, and the

C++ Standard Library. To concentrate on these features, our game will ignore color, pixels, and sound files.
It will treat the screen as a monochrome display of rows and columns of characters, emitting a monotone
beep. It will use the keyboard but not the mouse.

To make the game platform independent, all its graphics and special effects will be done by calling
the following ten functions. They work the same way in Unix C++, Microsoft C++, and other platforms.
They are written in C and their header file term.h can be included in a C file or a C++ file.

Call the function term_put in line 15 to display a character at any (x, y) position on the screen.
Call term_puts in line 16 to display a string of characters starting at the given position. If we forget
what character has been written at a position, we can read it back with term_get in line 19.

On all platforms, the column numbers (the x’s) go from left to right, starting at zero. The rows num-
bers (the y’s) go from top to bottom, starting at zero. The origin (0, 0) is therefore at the upper left corner
of the screen. How high do the coördinates go? The answer will be different on each platform. The func-
tions term_xmax and term_ymax in lines 11−12 will return the number of columns and rows on your
platform. If the number of columns is 80, the column numbers will range from 0 to 79 inclusive.

We will always use unsigned numbers to represent a position in a space whose coördinates start at
zero. This will prevent the coördinates from ever being negative. Our examples are the arguments of
term_put, term_puts, and term_get, and the return values of term_xmax and term_ymax.

The function term_key in line 23 returns the most recently pressed keystroke from the keyboard.
It differs from the C function getchar in that the keystroke is returned immediately, without waiting for
the user to press RETURN. In other words, it makes the keyboard live. (Each call to term_key actually
returns the most recent keystroke that was not returned by a previous call. If every keystroke has already
been returned, or if there were no keystrokes yet, term_key will return the character ’\0’.)

The function term_wait in line 25 pauses for the specified number of milliseconds. term_beep
emits a beep.

I sav ed the two most important term_ functions for last. There is always some setup to be done
before we can do any special effects. On some platforms we have to put the screen into graphics mode; on
others, we have to pop up a graphics window to draw in. Similarly, there is always some cleanup: we have
to put the screen back into text mode or make the graphics window disappear.

On every platform, the function term_construct in line 5 will do whatever setup is necessary. It
must be called before the other term_ functions will work. The function term_destruct in line 6 will
do the cleanup. It must be the last term_ function called. Failure to call term_destruct may leave
your terminal in an unusable state.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/term/term.h

1 #ifndef TERMH
2 #define TERMH
3
4 /* Must be called before and after the other term_ functions. */
5 void term_construct(void);
6 void term_destruct(void);
7
8 /* Legal x values go from 0 to term_xmax() - 1 inclusive.
9 Legal y values go from 0 to term_ymax() - 1 inclusive. */
10
11 unsigned term_xmax(void); /* number of columns of characters */
12 unsigned term_ymax(void); /* number of rows of characters */

printed 2/17/05
4:58:55 PM − 1 − All rights

reserved ©2005 Mark Meretzky

2 Chapter 0

13
14 /* Display a character or string on the screen. */
15 void term_put (unsigned x, unsigned y, char c);
16 void term_puts(unsigned x, unsigned y, const char *s);
17
18 /* Return the character at the given position on the screen. */
19 char term_get(unsigned x, unsigned y);
20
21 /* Return immediately with the key the user pressed. If no key was pressed,
22 return immediately with ’\0’. */
23 char term_key(void);
24
25 void term_wait(int milliseconds); /* 1000 milliseconds == 1 second */
26 void term_beep(void);
27 #endif

▼ Homework 0.1: test the terminal interface

Compile and run the following C++ program on your machine. You’ll also need the above .h file,
and the corresponding term.c file of function definitions in the same directory on the web.

A C program would have had to declare all its variables immediately after the { in line 9. Our C++
program doesn’t declare its variables until we have values to put into them in lines 11−15 and 18.

For the time being, we need two loops with two counters (x and y in lines 23−24) because the termi-
nal is two-dimensional. But when we do containers and iterators in the C++ Standard Library, we’ll be able
to loop through the terminal with only one loop and one counter.

Do not write a newline onto the screen at the end of line 21. To move down the screen, simply give a
larger y argument to the next call to term_put and term_puts.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/term/main.C

1 #include <iostream>
2 #include <cstdlib>
3 extern "C" {
4 #include "term.h" //beware if your machine has another file named term.h
5 }
6 using namespace std;
7
8 int main()
9 {
10 term_construct();
11 const unsigned xmax = term_xmax();
12 const unsigned ymax = term_ymax();
13
14 unsigned x = xmax / 2; //center of screen
15 unsigned y = ymax / 2;
16
17 term_put(x, y, ’X’);
18 char c = term_get(x, y);
19 term_put(x + 1, y, c);
20
21 term_puts(0, 0, "Please type some characters ending with a q.");
22
23 for (y = 1; y < ymax; ++y) {
24 for (x = 0; x < xmax; ++x) {

printed 2/17/05
4:58:55 PM − 2 − All rights

reserved ©2005 Mark Meretzky

Section 0.0.1 A PORTABLE INTERFACE TO THE TERMINAL 3

25 while ((c = term_key()) == ’\0’) {
26 }
27
28 if (c == ’q’) { //quit
29 goto done;
30 }
31
32 term_put(x, y, c);
33 }
34 }
35
36 done:;
37 term_wait(1000); //one full second
38 term_beep();
39 term_destruct();
40 return EXIT_SUCCESS;
41 }

The expression in the above line 25

c = term_key ()()== ’\0’

executes the same operators (substituting == for !=), in the same order, as the following classic idiom in C.

c = getchar ()()!= EOF

▲

List of the three source files that constitute the test program

(1) term.h and term.c (both online in the same directory in pp. 1−2). They are the only two written
in C; the other is in C++.

(2) main.C (pp. 2−3)

Select the platform.

The term.c file is written in C. Be sure that you don’t accidentally tell your computer that it’s writ-
ten in C++ by giving it the wrong filename extension. Before compiling, uncomment (i.e., remove the
comment delimiters from) exactly one of the following three macro definitions at the top of this file:

1 /* #define UNIX */
2 /* #define MICROSOFT */
3 /* #define BORLAND */

For example, if you were compiling under Microsoft, you would change line 2 to

4 #define MICROSOFT

Make no other change to term.c. Unix pros can use the -D option of gcc and g++ instead of uncom-
menting.

printed 2/17/05
4:58:55 PM − 3 − All rights

reserved ©2005 Mark Meretzky

4 Chapter 0

Compile under Unix

See curses(3curses) at http://i5.nyu.edu/˜mm64/man/, or Programming with curses by
John Strang; O’Reilly & Associates, 1986; ISBN 0−937175−02−1.

http://www.oreilly.com/catalog/curses/

The ‘‘minus uppercase I dot’’ option tells gcc to #include the term.h file in the current direc-
tory instead of the one in the /usr/include/ directory.

The -DUNIX= option defines the macro UNIX to be the null string, eliminating the need for the
above uncommenting. Bloomberg people should also give the compiler the option -D_WIDEC_H= to pre-
vent the compiler from including the file /usr/include/widec.h. Remember to use this option
whenever compiling term.c.

The minus lowercase c option tells gcc to create a .o file instead of an executable file. The minus
lowercase L option tells g++ to link in the library /usr/ccs/lib/libcurses.a.

1$ gcc -I. -DUNIX= -c term.c Create the file term.o.
2$ ls -l term.o minus lowercase L

3$ g++ -I. -o ˜/bin/tester main.C term.o -lcurses
4$ ls -l ˜/bin/tester
5$ tester Run it; but first make sure your terminal is set to vt100, bit ansi.

Compile under Microsoft

Create a ‘‘Win32 Console Application’’.

0.1 An Interface Class for the Terminal

Another way to write on the screen

The major classes we have seen so far are date, life, and stack. We will introduce one more,
class terminal, before talking about classes in general.

Instead of doing our special effects by calling the ten C functions term_ in pp. 1−4, we will now do
them by constructing an object of class terminal and calling its ten member functions. Compare the fol-
lowing test program with the main.C back in pp. 2−3. It does exactly the same demo but with a different
notation. For each C function, there is now a member function that does the same job.

For convenience, we also introduce two member functions which have no C counterparts. The func-
tion next in lines 18 and 23 takes a pair of coördinates, x and y, and advances them to the next location.
It would change (0, 0) to (1, 0), one location to the right. And on a screen with 80 columns, it would
change (79, 0) to (0, 1), the first location on the next line. Finally, with 24 rows it would change (79, 23) to
(0, 24), one step below the bottom of the screen, but would refuse to advance it any farther.

Pages 69−71 asked you to make every reference argument read-only. The call to next in line 18
shows the danger of violating this rule. Although there’s no way to see it by inspecting that line, next
changes the values of x and y. We will clean this up when we do ‘‘iterators’’.

The function in_range in line 23 returns true if the pair of coördinates is on the screen. It was
named after the out_of_range ‘‘exception’’ which we will see later. See Lippman p. 291, Stroustrup
pp. 53−54, 384−386, 445−446, 586−587.

We need two variables, x and y, to loop across the screen in line 23. When we have iterators we will
be able to do the loop with only one, even though the screen is two-dimensional. To prepare for that day, I
changed the pair of nested loops in the original test program lines 23−24 of main.Cin p. 2) to the single
loop in line 23. This change is premature: if there are two variables, there should be two loops. But try to
think of the x and y as a single structure with two fields. In time they will be.

printed 2/17/05
4:58:55 PM − 4 − All rights

reserved ©2005 Mark Meretzky

Section 0.1 AN INTERFACE CLASS FOR THE TERMINAL 5

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/terminal/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "terminal.h"
4 using namespace std;
5
6 int main()
7 {
8 const terminal term(’.’); //The constructor for term calls term_construct.
9
10 const unsigned xmax = term.xmax();
11 const unsigned ymax = term.ymax();
12
13 unsigned x = xmax / 2; //center of screen
14 unsigned y = ymax / 2;
15
16 term.put(x, y, ’X’);
17 const char c = term.get(x, y);
18 term.next(x, y);
19 term.put(x, y, c);
20
21 term.put(0, 0, "Please type some characters ending with a q.");
22
23 for (x = 0, y = 1; term.in_range(x, y); term.next(x, y)) {
24 char c; //uninitialized variable
25 while ((c = term.key()) == ’\0’) {
26 }
27
28 if (c == ’q’) { //quit
29 break;
30 }
31
32 term.put(x, y, c);
33 }
34
35 term.wait(1000);
36 term.beep();
37 return EXIT_SUCCESS; //The destructor for term calls term_destruct.
38 }

An interface class

Let’s read the definition for class terminal, starting with the simplest member function. The
beep function in line 29 simply calls the corresponding C function term_beep. A function that does all
its work by calling another function is called a call-through. See Stroustrup pp. 719, 778−781.

Most of the member functions of class terminal are ultimately call-throughs; the three simplest
examples are in lines 27−29. Since this class does almost no work on its own, we call it an interface class.
It merely delivers the results of another piece of software.

Now let’s look at the data members. The constructor takes a char argument and stores it in the data
member _background in line 9 of terminal.C. It has an underscore because a class can’t hav e a data
member and a member function with the same name. I burdened the private member with the underscore to
keep the name of the public member short and simple. The constructor also initializes the screen in line 11
of terminal.C, and then stores the dimensions of the screen into the other two data members _xmax

printed 2/17/05
4:58:55 PM − 5 − All rights

reserved ©2005 Mark Meretzky

6 Chapter 0

and _ymax in lines 13 and 14. The member functions background, xmax, and ymax in lines 18−20 of
terminal.h simply return these data members.

The two-argument put in line 23 of terminal.h passes the _background data member to the
three-argument put in line 22. This has the effect of letting _background be the default value for the
third argument. I wish we could combine the two functions into one with a default value for its third argu-
ment:

1 void put(unsigned x, unsigned y, char c = _background) const;

But the language just does not let us do this. A data member of an object can be mentioned inside the body
of a member function of the same object, but it cannot be mentioned inside the argument list of a member
function of the same object.

The in_range in line 31 has no need to check if x and y are negative. They nev er can be, because
they are unsigned.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/terminal/terminal.h

1 #ifndef TERMINALH
2 #define TERMINALH
3
4 extern "C" {
5 #include "term.h"
6 }
7
8 class terminal {
9 char _background; //default value for third argument of put
10 unsigned _xmax; //number of columns of characters
11 unsigned _ymax; //number of rows of characters
12
13 void check(unsigned x, unsigned y) const;
14 public:
15 terminal(char initial_background = ’ ’);
16 ˜terminal();
17
18 char background() const {return _background;}
19 unsigned xmax() const {return _xmax;}
20 unsigned ymax() const {return _ymax;}
21
22 void put(unsigned x, unsigned y, char c) const;
23 void put(unsigned x, unsigned y) const {put(x, y, _background);}
24 void put(unsigned x, unsigned y, const char *s) const;
25 char get(unsigned x, unsigned y) const {check(x, y); return term_get(x, y);}
26
27 char key() const {return term_key();}
28 void wait(int milliseconds) const {term_wait(milliseconds);}
29 void beep() const {term_beep();}
30
31 bool in_range(unsigned x, unsigned y) const {return x < _xmax && y < _ymax;}
32 void next(unsigned& x, unsigned& y) const;
33 };
34 #endif

Every character is ultimately put on the screen by the three-argument put in line 36, which calls the
C Standard Library function isprint to check that the character is printable. If it is not, we cast the char-
acter to unsigned to print its ASCII code. See line 12 of cast.C in p. 24.

printed 2/17/05
4:58:55 PM − 6 − All rights

reserved ©2005 Mark Meretzky

Section 0.1 AN INTERFACE CLASS FOR THE TERMINAL 7

The initial_background argument of the constructor is checked when line 19 fills the screen
with the background character.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/terminal/terminal.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cctype> //for isprint (or ctype.h)
4 #include "terminal.h"
5 using namespace std;
6
7 terminal::terminal(char initial_background)
8 {
9 _background = initial_background;
10
11 term_construct();
12
13 _xmax = term_xmax();
14 _ymax = term_ymax();
15
16 if (_background != ’ ’) {
17 for (unsigned y = 0; y < _ymax; ++y) {
18 for (unsigned x = 0; x < _xmax; ++x) {
19 put(x, y);
20 }
21 }
22 }
23 }
24
25 terminal::˜terminal()
26 {
27 for (unsigned y = 0; y < _ymax; ++y) {
28 for (unsigned x = 0; x < _xmax; ++x) {
29 put(x, y, ’ ’);
30 }
31 }
32
33 term_destruct();
34 }
35
36 void terminal::put(unsigned x, unsigned y, char c) const
37 {
38 if (!isprint(c)) {
39 cerr << "unprintable character " << static_cast<unsigned>(c) << ".\n";
40 exit(EXIT_FAILURE);
41 }
42
43 check(x, y);
44 term_put(x, y, c);
45 }
46
47 void terminal::put(unsigned x, unsigned y, const char *s) const
48 {
49 for (; *s != ’\0’; ++s) {
50 put(x, y, *s);

printed 2/17/05
4:58:55 PM − 7 − All rights

reserved ©2005 Mark Meretzky

8 Chapter 0

51 next(x, y);
52 }
53 }
54
55 //Move to the next (x, y) position: left to right, top to bottom.
56 //Warning: will change the values of the arguments.
57
58 void terminal::next(unsigned& x, unsigned& y) const
59 {
60 check(x, y);
61
62 if (++x >= _xmax) {
63 x = 0;
64 ++y;
65 }
66 }
67
68 void terminal::check(unsigned x, unsigned y) const
69 {
70 if (!in_range(x, y)) {
71 cerr << "coordinates (" << x << ", " << y
72 << ") must be >= (0, 0) and < ("
73 << _xmax << ", " << _ymax << ")\n";
74 exit(EXIT_FAILURE);
75 }
76 }

List of the five source files that constitute the test program

(1) term.h and term.c (pp. 1−4.) These are the only two written in C; the rest are in C++.

(2) terminal.h and terminal.C (pp. 5−8)

(3) main.C (pp. 4−5)

Compile the test under Unix

1$ gcc -I. -DUNIX= -c term.c minus uppercase I
2$ ls -l term.o minus lowercase L

3$ g++ -I. -o ˜/bin/tester main.C terminal.C term.o -lcurses
4$ ls -l ˜/bin/tester
5$ tester Run it.

It’s just as fast to call the member functions of class terminal.

Instead of calling the C functions directly, we are now calling them through the member functions of
a terminal object. In a moment we will see the benefits of this extra layer of software. But first we
must consider if the extra layer has slowed the program down.

When we write a call to an inline function, the computer behaves as if we had written the body of the
inline function in place of the call. When we write line 2, for example, the computer behaves as if we had
written line 3. Calling the member function beep in line 2 is therefore just as fast as calling the C function
term_beep in line 3.

1 const terminal term(’.’);
2 term.beep(); //When we write this,
3 term_beep(); //the computer behaves as if we had written this.

printed 2/17/05
4:58:55 PM − 8 − All rights

reserved ©2005 Mark Meretzky

Section 0.1 AN INTERFACE CLASS FOR THE TERMINAL 9

Sometimes the member functions of class terminal are even faster. When we write line 5, the
computer behaves as if we had written line 6. But line 6 calls no function; it simply uses the value of a data
member. Calling the member function xmax in line 5 is therefore faster than caling the C function
term_xmax in line 7.

4 const terminal term(’.’);
5 cout << term.xmax() << "\n"; //No function is called.
6 cout << term._xmax << "\n";
7 cout << term_xmax() << "\n"; //A function is called.

Why bother with an interface class?

The B words were in all cases compound words.

—George Orwell, 1984, Appendix: The Principals of Newspeak

Class terminal does not slow down the program, and in a few cases it makes it faster. But the real
reason we introduced this extra layer is for æsthetics. Here is how calling the member functions of an
object is more convenient than calling naked C functions.

(1) The C function names had to be compound words because we might have sev eral devices to
manipulate. If there are n devices and m functions for each device, the number of different function names
will be n × m.

1 term_beep(); /* C: number of names increases geometrically */
2 modem_beep();
3 pager_beep();

But the C++ member function names can be shorter because the member functions belong to an object. If
there are n devices and m functions for each device, the number of different names will be only n + m.

4 term.beep(); //C++: number of names increases arithmetically
5 modem.beep();
6 pager.beep();

Our first example of shortening the names was in p. 86.

(2) The C++ member functions also have fewer and simpler names thanks to function name overload-
ing.

7 /* C: every function must have a different name. */
8 term_put(x, y, c); /* display a character */
9 term_puts(x, y, s); /* display a string */

//C++: can use same name for similar functions term.put(x, y, c); //display
a character term.put(x, y, s); //display a string

(3) The most frequently used value for an argument can be made the default in C++. For example,
the most frequently displayed character is the background character.

10 term_put(x, y, ’.’); /* C */
11 term.put(x, y); //C++: display term’s background character

(4) Instead of two widely separated function calls

12 term_construct();
13 //the whole game
14 term_destruct();

we now write only a single declaration:

15 terminal term(’.’); //This declaration calls the constructor.
16 //the whole game

printed 2/17/05
4:58:55 PM − 9 − All rights

reserved ©2005 Mark Meretzky

10 Chapter 0

17 return from main; //The return from main calls the destructor.

If the call to term_construct in the above line 16 was missing in C, a call to term_put at line 17
would still compile but would execute incorrectly. But if the declaration for term in the above line 19 was
missing in C++, a call to term.put at line 20 would not even compile. Not compiling is better than
executing incorrectly.

(5) Packaging the ten C functions as a class would also make it easier to have a program with more
than one terminal. As we will see, this is one of the main reasons for making a class.

Tw o improvements to class terminal

(6) The three member functions beep, wait, and key can, and therefore should, be static. And
now that they are static, they can no longer be const. Only a non-static member function can be const.

(7) The three data members _background, _xmax, and _ymax can, and therefore should, be
const. And now that they are const, they can no longer be assigned to in lines 9, 13, and 14 of the
above term.C. You will have to initialize them with a colon. Unfortunately, the function
term_construct must be called before we initialize _xmax and _ymax. We can do this with tricky
code with the comma operator.

1 //Definition of constructor for class terminal.
2
3 terminal::terminal(char initial_background)
4 : _background(initial_background),
5 _xmax(term_construct(), term_xmax()),
6 _ymax(term_ymax())
7 {
8 if (_background != ’ ’) { //etc.

printed 2/17/05
4:58:55 PM − 10 − All rights

reserved ©2005 Mark Meretzky

