
10
Miscellaneous

The topics in this chapter—RTTI, namespaces, and internationalization—are united only in having
little interaction with the rest of the book.

10.1 RuntimeType Identification (RTTI)
Inheritance and virtual functions allow us to interact with an object without knowing what class it

belongs to. Sometimes, however, there is a legitimate need to interrogate an object and discover its class.
Runtime Type Identification lets a program do this, while the program is running. (In Java, this is called
reflection.) Our example will be a family of three classes.

base

middle

grandchild

Each derived class will need a bigger and betteroperator<< . We’d like to make it a virtual func-
tion; but only a member, not a friend, can be virtual. The solution, as on pp. 496−497, is to have the friend
delegate its work to a member function (line 15) and have the member function be virtual (line 9).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rtti/base.h

1 #ifndef BASEH
2 #define BASEH
3 #include <iostream>
4 using namespace std;
5
6 c lass base {
7 i nt i;
8 protected:
9 v irtual void print(ostream& os) const {os << i;}

10 public:
11 base(int initial_i): i(initial_i) {}
12 virtual ˜base() {}
13
14 friend ostream& operator<<(ostream& ost, const base& b) {
15 b.print(ost);

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

1012 Miscellaneous Chapter 10

16 return ost;
17 }
18 };
19 #endif

Classmiddle introduces a new member function in line 13 that wasn’t in thebase class.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rtti/middle.h

1 #ifndef MIDDLEH
2 #define MIDDLEH
3 #include <iostream>
4 #include "base.h"
5 using namespace std;
6
7 c lass middle: public base {
8 i nt j;
9 protected:

10 void print(ostream& os) const {base::print(os); os << ", " << j;}
11 public:
12 middle(int initial_i, int initial_j): base(initial_i), j(initial_j) {}
13 void newfunc() const {cout << "newfunc";}
14 };
15 #endif

Classgrandchild inherits thenewfunc .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rtti/grandchild.h

1 #ifndef GRANDCHILDH
2 #define GRANDCHILDH
3 #include <iostream>
4 #include "middle.h"
5 using namespace std;
6
7 c lass grandchild: public middle {
8 i nt k;
9 v oid print(ostream& os) const {middle::print(os); os << ", " << k;}

10 public:
11 grandchild(int initial_i, int initial_j, int initial_k)
12 : middle(initial_i, initial_j), k(initial_k) {}
13 };
14 #endif

10.1.1 dynamic_cast
RTTI is needed only when we have an object whose class cannot be predicted at compile time.As on

pp. 487−489, the simplest way for this to happen is to loop through a container of pointers to objects of dif-
ferent classes.The container is defined in line 12. The loop in line 15 will call thenewfunc of each
object that has this member function.

At compile time, there is no way to tell the type of the object to whicha[i] will be pointing when
line 23 is executed. Infact, a[i] will be pointing to a different object each time it is executed. Further-
more, the most derived class (p. 479) of each object will be different each time.

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

This is where RTTI comes in. Thedynamic_cast in line 23 is a keyword that is an operator, like
sizeof , static_cast , and new. The<angle brackets> and(parentheses) are part of ihe operator. It
interrogates an object at runtime, asking it what class it belongs to. If thea[i] points to an object of class
middle , or to an object of a class publicly derived from middle , the dynamic_cast gives the argu-
ment back to us, cast to the data type ‘‘pointer tomiddle ’’ . Otherwise, it gives us zero.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rtti/main1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "grandchild.h"
4 using namespace std;
5
6 i nt main()
7 {
8 base b(10);
9 middle m(10, 20);

10 grandchild g(10, 20, 30);
11
12 const base *const a[] = {&b, &m, &g, 0};
13 const size_t n = sizeof a / sizeof a[0];
14
15 for (size_t i = 0; i < n; ++i) {
16 cout << "a[" << i << "]: ";
17 if (a[i] == 0) {
18 cout << "zero pointer";
19 } else {
20 cout << *a[i] << " ";
21 }
22
23 const middle *const p = dynamic_cast<const middle *>(a[i]);
24 if (p) {
25 p->newfunc();
26 }
27
28 cout << "\n";
29 }
30
31 return EXIT_SUCCESS;
32 }

As on pp. 38−39, we can combine the above lines 23−24 to

33 if (const middle *const p = dynamic_cast<const middle *>(a[i])) {

For Microsoft RTTI, go toProject → Settings → C++ →C++ Language and select the boxes
Enable Exceptions andEnable Run-Time Type Information (RTTI) .

a[0]: 10
a[1]: 10, 20 newfunc
a[2]: 10, 20, 30 newfunc
a[3]: zero pointer

When we dynamically cast to a pointer type, the argument in the parentheses must be a pointer that
was declared to point to a class with at least one virtual member function. If we try to make
base::˜base andbase::print non-virtual, thedynamic_cast will no longer compile.

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.1.1 dynamic_cast 1013

1014 Miscellaneous Chapter 10

main1.C: In function ’int main()’:
main1.C:23:60: error: cannot dynamic_cast ’a[i]’ (of type ’const class base*
const’) to type ’const class middle*’ (source type is not polymorphic)

A misuse of RTTI

Actually, the above example didn’t need RTTI at all.A cleaner solution would have been to give
classbase a public member function that does nothing.

34 virtual void newfunc() const {}

Then the above lines 23−26 could simply have been

35 a[i]->newfunc();

We could even changemiddle::newfunc from public to private.

So this example was a quick and dirty way to do something that could have been done with a virtual
function and a bit of foresight. But if extralinguistic reasons prevent us from retrofitting the virtual
newfunc into the base class, we could fall back on RTTI.

Dynamic cast to a reference

We can also try to dynamically cast an object to a reference to an object. In line 25,a[i] is a
pointer and*a[i] is the object.

A cast to a reference cannot indicate failure by giving us a zero reference: there is a zero pointer, but
no such thing as a zero reference. It must indicate failure by throwing an exception. Thebad_cast in
line 28 is derived from the classexception on p. 628, from which it inherits thewhat member function.

Note that the operanda[i] in the above line 23 is a pointer while the operand*a[i] in the follow-
ing 25 is an object. Ifa[i] is zero, a

dynamic_cast<const middle *>(a[i])

would execute correctly and give us a zero result, but the* in

dynamic_cast<const middle&>(*a[i])

might crash the program before thedynamic_cast has a chance to execute.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rtti/main2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <typeinfo> //for the bad_cast exception in line 28
4 #include "grandchild.h"
5 using namespace std;
6
7 i nt main()
8 {
9 base b(10);

10 middle m(10, 20);
11 grandchild g(10, 20, 30);
12
13 const base *const a[] = {&b, &m, &g, 0};
14 const size_t n = sizeof a / sizeof a[0];
15
16 for (size_t i = 0; i < n; ++i) {
17 cout << "a[" << i << "]: ";
18 if (a[i] == 0) {

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

19 cout << "zero pointer";
20 } else {
21 cout << *a[i] << " ";
22
23 try {
24 const middle& r =
25 dynamic_cast<const middle&>(*a[i]);
26 r.newfunc();
27 }
28 catch (const bad_cast& b) {
29 cout << "caught bad_cast " << b.what();
30 }
31 }
32
33 cout << "\n";
34 }
35
36 return EXIT_SUCCESS;
37 }

a[0]: 10 caught bad_cast std::bad_cast
a[1]: 10, 20 newfunc
a[2]: 10, 20, 30 newfunc
a[3]: zero pointer

Once again, classbase must have at least one virtual member function. If not, the
dynamic_cast will not compile.

main2.C: In function ’int main()’:
main2.C:25:39: error: cannot dynamic_cast ’(const base&)((const base*)a[i])’
(of type ’const class base&’) to type ’const class middle&’ (source type is not
polymorphic)

10.1.2 typeid
Thedynamic_cast operator told us if an object is of classmiddle , or of a class publicly derived

from middle . Thetypeid operator answers a sharper question. It tells us if an object is of class
middle , and of no further class. In other words, it tells us if the most derived class of the object is
middle .

The typeid in lines 18 and 20 is another keyword that is an operator. (The parentheses are part of
the operator.) Itsoperand can be an object (the*a[i] in lines 18 and 20) or the name of a data type (the
middle in line 20). The operator constructs and returns an anonymous object of classtype_info , just
as themake_pair function constructed and returned an anonymous object of typepair (pp. 786−787).
Note that classtype_info has an underscore, while the header file<typeinfo> does not.

type_info is good for two things. Inline 18, it has a public member functionname that returns a
string representing the name of the most derived type of an object.(We saw where this string came from on
pp. 657−658.) In line 20,type_info objects can be compared for equality.

If the a[i] in the above line 25 was zero, the* in front of it might crash the program.But if the
a[i] in the following lines 18 and 20 was zero, thetypeid would be smart enough to intercept the* and
throw abad_typeid exception instead of crashing.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rtti/main3.C

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.1.2 typeid 1015

1016 Miscellaneous Chapter 10

1 #include <iostream>
2 #include <cstdlib>
3 #include <typeinfo> //for type_info and bad_typeid
4 #include "grandchild.h"
5 using namespace std;
6
7 i nt main()
8 {
9 base b(10);

10 middle m(10, 20);
11 grandchild g(10, 20, 30);
12
13 const base *const a[] = {&b, &m, &g, 0};
14 const size_t n = sizeof a / sizeof a[0];
15
16 for (size_t i = 0; i < n; ++i) {
17 try {
18 cout << "a[" << i << "]: " << typeid(*a[i]).name();
19
20 if (typeid(*a[i]) == typeid(middle)) {
21 cout << " (middle is the most derived type)";
22 }
23 }
24
25 catch (const bad_typeid& b) {
26 cout << "caught bad_typeid " << b.what();
27 }
28
29 cout << "\n";
30 }
31
32 return EXIT_SUCCESS;
33 }

On my platform, the string representation begins with the number of characters in the name.

a[0]: 4base
a[1]: 6middle (middle is the most derived type)
a[2]: 10grandchild
a[3]: caught bad_typeid std::bad_typeid

We can change the*a[i] to a[i] in the above lines 18 and 20. If we do this, however, the
typeid would merely tell us thata[i] is a pointer to abase . (On my platform,PK is a read-only
pointer.)

a[0]: PK4base
a[1]: PK4base
a[2]: PK4base
a[3]: PK4base

But even at compile time we already knew that eacha[i] is a pointer to abase . For this reason,
typeid is most useful when its operand is a pointer dereferenced with* or [] .

As with dynamic_cast , the pointer in the operand must be declared to point to a class with at
least one virtual function. If we change thea[i] back to*a[i] in the above lines 18 and 20, and make
base::˜base andbase::print non-virtual, thetypeid will still compile but its output collapses to

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

the following.

a[0]: 4base
a[1]: 4base
a[2]: 4base
a[3]: 4base

The copy constructor andoperator= of class type_info are private, like those of classes
wabbit (p. 200) andostream (pp. 324−326).This means that the above line 18 could not be changed to

34 //Try to save a copy of the type_info for future use.
35 const type_info t = typeid(*a[i]);
36 cout << "a[" << i << "]: " << t.name();

But they could be changed to

37 //Save a r eference to the type_info for future use.
38 const type_info& t = typeid(*a[i]);
39 cout << "a[" << i << "]: " << t.name();

▼ Homework 10.1.2a: print the name of the data type

Our very first template was the general template for themin function inmin2.C on pp. 637−638.
Have the template print out

1 c out << "min<" << typeid(T).name() << ">\n";

▲

▼ Homework 10.1.2b: print the name of the data type

Now that we have typeid , thename argument in the template functionprint on pp. 676−677 is
unnecessary. Change the function to the following.

1 t emplate <class T>
2 v oid print(const T *p)
3 {
4 c onst typename T::layout& flay =
5 r einterpret_cast<const typename T::layout &>(*p);
6
7 c out << typeid(T).name() << " at address " << p
8 << " h as an f whose address is "
9 / /etc.

10

▲

▼ Homework 10.1.2c: write a rabbit game debugger

To record the data type of every object on the master list, insert the following code at the end of the
constructor for classgame. In line 10,*it is a pointer to awabbit and**it is thewabbit .

1 ofstream ost("outfile");
2 i f (!ost) {
3 c ouldn’t open output file;
4 }
5
6 f or (master_t::const_iterator it = master.begin(); it != master.end();
7 ++it) {
8

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.1.2 typeid 1017

1018 Miscellaneous Chapter 10

9 t ry {
10 ost << typeid(**it).name();
11 }
12 catch (const bad_typeid& b) {
13 ost << b.what();
14 }
15
16 ost << "\n";
17 }
18 } //When we return from game::game, ost is destructed, closing the file.

Even better, call thetransform algorithm instead of fooling around with
master_t::const_iterator and writing your own loop. Loops are written for many purposes.
Calling transform documents the purpose of this one. The loop, the output file, and thetypeid are
cleanly separated from each other. And you’ll probably have many containers of pointers that could benefit
from the function objectget_id .

19 //POINTER must be dereferencable with a * because of line 25.
20
21 template <class POINTER>
22 struct get_id: public unary_function<POINTER, const char *> {
23 const char *operator()(POINTER p) const {
24 try {
25 return typeid(*p).name();
26 }
27 catch (const bad_typeid& b) {
28 return b.what();
29 }
30 }
31 };
32
33 //at the end of game::game
34 ofstream ost("outfile");
35 if (!ost) {
36 couldn’t open output file;
37 }
38
39 transform(
40 master.begin(), master.end(),
41 ostream_iterator<const char *>(ost, "\n"),
42 get_id<master_t::value_type>()
43);
44 }

Every pointer on the master list should point to an object of a class derived from classwabbit . Does it?
▲

▼ Homework 10.1.2d: create a multiplying rabbit

Thegrandchild classes are located in a two-dimensional space of classes. The dimensions repre-
sent the choice of movement and punishment, and the rank in the food chain. Imagine a third dimension,
giving a strategy for reproduction. An animal derived from classsterile , for example, would never giv e
birth to babies.An asexual animal would leave a trail of offspring behind it as it moves. A vampire
would replace any animal that it kills with anothervampire . Et cetera.

To build this third dimension, we would have to instate a new pure virtual functionreproduce in
classwabbit , create a new set of derived classes, and endow every grandchild class with a third parent.

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

But instead of doing the job right, let’s use RTTI to build a quick and dirty multiplying rabbit. The follow-
ing code is a kludge.

Create a multiplying rabbit data type.

1 t ypedef grandchild<brownian, victim, ’m’> multiplying_rabbit_t;

It will have to be visible togame::game andwabbit::move .

Insert lines 6−11 intowabbit::move .

2 i f (!I_ate_him) {
3 / /I bumped into a wabbit that I could neither eat nor
4 / /be eaten by.
5
6 i f (I a nd the other wabbit are both
7 multiplying_rabbit’s) {
8 dynamically allocate a new multiplying_rabbit
9 i n t he unoccupied location that is closest to

10 this wabbit.
11 }
12
13 punish();
14 return true;
15 }

To watch them multiply, pen twomultiplying_rabbit ’s inside a box ofboulder ’s.

bbbbbbb
b.....b
bm...mb
b.....b
bbbbbbb

▲

10.2 Namespaces
Lots of things can have names: variables, functions, classes, enumerations, typedefs, etc.Let’s call

themnamed items.Of course, not all variable have names; think of the ever-present anonymous tempo-
raries. Whendiscussing namespaces, source files and preprocessor macros are not considered named items.

A namespaceis a family of named items that share a common last name. The items are called the
membersof the namespace.

Imagine that two teams of programmers, working in isolation from each other, hav e presented us
with the following two header files. If a program tries to#include both of them, we will get name colli-
sions. Thetwo variablesx , the two functionsf , and the two classesdate are totally different—they just
happen to have the same names.

To include a header file in more than one.C file of the same program, the header file must not define
anything that occupies memory and that would be visible in more than one.C file. That’s why line 6 has
the keyword extern : it makes the line a declaration, not a definition.Line 7 is also a declaration, even
without theextern . The absence of a{ function body} prevents it from being a definition.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/pre/lib1.h

1 #ifndef LIB1H
2 #define LIB1H
3 #include <iostream>
4 using namespace std;

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.2 Namespaces 1019

1020 Miscellaneous Chapter 10

5
6 extern int x;
7 v oid f();
8
9 c lass date {

10 int year;
11 int month;
12 int day;
13 public:
14 date() {cout << "lib1::date::date, x == " << x << "\n";}
15 void print() const;
16 };
17 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/pre/lib2.h

1 #ifndef LIB2H
2 #define LIB2H
3 #include <iostream>
4 using namespace std;
5
6 extern double x;
7 v oid f();
8
9 c lass date {

10 int day;
11 public:
12 date() {cout << "lib2::date::date, x == " << x << "\n";}
13 void print() const;
14 };
15 #endif

10.2.1 Declare the members of a Namespace
Our program can#include both header files by giving a different last name to all the named items

in each file.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/lib1.h

1 #ifndef LIB1H
2 #define LIB1H
3 #include <iostream>
4 using namespace std;
5
6 namespace lib1 {
7 extern int x;
8 v oid f();
9

10 class date {
11 int year;
12 int month;
13 int day;
14 public:
15 date() {cout << "lib1::date::date, x == " << x << "\n";}

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

16 void print() const;
17 }; //semicolon at end of class declaration
18 } //no semicolon at end of namespace
19 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/lib2.h

1 #ifndef LIB2H
2 #define LIB2H
3 #include <iostream>
4 using namespace std;
5
6 namespace lib2 {
7 extern double x;
8 v oid f();
9

10 class date {
11 int day;
12 public:
13 date() {cout << "lib2::date::date, x == " << x << "\n";}
14 void print() const;
15 };
16 }
17 #endif

10.2.2 Definethe members of a Namespace
We must do more than just declare the members of a namespace.We must also define them.One

way to define them as members oflib1 is with theexplicit qualification lib1:: in lines 5, 7, and 13.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/lib1.C

1 #include <iostream>
2 #include "lib1.h"
3 using namespace std;
4
5 i nt lib1::x = 10; //looks like the definition of a static data member
6
7 v oid lib1::f() //looks like the definition of a member function
8 {
9 c out << "lib1::f: x == " << x

10 << ", sizeof (date) == " << sizeof (date) << "\n";
11 }
12
13 void lib1::date::print() const //definition of non-inline member function
14 {
15 cout << "lib1::date::print, x == " << x << "\n";
16 }

Another way to define them as members of a namespace is to enclose them in the following lines 5
and 19. We did this when definingiterator_traits<node::iterator> as a member of names-
pace std; in lines 37 and 46 ofnode.h on p. 806.

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.2.2 Define the members of a Namespace 1021

1022 Miscellaneous Chapter 10

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/braces/lib1.C

1 #include <iostream>
2 #include "lib1.h"
3 using namespace std;
4
5 namespace lib1 {
6 i nt x = 10;
7
8 v oid f()
9 {

10 cout << "lib1::f: x == " << x
11 << ", sizeof (date) == " << sizeof (date) << "\n";
12 }
13
14 void date::print() const //definition of non-inline member function
15 {
16 cout << "lib1::date::print, x == " << x << "\n";
17 }
18
19 } //no semicolon at end of namespace

We’l l do the same for namespacelib2 .

10.2.3 Usethe Members of a Namespace
The members of a namespace can be used in three ways.

(1) We can write the explicit qualificationlib1:: andlib2:: in lines 9−10, 13−14, 17−18.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/main1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "lib1.h"
4 #include "lib2.h"
5 using namespace std;
6
7 i nt main()
8 {
9 c out << lib1::x << "\n";

10 cout << lib2::x << "\n";
11 //cout << x << "\n"; //won’t compile: name collision
12
13 lib1::f();
14 lib2::f();
15 //f(); //won’t compile
16
17 lib1::date d1;
18 lib2::date d2;
19 //date d3; //won’t compile
20
21 return EXIT_SUCCESS;
22 }

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

10
20
lib1::f: x == 10, sizeof (date) == 12
lib2::f: x == 20, sizeof (date) == 4
lib1::date::date, x == 10
lib2::date::date, x == 20

(2) If we’re going to uselib1::x more frequently thanlib2::x , and lib2::f more frequently
than lib1::f , we can write theusing declarations in lines 7−8. A using declaration puts us on a first-
name basis with our favorite item with a give name.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/main2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std; //using directive
4
5 #include "lib1.h"
6 #include "lib2.h"
7 using lib1::x; //using declaration
8 using lib2::f; //using declaration
9

10 int main()
11 {
12 cout << x << "\n"; //lib1::x
13 cout << lib2::x << "\n"; //override the using declaration
14
15 f(); //lib2::f
16 lib1::f(); //override the using declaration
17
18 lib1::date d1; //didn’t write a using declaration for these
19 lib2::date d2;
20
21 return EXIT_SUCCESS;
22 }

10
20
lib2::f: x == 20, sizeof (date) == 4
lib1::f: x == 10, sizeof (date) == 12
lib1::date::date, x == 10
lib2::date::date, x == 20

(3) If we’re going to use most of the members of namespacelib1 more frequently than the mem-
bers of namespacelib2 , write theusing directive in line 7.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/main3.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std; //using directive
4
5 #include "lib1.h"
6 #include "lib2.h"
7 using namespace lib1; //using directive

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.2.3 Use the Members of a Namespace 1023

1024 Miscellaneous Chapter 10

8
9 i nt main()

10 {
11 cout << x << "\n"; //lib1::x and std::cout
12 cout << lib2::x << "\n";
13
14 f(); //lib1::f
15 lib2::f();
16
17 date d1; //lib1::date
18 lib2::date d2;
19
20 return EXIT_SUCCESS;
21 }

10
20
lib1::f: x == 10, sizeof (date) == 12
lib2::f: x == 20, sizeof (date) == 4
lib1::date::date, x == 10
lib2::date::date, x == 20

How they gave a last name before namespaces were inv ented

A namespace is just a class whose members are all public and whose data members and member
functions are allstatic . There is no need, however, for the data members and member functions of the
nested classes to be static.Classmusic , verb , and adjective on pp. 227−228, and classgates on p.
421 should have been namespaces.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/static_members/lib1.h

1 #ifndef LIB1H
2 #define LIB1H
3 #include <iostream>
4 using namespace std;
5
6 c lass lib1 {
7 public:
8 s tatic int x;
9 s tatic void f();

10
11 class date {
12 int year; //year doesn’t have to be static member of date
13 int month;
14 int day;
15 public:
16 date() {cout << "lib1::date::date, x == " << x << "\n";}
17 void print() const;
18 };
19 };
20 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/static_members/lib1.C

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

1 #include <iostream>
2 #include "lib1.h"
3 using namespace std;
4
5 i nt lib1::x = 10;
6
7 v oid lib1::f()
8 {
9 c out << "lib1::f: x == " << x

10 << ", sizeof (date) == " << sizeof (date) << "\n";
11 }
12
13 void lib1::date::print() const
14 {
15 cout << "lib1::date::print, x == " << x << "\n";
16 }

Overload a base class member function

Here’s a more elegant solution to a problem we solved back on p. 495.We want classderived to
have two different member functions namedf : one inherited from the base class, and one appearing for the
first time in class We originally did this with a call-through, but it’s easier to write the using declaration in
line 12. derived .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/using.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 public:
7 v oid f(int i) const {cout << i << "\n";} //Print in decimal.
8 } ;
9

10 class derived: public base {
11 public:
12 using base::f; //a using declaration instead of the call-through
13 void f(char c) const {cout << "’" << c << "’" << "\n";} //Print a character.
14 };
15
16 int main()
17 {
18 derived d;
19 d.f(’A’); //Calls the derived::f in line 13.
20 d.f(66); //Calls the derived::f in line 12,
21 //which is just another name for base::f.
22 return EXIT_SUCCESS;
23 }

’A’
66

Without the above line 12, the output would have been

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.2.3 Use the Members of a Namespace 1025

1026 Miscellaneous Chapter 10

’A’
’B’

10.2.4 AnAnonymous Namespace
As in C, a named item can be made local to one source file with the keyword static . The two

variablesx and the two functionsf will not cause name collisions. Each can be mentioned only in its own
source file.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/static/header.h

1 #ifndef HEADERH
2 #define HEADERH
3 v oid f1();
4 v oid f2();
5 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/static/file1.C

1 #include <iostream>
2 #include "header.h"
3 using namespace std;
4
5 s tatic int x = 10;
6 s tatic void f() {cout << "f in file1, x == " << x << "\n";}
7 v oid f1() {f();}

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/static/file2.C

1 #include <iostream>
2 #include "header.h"
3 using namespace std;
4
5 s tatic double x = 20;
6 s tatic void f() {cout << "f in file2, x == " << x << "\n";}
7 v oid f2() {f();}

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/static/main.C

1 #include <cstdlib>
2 #include "header.h"
3 using namespace std;
4
5 i nt main()
6 {
7 f 1();
8 f 2();
9 r eturn EXIT_SUCCESS;

10 }

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

f in f ile1, x == 10
f in f ile2, x == 20

An easier way to do the same thing is to give each.C file its own anonymous (nameless) namespace.
The members of an anonymous namespace can be mentioned only in that source file.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/anonymous/file1.C

1 #include <iostream>
2 #include "header.h"
3 using namespace std;
4
5 namespace {
6 i nt x = 10;
7 v oid f() {cout << "f in file1, x == " << x << "\n";}
8 }
9

10 void f1() {f();}

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/anonymous/file2.C

1 #include <iostream>
2 #include "header.h"
3 using namespace std;
4
5 namespace {
6 double x = 20;
7 v oid f() {cout << "f in file2, x == " << x << "\n";}
8 }
9

10 void f2() {f();}

With the sameheader.h andmain.C , we get the same output.

f in f ile1, x == 10
f in f ile2, x == 20

Class_print 7 can belong to an anonymous namespace in the example with a dispatching function
in Chapter 7.

10.2.5 NamespaceAlias
Here is the original version of a classdate , followed by an upgrade.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/alias/version1.h

1 #ifndef VERSION1H
2 #define VERSION1H
3 #include <iostream>
4 using namespace std;
5
6 namespace version1 {
7 c lass date {
8 public:
9 date() {cout << "version1::date\n";}

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.2.5 Namespace Alias 1027

1028 Miscellaneous Chapter 10

10 };
11 }
12 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/alias/version2.h

1 #ifndef VERSION2H
2 #define VERSION2H
3 #include <iostream>
4 using namespace std;
5
6 namespace version2 {
7 c lass date {
8 public:
9 date() {cout << "version2::date\n";}

10 };
11 }
12 #endif

Line 5 creates analias for the namespaceversion1 . To migrate toversion2 , only one word in
the program has to be changed.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/alias/main1.C

1 #include <cstdlib>
2 #include "version1.h"
3 using namespace std; //using directive
4
5 namespace current = version1; //namespace alias
6
7 i nt main()
8 {
9 c urrent::date d;

10 return EXIT_SUCCESS;
11 }

version1::date

We can even combine the namespace alias in line 5 with the using directive in line 6.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/alias/main2.C

1 #include <cstdlib>
2 #include "version1.h"
3 using namespace std; //using directive
4
5 namespace current = version1; //namespace alias
6 using namespace current; //using directive
7
8 i nt main()
9 {

10 date d;
11 return EXIT_SUCCESS;
12 }

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

version1::date

10.2.6 Namespacesin the Header Files

iostream vs. iostream.h

The named items declared in the header fileiostream.h belong to no namespace.

1 / /Excerpt from iostream.h
2
3 i stream cin(argument(s), if any, for constructor);
4 ostream cout(argument(s), if any, for constructor);
5 ostream cerr(argument(s), if any, for constructor);
6 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/header/main1.C

1 #include <iostream.h> //for cout
2 #include <stdlib.h> //for EXIT_SUCCESS
3
4 i nt main()
5 {
6 c out << "hello\n"; //cout belongs to no namespace
7 r eturn EXIT_SUCCESS;
8 }

The named items declared in the header fileiostream belong to the ‘‘standard’’ namespacestd .
Ditto for all the other C++ header files that have no C counterparts:vector , list , algorithm , etc.

9 / /Excerpt from iostream
10
11 namespace std {
12 istream cin(argument(s), if any, for constructor);
13 ostream cout(argument(s), if any, for constructor);
14 ostream cerr(argument(s), if any, for constructor);
15 }

When includingiostream , we must therefore use either explicit qualification or a using directive.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/header/main2.C

1 #include <iostream> //for std::cout
2 #include <cstdlib> //for EXIT_SUCCESS;
3
4 i nt main()
5 {
6 s td::cout << "hello\n"; //explicit qualification
7 r eturn EXIT_SUCCESS;
8 }

hello

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.2.6 Namespaces in the Header Files 1029

1030 Miscellaneous Chapter 10

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/header/main3.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std; //using directive
4
5 i nt main()
6 {
7 c out << "hello\n";
8 r eturn EXIT_SUCCESS;
9 }

hello

The C header files come in pairs

The C++ Standard Library contains two versions of each header file in the C Standard Library. The
ones with a trailing.h and no leadingc declare items that belong to no namespace; the ones with a leading
c and no trailing.h declare items that belong to namespacestd . Macros, such asEXIT_SUCCESSand
EXIT_FAILURE , whether defined instdlib.h or cstdlib.h , belong to no namespace.A macro
cannot belong to a namespace.

no namespace ctype.h math.h stddef.h stdlib.h string.h time.h

namespacestd cctype cmath cstddef cstdlib cstring ctime

Another example is<cfloat> on p. 747.

The three string header files

There are three string header files.As in the above chart,string.h declares C Standard Library
functions that belong to no namespace, whilecstring declares the same functions belonging to names-
pacestd .

1 / /Excerpt from string.h
2 #include <stddef.h> //for size_t
3
4 / /C Standard Library functions:
5 s ize_t strlen(const char *s);
6 i nt strcmp(const char *s1, const char *s2);

7 / /Excerpt from cstring
8 #include <cstddef> //for size_t
9

10 namespace std {
11 //C Standard Library functions:
12 size_t strlen(const char *s);
13 int strcmp(const char *s1, const char *s2);
14 }

The third header file declares the C++ classstring .

15 //Excerpt from string
16
17 namespace std {
18 class string {
19 //etc.

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

20 public:
21 string(const char *s);
22 //etc.
23 };
24 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/namespace/header/main4.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for strlen in line 9
4 #include <string> //for class string in line 11
5 using namespace std;
6
7 i nt main(int argc, char **argv)
8 {
9 c out << strlen(argv[0]) << "\n"; //argv[0] is just a char *

10
11 string s = a rgv[0];
12 cout << s.size() << "\n";
13
14 return EXIT_SUCCESS;
15 }

9
9

10.3 Internationalization (I18n)

10.3.1 Localesin C and C++
Each language and/or country has its own set of formatting conventions. Examplesare the decimal

point character, the currency symbol, and the order in which the day, month, and year of a date are printed.
A complete set of conventions is called alocale.

We can change a the locale of a program and create new locales. Bestof all, we can ignore locales if
internationalization is not an issue. The latter is often called ‘‘i18n’’ because it has eighteen letters between
the I and the n.

Each locale has a name.Unfortunately, each platform gives you a different set of locales with a dif-
ferent set of names.To see the names on my platform (Sun Solaris Unix), we give the-a option (‘‘all’ ’) to
the locale program. CanadianFrench, for example, isfr_CA : lowercase language and uppercase coun-
try. These names will be used as an argument of the functionsetlocale in C, and of a constructor for
classlocale in C++ .

1$ locale -a | sort -df | pr -3 -l6 minus lowercase L six
C f r_FR.UTF-8 POSIX
de_DE.UTF-8 it_IT.UTF-8 pt_BR.UTF-8
en_US.UTF-8 ja_JP.UTF-8 zh_CN.UTF-8
es_ES.UTF-8 ko_KR.UTF-8 zh_TW.UTF-8

To see the names on Windows,

Start → Settings → Control Panel → Regional and Language Options

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.1 Locales in C and C++ 1031

1032 Miscellaneous Chapter 10

http://msdn.microsoft.com/library/default.asp
?url=/library/en-us/vclib/html/_crt_Language_and_Country_Strings.asp

A locale in C

At any giv en time, a single locale governs all aspects of a C program.These include the standard
input, standard output, and functions such as thestrftime in line 60, theisprint in 68, and the
strcoll in 89. To see the name of the current locale, give setlocale the argumentNULL in lines 16
and 56. There is no telling how long a name will be.To sav eit, lines 17−23 must copy it into a block of
dynamically allocated memory.

On my platform, the dynamic allocation is overkill because a C program always starts in a locale
named"C" . To change the locale, pass a different name tosetlocale in line 37. A C locale consists of
six categories of formats: numeric, date and time, monetary, etc. We can set all of them withLC_ALL, or
only one of them withLC_NUMERIC, LC_TIME, LC_MONETARY, etc.

In lines 57−58, the single quote lets the locale separate the digits of a number into thousands if it
wants to. In line 68,isprint needs the cast for the reason on pp. 63−64. In line 79, the%uworks only
on machines wheresize_t is another name forunsigned .

The loop in lines 67−74 is careful not to increment achar that already containsCHAR_MAX. An
overflow would probably wrap around safely, even on a machine wherechar ’s are signed. But why risk
it? Officially, overflow causes ‘‘undefined behavior’’.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/locale/locale.c

1 #include <stdio.h>
2 #include <stdlib.h> /* for malloc, NULL, exit, EXIT_*, qsort */
3 #include <string.h> /* for strlen, strcpy, strcoll */
4 #include <locale.h> /* for setlocale, LC_ALL */
5 #include <time.h> /* for time, localtime, strftime, time_t, struct tm */
6 #include <limits.h> /* for CHAR_MIN, CHAR_MAX */
7 #include <ctype.h> /* for isprint */
8
9 v oid set(const char *name);

10 void print();
11 int compare(const void *p1, const void *p2); /* function passed to qsort */
12
13 int main(int argc, char **argv)
14 {
15 /* Save the name of the current locale of the entire program. */
16 const char *const p = setlocale(LC_ALL, NULL);
17 char *const save = malloc(strlen(p) + 1);
18 if (save == NULL) {
19 fprintf(stderr, "%s: couldn’t save original locale \"%s\"\n",
20 argv[0], p);
21 return EXIT_FAILURE;
22 }
23 strcpy(save, p);
24
25 print();
26 set("fr_CA"); /* Canadian French */
27 print();
28 set(save); /* return to saved locale */
29 print();
30

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

31 free(save);
32 return EXIT_SUCCESS;
33 }
34
35 void set(const char *name)
36 {
37 if (setlocale(LC_ALL, name) == NULL) {
38 fprintf(stderr, "couldn’t setlocale \"%s\".\n", name);
39 exit(EXIT_FAILURE);
40 }
41 }
42
43 void print()
44 {
45 const time_t t = time(NULL);
46 const struct tm *const ptm = localtime(&t);
47
48 char buffer[CHAR_MAX - CHAR_MIN + 2]; /* includes terminating ’\0’ */
49 char *p = buffer;
50 char c;
51
52 size_t len; /* # of p rintable characters in this locale */
53 const size_t n = 70; /* # of characters to print per line */
54 size_t i;
55
56 printf("Locale \"%s\":\n", setlocale(LC_ALL, NULL));
57 printf("integer: %’d\n", 123456789);
58 printf("double: %’.3f\n", 123456789.123);
59
60 if (strftime(buffer, sizeof buffer, "%c (%x)", ptm) == 0) {
61 fprintf(stderr, "strftime overflowed\n");
62 } else {
63 printf("time formats: %s\n", buffer);
64 }
65
66 /* Make a buffer of all characters that are printable in this locale. */
67 for (c = CHAR_MIN;; ++c) {
68 if (isprint((unsigned char)c)) {
69 *p++ = c;
70 }
71 if (c == CHAR_MAX) {
72 break;
73 }
74 }
75 *p = ’ \0’;
76
77 len = strlen(buffer);
78 qsort(buffer, len, sizeof (char), compare);
79 printf("collating order for the %u printable characters:\n", len);
80
81 /* Print the buffer n characters per line. */
82 for (i = 0; i < len; i += n) {
83 printf("%.*s\n", n, buffer + i);
84 }

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.1 Locales in C and C++ 1033

1034 Miscellaneous Chapter 10

85 printf("\n");
86 }
87
88 int compare(const void *p1, const void *p2)
89 {
90 const char a[] = {*(const char *)p1, ’\0’};
91 const char b[] = {*(const char *)p2, ’\0’};
92 return strcoll(a, b);
93 }

Locale "C":
integer: 123456789
double: 123456789.123
time formats: Tue Apr 08 09:14:38 2014 (04/08/14)
collating order for the 95 printable characters:

!"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcde
fghijklmnopqrstuvwxyz{|}˜

A locale object in C++

In C++, a locale is represented by an object of classlocale . Each stream can have a different
locale, and a stream’s locale is returned by the member functiongetloc in line 10. A locale can be
copied but not modified: all of its non-static data members and member functions areconst .

There are other ways to construct a locale. Line 13 constructs the ‘‘user’s preferred locale’’, set by
the operating system. Line 14 constructs theclassic locale, that the era before people gav eany thought to
i18n. Line15 constructs theglobal local, with which all newborn streams are imbued. Theglobal locale is
initially the classic locale, socin andcout were classically imbued.

Line 18 constructs the French Canadian locale. Bear in mind that the argument of the constructor
may be a different string on each platform. It must also be achar * , not astring object. If the name
is not recognized, the constructor will throw an exception of classruntime_error , derived from class
exception on p. 628. Line 22 installs the new locale as the global locale.The existing streams will
retain their current locales, but any new stream will be Québecois.

Let’s construct a stream to make sure. We could open an output file with anofstream , but then
we’d hav eto clean up the disk when the program is over. Instead, we’ll open a string with the
ostringstream in line 30. Its locale has the same name as the global one (line 32) and is in fact equal
to the global one (line 33).

C++ programs compiled with the GNUg++ compiler on my platform do not recognize the names of
the locales, so I had to compile this program with the SunCCcompiler.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/locale/locale.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <locale> //for locale
4 #include <stdexcept> //for runtime_error
5 #include <sstream> //for ostringstream
6 using namespace std;
7
8 i nt main()
9 {

10 const locale loc1 = cout.getloc(); //copy the locale of cout
11 cout << "cout’s locale is \"" << loc1.name() << "\".\n";

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

12
13 const locale loc2(""); //the user’s preferred locale
14 const locale loc3 = locale::classic(); //static member function
15 const locale loc4; //global locale
16
17 try {
18 const locale loc5("fr_CA");
19 cout << "The French Canadian locale is \"" << loc5.name()
20 << "\".\n";
21
22 locale::global(loc5); //static member function
23 cout << "The new global locale is \"" << locale().name()
24 << "\".\n";
25 }
26 catch (const runtime_error& e) {
27 cerr << e.what() << "\n";
28 }
29
30 ostringstream ost;
31 const locale loc6 = ost.getloc();
32 cout << "The locale of a new stream is \"" << loc6.name() << "\".\n";
33 if (loc6 == locale()) {
34 cout << "ost’s locale is the same as the global one.\n";
35 }
36
37
38 return EXIT_SUCCESS;
39 }

cout’s locale is "C".
The locale of a new stream is "C".
ost’s locale is the same as the global one.

Imbue a stream with a different locale

The expressionlocale("fr_CA") in line 17 constructs an anonymous object of classlocale .
To imbue a stream with it, we pass the object to theimbue member function in lines 17 and 24.Each
stream has its own locale, so we should also have imbuedcin , cerr , andclog .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/locale/imbue.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 #include <locale>
5 #include <stdexcept> //for runtime_error
6 using namespace std;
7
8 v oid print();
9

10 int main()
11 {
12 const locale save = cout.getloc(); //save cout’s locale
13

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.1 Locales in C and C++ 1035

1036 Miscellaneous Chapter 10

14 print();
15
16 try {
17 cout.imbue(locale("fr_CA"));
18 }
19 catch (const runtime_error& e) {
20 cerr << e.what() << "\n";
21 }
22
23 print();
24 cout.imbue(save); //return to saved locale
25 print();
26 return EXIT_SUCCESS;
27 }
28
29 void print()
30 {
31 cout << "Locale \"" << cout.getloc().name() << "\":\n"
32 << "integer: " << 123456789 << "\n"
33 << "double: " << fixed << setprecision(3) << 123456789.123
34 << "\n\n";
35 }

Locale "C":
integer: 123456789
double: 123456789.123

Locale "C":
integer: 123456789
double: 123456789.123

Locale "C":
integer: 123456789
double: 123456789.123

10.3.2 Facets
A C++ locale is made offacets.Each facet in a locale belongs to a different data type, all of them

derived from classlocale::facet .

Not every type of facet is present in every locale. To see if a locale has given type of facet, we call
the template functionhas_facet (lines 13, 29). The data type of the facet goes in the<angle brackets>
and the locale object goes in the(parentheses) .

Once we have established that a facet of the desired type is present, we calluse_facet to access
the facet (lines 14, 30).Like astream object, a facet cannot be copied (pp. 324−326), and like alocale
object, a facet cannot be modified. The return value ofuse_facet can be stored only in a read-only ref-
erence.

If we recklessly skip the call tohas_facet and attempt touse_ a facet that is not present,
use_facet will throw an exception of typebad_cast , derived from classexception on p. 628. I
don’t expect this will happen here, becausenumpunct<char> and num_put<char> are standard
facets.They should be present in every locale object. (Maddeningly, num_put has an underscore but
numpunct doesn’t.)

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Each type of facet has different member functions. Anumpunct<char> has the function
decimal_point in line 17, and anum_put<char> has the functionput in line 32. The functions of
one facet often call those of another facet belonging to the same locale; for example,put calls
decimal_point . To see how this happens, we first have to explain why cout is passed toput twice in
line 32.

Recall thatcout is of classostream , a typedef for classbasic_ostream<char> . This class
was built in layers using inheritance; a more extensive diagram appeared on pp. 383−385.

ios_base

basic_ios<char>

basic_ostream<char>

The base classios_base knows about formatting a stream—field width, left and right justification,
ev en the locale—but its view of reality has one huge gap. Itdoes not know whether the stream’s characters
arechar ’s or wchar_t ’s. This information is added in the next layer, basic_ios , which deals with
characters, buffers, and thestreambuf_iterator ’s that read and write them.For example, thefill
function inherited bycout (p. 354) originates at this layer. But abasic_ios does not know whether the
stream is input stream or output.This information is added in the last layer, classbasic_ostream ,
where theoperator<< functions are defined.

Theput in line 32 does not require a completebasic_ostream<char> object, or even bits and
pieces of the samebasic_ostream<char> object. Itwould be happy to write the characters of
1234.56 to any buffer, with formatting specified by anyios_base object.

The first argument received by put is actually an output iterator that refers to a buffer. In line 32, the
first cout is implicitly converted to an output iterator that refers tocout ’s buffer. cout is a
basic_ostream<char> ; this type of stream has a buffer whose iterator is of class
ostreambuf_iterator<char> ; this type of iterator has a non-explicit constructor whose argu-
ment is abasic_ostream<char> . The constructor gives us an iterator referring to the
basic_ostream<char> ’s buffer.

The second argument received by put is an ios_base that holds formatting information and a
locale. Any object can be implicitly converted to a public base class, andios_base is a public base of
cout .

To remember whatput takes from the two cout ’s, we could have written line 32 as follows. One
loose end: anios_base has nofill character (or any other character), so this must be passed sepa-
rately.

1 num_put<char>::iter_type it = f.put(
2 ostreambuf_iterator<char>(cout), //call a one-arg constructor
3 s tatic_cast<ios_base&>(cout), //cast derived to base
4 c out.fill(),
5 1234.56
6) ;

Like the copy algorithm,put returns the an output iterator of the same type that it received as an
argument, referring to a point just beyond the last value written.For an ostream , this iterator is of type
ostreambuf_iterator<char> . This being quite a mouthful, the facet gives us the iter_type in
line 31 as a shorter name for it. This type of iterator has afailed function that tells us if theput failed
(line 34).

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.2 Facets 1037

1038 Miscellaneous Chapter 10

Now we can explain how a member function of one facet can call a member function of another. The
number in line 32 has a decimal point, soput will call thedecimal_point function of the
numpunct<char> facet of thelocale object of theios_base object that was the second argument of
put . See p. 1048 for why the ios_base must be passed as a non-const reference.

For theconvert template class in line 24, see p. 877.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/locale/facet.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <locale>
4 #include <iterator> //for ostream_iterator
5 #include <algorithm> //for transform
6 #include "convert.h" //for convert
7 using namespace std;
8
9 i nt main(int argc, char **argv)

10 {
11 const locale loc = cout.getloc();
12
13 if (has_facet<numpunct<char> >(loc)) {
14 const numpunct<char>& f = use_facet<numpunct<char> >(loc);
15 cout << "truename: \"" << f.truename() << "\"\n"
16 << "falsename: \"" << f.falsename() << "\"\n"
17 << "decimal point: ’" << f.decimal_point() << "’\n"
18 << "thousands sep: ’" << f.thousands_sep() << "’\n";
19
20 cout << "grouping: ";
21 const string s = f.grouping();
22 transform(s.begin(), s.end(),
23 ostream_iterator<unsigned>(cout, " "),
24 convert<char, unsigned char>()
25);
26 cout << "\n";
27 }
28
29 if (has_facet<num_put<char> >(loc)) {
30 const num_put<char>& f = use_facet<num_put<char> >(loc);
31 const num_put<char>::iter_type it =
32 f.put(cout, cout, cout.fill(), 1234.56);
33
34 if (it.failed()) {
35 cerr << "put failed\n";
36 return EXIT_FAILURE;
37 }
38 cout << "\n";
39 }
40
41 return EXIT_SUCCESS;
42 }

My Sun CC compiler would accept a template function only if at least one of the function arguments
had aT in its type. has_facet and use_facet therefore demanded an extra function argument, a
pointer to the type I wanted to write as the explicit template argument. To add insult to injury, this change
was necessary only if a certain ‘‘Rogue Wav e’’ macro is defined.For example, the above line 13 had to

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

become

43 #ifdef _RWSTD_NO_TEMPLATE_ON_RETURN_TYPE
44 if (has_facet(loc, static_cast<numpunct<char> *>(0))) {
45 #else
46 if (has_facet<numpunct<char> >(loc)) {
47 #endif

truename: "true"
falsename: "false"
decimal point: ’.’
thousands sep: ’,’
grouping: classic locale doesn’t use the thousands separator at all
1234.56

▼ Homework 10.3.2a: other facets

(1) Imbue cout with a different locale in the above program. For example, insert the following at
line 10½.

1 t ry {
2 c out.imbue(locale("fr_CA"));
3 }
4 c atch (const runtime_error& e) { //must #include <stdexcept>
5 c err << e.what() << "\n";
6 }

On my platform, the new output is

(2) Doescout ’s locale have a facet of typetime_put<char> , similar to num_put<char> ? If
so, make a read-only referencef to it. Theput member function of this facet takes five arguments, the last
one being astrftime conversion character such as the%cin line 60 oflocale.c on p. 1033.

7 c onst time_t t = time(0);
8 c onst tm *const p = localtime(&t);
9 c onst time_put<char>::iter_type it =

10 f.put(cout, cout, cout.fill(), p, ’c’); //like strftime("%c")
11 cout << "\n";

Tue Apr 08 09:14:55 2014 classic C locale

Try otherstrftime conversion characters, such as’x’ .

04/08/14 classic C locale

This facet also has a six-argumentput , taking the beginning and end of astrftime format string.

12 const char format[] = "%c (%x)";
13 const time_put<char>::iter_type it = f.put(cout, cout, cout.fill(), p,
14 format, format + sizeof format - 1);

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.2 Facets 1039

1040 Miscellaneous Chapter 10

Tue Apr 08 09:15:07 2014 (04/08/14) classic C locale

(3) Does cout ’s locale have facets of type moneypunct<char, true> and
moneypunct<char, false> , similar to numpunct<char> ? If so, make a read-only referencef to
each one and print the return values of some of the member functions.The bool controls the currency
symbol: true for international (USD), false for local ($). The international symbol, if it exists, is
always four characters.

15 cout << "curr_symbol: \"" << f.curr_symbol() << "\"\n"
16 << "frac_digits: << f.frac_digits() << "\n";

curr_symbol: "" classic locale, international symbol
frac_digits: 0

curr_symbol: "" classic locale, local symbol
frac_digits: 0

(4) Doescout ’s locale have a facet of typemoney_put<char> , similar to num_put<char>
and time_put<char> ? If so, make a read-only referencef to it. The put member functions of this
facet takes five arguments. Thesecond is abool that controls the currency symbol (true for international,
false for local); the last is along double or string representing the amount of money.

17 cout << showbase; //see the currency symbol, if any
18 const money_put<char>::iter_type it =
19 f.put(cout, true, cout, cout.fill(), 123.45);

123 classic locale, international symbol

123 classic locale, local symbol

Thepos_format andneg_format member functions ofmoneypunct control whether the sign
comes before or after the currency symbol.

20 const string name[] = {
21 "none",
22 "space",
23 "symbol",
24 "sign",
25 "value"
26 };
27
28 const money_base::pattern pat = f.pos_format();
29 const size_t n = sizeof pat.field / sizeof pat.field[0];
30 for (size_t i = 0; i < n; ++i) {
31 cout << name[pat.field[i]] << " ";
32 }
33 cout << "\n";

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

(5) Doescout ’s locale have a facet of typecollate<char> , similar to numpunct<char> ? If
so, make a read-only referencef to it. Print the return value of itscompare member function.compare
does not recognize’\0’ as a string terminator. You have to pass it the address of the character beyond the
end of the string.

34 const char a[] = "A"; //could have made strings of more than 1 char
35 const char b[] = "˜";
36 const int i = f.compare(a, a + sizeof a - 1, b, b + sizeof b - 1);
37
38 if (i < 0) {
39 cout << "\"" << a << "\" comes before \"" << b << "\".\n";
40 } else if (i > 0) {
41 cout << "\"" << b << "\" comes before \"" << a << "\".\n";
42 } else {
43 cout << "\"" << a << "\" and \"" << b
44 << "\" are the same string.\n";
45 }

"A" comes before "˜". classic locale

(6) Doescout ’s locale have a facet of typectype<char> , similar to numpunct<char> ? If so,
make a read-only referencef to it and print the return values of some of the member functions. The
ctype_base::upper in line 47 is an enumeration; the others arelower , alpha , digit , etc.

46 const char c = ’\xC7’; //uppercase C with cedilla
47 cout << boolalpha << f.is(ctype_base::upper, c) << "\n"
48 << f.tolower(c) << "\n";

false classic locale does not recognize Ç as uppercase
Ç remains unchanged

(7) What other types of facets are there? Look in the<locale> header file or the compiler docu-
mentation.
▲

A locale is a predicate.

Among its many faculties, a C++locale is a predicate of two arguments. Ittakes two string
objects and returns true if the first is less than the second in the locale’s collating order (line 19).We can
therefore pass it to algorithms such as thesort in line 49.

The C Standard Library had a one-argument isprint that used the C global locale set by
setlocale . Its argument was anint , with a value that had to be within the range of anunsigned
char . It usually required a cast (pp. 63−64).

The C++ Standard Library has anotherisprint that takes alocale object (line 41). It is a tem-
plate function whose first argument can be achar or wchar_t , with any value at all. It needs no cast.
The other<cctype> functions (isupper , toupper , etc.) arehandled similarly.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/locale/sort.C

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.2 Facets 1041

1042 Miscellaneous Chapter 10

1 #include <iostream>
2 #include <cstdlib>
3 #include <locale> //for the two-argument isprint
4 #include <stdexcept>
5 #include <vector>
6 #include <string>
7 #include <iterator> //for ostream_iterator
8 #include <algorithm> //for sort, copy
9 using namespace std;

10
11 void f(const locale& loc);
12
13 int main()
14 {
15 const locale loc = cout.getloc();
16 const string a = "apple";
17 const string b = "banana";
18
19 if (loc(a, b)) { //if (loc.operator()(a, b)) {
20 cout << "\"" << a << "\" comes before \"" << b << "\".\n\n";
21 }
22
23 f(loc);
24
25 try {
26 f(locale("fr_CA"));
27 }
28 catch (const runtime_error& e) {
29 cerr << e.what() << "\n";
30 return EXIT_FAILURE;
31 }
32
33 return EXIT_SUCCESS;
34 }
35
36 void f(const locale& loc)
37 {
38 vector<string> v; //a one-char string for each printable character
39
40 for (char c = numeric_limits<char>::min();; ++c) {
41 if (isprint(c, loc)) { //accepts char, returns bool
42 v.push_back(string(1, c)); //a string of one c
43 }
44 if (c == numeric_limits<char>::max()) {
45 break;
46 }
47 }
48
49 sort(v.begin(), v.end(), loc);
50
51 //Print the vector n elements per line.
52 ostream_iterator<string> it(cout);
53 const vector<string>::size_type n = 70;
54

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

55 for (vector<string>::size_type i = 0; i < v.size(); i += n) {
56 copy(v.begin() + i, m in(v.begin() + i + n, v.end()), it);
57 cout << "\n";
58 }
59 cout << "\n";
60 }

"apple" comes before "banana".

!"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcde
fghijklmnopqrstuvwxyz{|}˜

The operator() function in the above line 19 is a template member function, like the function
rot in lines 15−16 ofpoint.h on p. 724. It is implemented as the following call-through to the
compare function we just saw on p. 1041.

Recall that our familiar data typestring is just a typedef for classbasic_string<char> (p.
688). IfCHARis char , thes1 ands2 in line 59 will bestring ’s. Thedata member function of class
string is just likec_str , except that it doesn’t terminate the characters with a’\0’ .

61 template <class CHAR, plus more arguments you don’t want to know about>
62 int locale::operator()(const basic_string<CHAR>& s1,
63 const basic_string<CHAR>& s2) const
64 {
65 const CHAR *const p1 = s1.data();
66 const CHAR *const p2 = s2.data();
67
68 const collate<CHAR>& f = use_facet<collate<CHAR> >(*this);
69 return f.compare(p1, p1 + s1.size(), p2, p2 + s2.size()) < 0;
70 }

A locale-specific string?

We hav eachieved French Canadian order by passing a third argument to thesort algorithm in the
above line 46. Can we eliminate this argument by inventing afr_CA_string (or astring<fr_CA>)
that is intrinsically Québecois?

1 v ector<fr_CA_string> v(argument(s) for constructor);
2 s ort(v.begin(), v.end());

We hav esaid that astring is abasic_string<char> . But now let’s rev eal a bit more of the
truth. Astring is actually a

basic_string<char, char_traits<char> >

Given a container of these objects, the two-argumentsort algorithm calls theoperator< friend of this
class, which calls thecompare member function of classchar_traits<char> . compare returns a
negative, zero, or positive int , just like strcmp , to tell us which argument comes first in the alphabetical
order for this particular type of character. Sincecompare does not recognize’\0’ as a string terminator,
it needs an additional argument of typesize_t telling it how many characters to compare.

3 #include <string> //for char_traits
4 using namespace std;
5
6 i f (char_traits<char>::compare("apple", "banana", 5) < 0) {
7 c out << "For arrays of char, "
8 "

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.2 Facets 1043

1044 Miscellaneous Chapter 10

9 }

To create afr_CA_string , we could therefore write a new compare function in a class derived
from char_traits<char> . Line 12 overrides the above compare function. Thechar_type in line
12 is another name forCHAR, inherited fromchar_traits . Line 15 calls the above
collate<CHAR>::compare function.

10 template <class CHAR>
11 struct fr_CA_char_traits: public char_traits<CHAR> {
12 static int compare(const char_type *p1, const char_type *p2, size_t n) {
13 somehow let f be a reference to the collate<CHAR> facet
14 of the "fr_CA" locale;
15 return f.compare(p1, p1 + 1, p2, p2 + 1);
16 }
17 };
18
19 typedef basic_string<char, fr_CA_char_traits<char> > fr_CA_string;
20
21 vector<fr_CA_string> v(argument(s) for constructor);
22 sort(v.begin(), v.end());

But a fr_CA_string will not interact with the rest of the standard library. We can’t even print
one:

23 cout << v[0]; //won’t compile

Theoperator<< for classstring is actually

24 //There are default values for TRAITS and ALLOCATOR,
25 //so we usually don’t write them.
26
27 template <class CHAR, class TRAITS, class ALLOCATOR>
28 basic_ostream<CHAR, TRAITS>& operator<<(basic_ostream<CHAR, TRAITS>&,
29 basic_string<CHAR, TRAITS, ALLOCATOR>

cout is a

basic_ostream<char, char_traits<char> >

but a fr_CA_string is a

basic_string<char, fr_CA_char_traits<char> >

Since the traits disagree, theoperator<< template will not accept them.We would have to write our
own operator<< andoperator>> .

In the same way, our new strings cannot be compared to, or assigned to, normal strings with the exist-
ing operator< or operator= . Let’s not pursue classfr_CA_string any further.

But what if we want amap whose subscripts are sorted infr_CA order? We hav edecided not to
create classfr_CA_string , so we cannot say

30 map<fr_CA_string, int> m; //won’t compile: there is no class fr_CA_string

We will have to write a third template argument within the<angle brackets>. We cannot write

31 map<fr_CA_string, int, locale("fr_CA")> m; //won’t compile

because a template argument cannot be an object. It will have to be a class such as the following.

32 template <class CHAR>
33 class fr_CA_order {
34 public:

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

35 static bool operator()(const basic_string<CHAR>& s1,
36 const basic_string<CHAR>& s2) {
37
38 somehow let f be a reference to the collate<CHAR> facet
39 of the "fr_CA" locale;
40
41 const CHAR *const p1 = s1.data();
42 const CHAR *const p2 = s2.data();
43 return f.compare(p1, p1 + s1.size(), p2, p2 + size()) < 0;
44 }
45 };

Given the above class, we can declare our map:

46 map<string, int, fr_CA_order> m;

Now how do we get thef in the above lines 31−32?There is a classcollate_byname<CHAR>
that is exactly like classcollate<CHAR> , except that it has a constructor that will take a locale name.
(Every class of facet has this_byname variant.) We can almost write lines 31−32 as follows. Thef is
now an actual facet, not a reference.We also pass a numeric argument. If this argument was zero (the
default), and if the facet was part of alocale object (which this isn’t), thelocale object would
delete the facet when thelocale object is destructed.

47 const collate_byname<CHAR> f("fr_CA", 1);

A facet declared at the above lines 31−32 will be destructed at line 37. But the destructor for class
facet is protected, preventing line 37 from compiling.This was done to discourage us from constructing
a facet for local use only. A facet is intended to be part of a locale that will govern an entire stream.

But we are professionals.We will have to derive from collate_byname<CHAR> a class whose
destructor is public. Ther in line 42 stands for ‘‘reference count’’ .

48 template <class CHAR>
49 struct destructable_collate_byname: public collate_byname<CHAR> {
50 destructable_collate_byname(const char *name, size_t r = 0)
51 : collate_byname<CHAR>(name, r) {}
52
53 ˜destructable_collate_byname() {}
54 };

The above lines 31−32 will now be

55 const destructable_collate_byname<CHAR> f("fr_CA", 1);

Even better, let f be a private, static data member of classfr_CA_order .

10.3.3 Alocale-sensitiveoperator<< for a built-in type
We can easily write a classroman_numeral that prints as a Roman numeral:

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/roman/roman_numeral.h

1 #ifndef ROMAN_NUMERALH
2 #define ROMAN_NUMERALH
3 #include <iterator> //for ostream_iterator
4 #include <algorithm> //for fill_n
5 using namespace std;
6
7 c lass roman_numeral {

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.3 A locale-sensitiveoperator<< for a built-in type 1045

1046 Miscellaneous Chapter 10

8 i nt i;
9 public:

10 roman_numeral(int initial_i): i(initial_i) {}
11
12 friend ostream& operator<<(ostream& ost, const roman_numeral& n) {
13 fill_n(ostream_iterator<char>(ost), n.i, ’I’); //simplified
14 return ost;
15 }
16 };
17 #endif

But what if we wanted to print anint as a Roman numeral?

1 i nt i = 10;
2 c out << i << "\n";

Theoperator<< that formats anint is the flagship member function of classostream . It has already
been written for us and is shown below. In fact, it has been engraved in granite in the C++ Standard
Library. It can be overridden only by discardingcout and deriving a new class fromostream .

Bear in mind that theostream in the following line 1 is actually a typedef for class
basic_ostream<char> . In real life, line 1 would be

3 t emplate <class CHAR, class TRAITS = char_traits<CHAR> >
4 basic_ostream<CHAR, TRAITS>& operator<<(int i)

and thechar ’s in lines 6−7 would beCHAR.

The punchline is line 8, which calls theput member function of thenum_put<char> facet of the
locale object of theostream . There are actually several put functions. Theone we saw in line 32 of
facet.C on p. 1038 took adouble ; others take long or unsigned long . But no put an int ,
which is why line 8 needs the cast.

At the beginning and/or end of every operator<< function that makes a direct call to theput
function of a facet, certain administrative tasks have to be performed, including flushing the buffer and
throwing exceptions. Aclassostream::sentry has been written whose constructor and destructor do
this setup and cleanup.Line 3 constructs an anonymous sentry object and checks that the constructor was
successful. Ifthe anonymity makes you uncomfortable, give the object a name:

5 c onst sentry s(*this);
6 i f (s) { //if (s.operator bool()) {

Do we really need lines 10−12?Can’t put in line8 callsetstate for us? Well, setstate is a
member function of classbasic_ios , but the second argument received by put is merely an an
ios_base .

Exceptions can be thrown at several places in theoperator<< . If the stream has no
num_put<char> facet, the call touse_facet in line 6 will throw a bad_cast exception (p. 1036).If
we have requested it to do so, thesetstate in line 11 will throw an ios_base::failure exception.
(Line 7 of failure.C on p. 624 shows how to make this request; the following line 22 checks if the
request has been made.) Theput function in line 8 might also throw various unpredictable exceptions.

We set thefailbit if the put function has failed (line 11); we set thebadbit if any exception
has been thrown (line 17). Line 17 itself might throw an ios_base::failure , which we contain in
lines 16−20.We do this because theoperator<< function would be more informative if the exception
that escapes from it at line 23 could be the one that got us to line 15 in the first place, rather than a pre-
dictableios_base::failure from line 17.

Note that an exception thrown by the sentry constructor in line 3 is not caught by line 15. It will
escape from theoperator<< .

1 ostream& ostream::operator<<(int i)

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

2 {
3 i f (sentry(*this)) { //if (sentry(*this).operator bool()) {
4 t ry {
5 c onst locale& loc = getloc();
6 c onst num_put<char>& f = use_facet<num_put<char> >(loc);
7 c onst num_put<char>::iter_type it =
8 f .put(*this, *this, fill(), static_cast<long>(i));
9

10 if (it.failed()) {
11 setstate(failbit);
12 }
13 }
14
15 catch (...) {
16 try {
17 setstate(badbit);
18 }
19 catch (...) {
20 }
21
22 if (exceptions() & badbit) {
23 throw;
24 }
25 }
26 }
27
28 return *this;
29 }

The loc in the above line 5 does not have to be a reference (alocale can be copied), but thef in
line 6 does have to be a reference. To avoid these issues, combine the above lines 5−12 to

30 if (use_facet<num_put<char> >(getloc())
31 .put(*this, *this, fill(), static_cast<long>(i)).failed()) {
32 setstate(failbit);
33 }

A virtual member function of a facet

The put functions of classnum_put<char> are public, non-virtual member functions.Each one
does its work by calling a protected, virtual member functiondo_put of the same class. Here is the one
for long .

1 / /IT has a default value (ostreambuf_iterator<CHAR>),
2 / /so we haven’t been bothering to write it within the <angle brackets>.
3
4 t emplate <class CHAR, class IT>
5 IT n um_put<CHAR, IT>::put(IT it, ios_base& b, char fill, long lo)
6 {
7 r eturn do_put(it, b, fill, lo); //Just a one-line call-through.
8 }

Thedo_put functions of classnum_put<char> are rather pedestrian. They call

b.width()

to see if padding is required, evaluate

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.3 A locale-sensitiveoperator<< for a built-in type 1047

1048 Miscellaneous Chapter 10

b.flags() & ios_base::hex

to see if an integer should be in hex, and use the return value of

use_facet<numpunct<CHAR, IT> >(b.getloc()).decimal_point()

as the decimal point for adouble .

Let’s override anum_put<char>::do_put with a radically different function, with no hex or
decimal point.We’l l define it in a class derived fromnum_put .

Line 18 is the first constructor we have seen for a facet. Azero argument ensures that the facet will
bedelete ’d by the locale to which it belongs. (Ther stands for ‘‘reference count’’.)

Recall that our familiar data typestring is just a typedef for classbasic_string<char> (p.
688). If CHARis char , the s in line 42 will be astring . Similarly, type ostringstream is just a
typedef for classbasic_ostringstream<char> . If CHARis char , theost in line 29 will be an
ostringstream . Finally, ostream_iterator has always taken a template argument giving the data
type of the values that are written (int , double ; in line 32 it isCHAR). It can take a second template
argument giving the type of character of the stream in which these values are rendered (char or
wchar_t).

Lines 26−30 create a string containing the Roman numeral.(The actualstring object is inside of
ost .) Lines32−36 create a possibly longer string that also contains the filling for left and right justifica-
tion. Seepp. 460−461 for an earlier example of this technique.

Now we can see why the ios_base in line 25 must be a read/write reference. It allows line 38 to
zero the width.

The header file is namedroman.h , not roman_put.h , because we will probably want to define a
basic_roman_get in the same file. See p. 938

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/roman/roman.h

1 #ifndef ROMANH
2 #define ROMANH
3 #include <iostream>
4 #include <locale> //for num_put
5 #include <sstream> //for basic_string, basic_ostringstream
6 #include <iterator> //for ostream_iterator
7 #include <algorithm> //for fill_n, copy
8 using namespace std;
9

10 template <class CHAR, class IT = ostreambuf_iterator<CHAR> >
11 class basic_roman_put: public num_put<CHAR, IT> {
12 typedef typename num_put<CHAR, IT>::iter_type iter_type;
13 typedef typename num_put<CHAR, IT>::char_type char_type;
14
15 iter_type do_put(iter_type it, ios_base& b, char_type fill, long val)
16 const;
17 public:
18 explicit basic_roman_put(size_t r = 0): num_put<CHAR>(r) {}
19 };
20
21 typedef basic_roman_put<char> roman_put;
22
23 template <class CHAR, class IT>
24 typename basic_roman_put<CHAR, IT>::iter_type
25 basic_roman_put<CHAR, IT>::do_put(iter_type it, ios_base& b, char_type fill,
26 long val) const

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

27 {
28 //Generate a s implified Roman numeral.
29 basic_ostringstream<CHAR> ost;
30 const ios_base::fmtflags flags = b.flags();
31 const char_type c = flags & ios_base::uppercase ? ’I’ : ’i’;
32 fill_n(ostream_iterator<CHAR, CHAR>(ost), val, c);
33
34 //Generate the filling.
35 basic_ostringstream<CHAR> ost2;
36 ost2.flags(b.flags()); //Copy b’s flags into ost2 (left justify, etc).
37 ost2 << setfill(fill) << setw(b.width()) << ost.str();
38 b.width(0); //Make the width evaporate after its one use.
39
40 //Copy the Roman numeral and its padding
41 //into the container to which the output iterator it refers.
42 const basic_string<CHAR>& s = ost2.str();
43 return copy(s.begin(), s.end(), it);
44 }
45 #endif

The two-argument constructor in line 15 gives us a locale identical tosave , except that it has the
roman_put facet instead of thenum_put<char> from which roman_put is derived. Thefacet con-
structor argument has a default valuue of zero, ensuring thatloc will delete the roman_put facet at
line 30.

We did not override thenum_put<char>::do_put that takes adouble , so line 26 makes no
attempt to printπ as a Roman numeral.

Surprisingly, the has_facet function cannot distinguish betweenbasic_roman_put<char>
andnum_put<char> . But that is not the purpose ofhas_facet . We will see on p. 1056 that these two
facets share the same ‘‘id’’, andhas_facet can distinguish only between types with different id’s.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/roman/main.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 #include <locale> //for locale, has_facet
5 #include "roman.h" //for roman_put
6 using namespace std;
7
8 i nt main()
9 {

10 const locale& save = cout.getloc();
11 if (has_facet<roman_put>(cout.getloc())) {
12 cout << "cout’s locale has roman_put.\n";
13 }
14
15 const locale loc(save, new roman_put);
16 cout << "Name of new locale is \"" << loc.name() << "\".\n";
17
18 cout.imbue(loc);
19 if (has_facet<roman_put>(cout.getloc())) {
20 cout << "cout’s locale has roman_put.\n";
21 }
22

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.3 A locale-sensitiveoperator<< for a built-in type 1049

1050 Miscellaneous Chapter 10

23 cout << setfill(’*’)
24 << setw(5) << 3 << "\n"
25 << left << uppercase << setw(5) << 4 << "\n"
26 << 3.14159 << "\n";
27
28 cout.imbue(save);
29 cout << 3 << "\n";
30 return EXIT_SUCCESS;
31 }

Name of new locale is "*". Lines 11−13: it doesn’t, buthas_facet can’t tell.
cout’s locale has roman_put. Line 16: not much of a name.
**iii Lines 18−21: now it does.
IIII*
3.14159
3 Line 26: didn’t overridedouble do_put .

To test it with wide characters,

32 wcout.imbue(locale(wcout.getloc(), new basic_roman_put<wchar_t>));
33 wcout << 3 << "\n";

▼ Homework 10.3.3a: do as the Romans do

Write the logic to render Roman numerals greater than 3.No rendering is possible if the number is
zero or negative (or greater thanMMMMCMXCIX, if we’re not using bars). In these cases,do_put should
construct and return aniter_type whosefailed member function will return true.Just pass zero to
the constructor foriter_type .

1 / /Excerpt from basic_roman_put<CHAR, IT>::do_put.
2
3 i f (lo < 0) {
4 r eturn iter_type(0);
5 }

You can now print the year as a Roman numeral in the French Revolutionary format (p. 366).

Create alocale in which anunsigned long is rendered in binary. Or create alocale in
which adouble is rendered as a sign, mantissa, and exponent. Seep. 89.

1 c ount.imbue(locale(cout.getloc(), new mantissa<char>));
2 double d = -65;
3 c out << d << "\n";

-(0.507812 * 2 ** 7)

Nothing will go wrong when you print the exponent; the exponent is not adouble . But when print-
ing the mantissa, be careful that yourdo_put does not call itself and go into an infinite loop.In other
words, print the mantissa in the traditional format, not in the sign/mantissa/exponent format. Derive a
destructable_num_put from num_put with a public destructor .

4 / /Excerpts from your basic_frexp_put<CHAR, IT>::do_put.
5
6 c onst destructable_num_put<CHAR, IT>f(1);
7 i t = f .put(it, b, fill, mantissa);
8
9 c onst basic_string<CHAR> s(" * 2 ** "); //#iclude <string>

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

10 it = copy(s.begin(), s.end(), it); //#include <algorithm>
11 it = f .put(it, b, fill, static_cast<long>(exponent));

▲

10.3.4 Alocale-sensitiveoperator<< for a user-defined type
Here is a classdate whoseoperator<< is locale-sensitive. It uses thetime_put<char> facet

of theostream ’s locale.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/locale_sensitive/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5
6 c lass date {
7 i nt year;
8 i nt month; //1 to 12 inclusive
9 i nt day;

10 public:
11 date(int initial_month, int initial_day, int initial_year)
12 : year(initial_year), month(initial_month), day(initial_day) {}
13
14 friend ostream& operator<<(ostream& ost, const date& d);
15 };
16 #endif

Theoperator<< on pp. 1046−1047 was a member of classostream ; it referred to theostream
object as*this . The following operator<< is a member of no class; it refers to theostream object
asost . It also needs the class names in lines 6, 17, 23, and 28.

Until now, we hav eobtained atm structure by calling thelocaltime function. In lines 8−9, we
simply create thetm by hand.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/locale_sensitive/date.C

1 #include <locale>
2 #include "date.h"
3 using namespace std;
4
5 ostream& operator<<(ostream& ost, const date& d) {
6 i f (ostream::sentry(ost)) {
7 t ry {
8 c onst tm t =
9 { 0, 0, 0, d.day, d.month - 1, d.year - 1900, 0};

10 const locale& loc = ost.getloc();
11 const time_put<char>& f =
12 use_facet<time_put<char> >(loc);
13 const time_put<char>::iter_type it =
14 f.put(ost, ost, ost.fill(), &t, ’x’);
15
16 if (it.failed()) {
17 ost.setstate(ios_base::failbit);
18 }

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.4 A locale-sensitiveoperator<< for a user-defined type 1051

1052 Miscellaneous Chapter 10

19 }
20
21 catch (...) {
22 try {
23 ost.setstate(ios_base::badbit);
24 }
25 catch (...) {
26 }
27
28 if (ost.exceptions() & ios_base::badbit) {
29 throw;
30 }
31 }
32 }
33 return ost;
34 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/locale_sensitive/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <locale>
4 #include <stdexcept>
5 #include "date.h"
6 using namespace std;
7
8 i nt main()
9 {

10 date d(12, 31, 2014);
11 cout << d << "\n";
12
13 try {
14 cout.imbue(locale("fr_CA"));
15 }
16
17 catch (const runtime_error& e) {
18 cerr << e.what() << "\n";
19 }
20
21 cout << d << "\n";
22 return EXIT_SUCCESS;
23 }

12/31/14
12/31/14

▼ Homework 10.3.4a: do as the Americans do

Thetime_put<char> facet was fine as long as we were satisfied with the formats available with
strftime . For example, the’x’ format in the classic locale gav eus12/31/14 . But what if we want
12/31/2014 ?

It would be tempting to replace lines 13−14 of the aboveoperator<< with the following.

24 const char format[] = "%m/%d/%Y";

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

25
26 const time_put<char>::iter_type it =
27 f.put(ost, ost, ost.fill(), &t, format, format + sizeof format - 1);

But we must not do this. The code in anoperator<< must work for all locales.

Keep the existing operator<< and its call totime_put<char>::put . The latter does its work
by calling a virtual member functiondo_put , and this is the function we should override. Derive a class
from time_put with ado_put member function that will give us the format12/31/2014 . As in class
num_put , do_put will have the same arguments and return value as theput . Howev er, your do_put
will ignore thestrftime format character that it receives fromput .
▲

10.3.5 Alocale-sensitiveoperator>>
The integeroperator>> is similar to itsoperator<< counterpart on pp. 1046−1047.

The data typeiostate in line 4 holds a bit pattern consisting of a stream’s eof , bad , and fail
bits; see p. 332. The valuegoodbit has all three of these bits turned off. (Thereis no ‘‘good bit’’ in the
bit pattern.)

Classnum_get<char> has several get functions, but none of them take a reference to anint .
Line 10 calls the one whose last argument is a reference to along .

The first two arguments of theget are a pair of input iterators; the second one represents end-of-
input. Thereturn value ofget is the same type of iterator. It has nofailed member function, soget
turns on the bits in itsstate argument to indicate that something has gone wrong.

Lines 19−30 have the same exception handling we saw in operator<< .

If the input was successful, lines 32−34 install the new value intoi . For example, an input stream
consisting of the two characters’3’ and ’\n ’ would leave all three bits turned off in state . The input
might be successful even if end-of-input was encountered while reading the number; an input stream con-
sisting of the single character’3’ would turn on theeofbit but leave the other two bits off. If the input
failed, we skip line 33.For example, a stream consisting of the single character’-’ would turn on the
failbit bit and leave the other two bits off.

1 i stream& istream::operator>>(int& i) //non-const reference
2 {
3 i f (sentry(*this)) { //This sentry is an istream::sentry.
4 i ostate state = goodbit; //a bit pattern of all zeroes
5 l ong lo;
6
7 t ry {
8 c onst locale& loc = getloc();
9 c onst num_get<char>& f = use_facet<num_get<char> >(loc);

10 f.get(
11 *this, //num_get<char>::iter_type(*this)
12 num_get<char>::iter_type(),
13 *this, //static_cast<ios_base&>(*this),
14 state, //passed as a non-const reference
15 lo //passed as a non-const reference
16);
17 }
18
19 catch (...) {
20 try {
21 setstate(badbit);
22 }

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.5 A locale-sensitiveoperator>> 1053

1054 Miscellaneous Chapter 10

23 catch (...) {
24 }
25
26 if (exceptions() & badbit) {
27 throw;
28 }
29 return *this;
30 }
31
32 if (state == goodbit || state == eofbit) {
33 i = l o;
34 }
35 setstate(state);
36 }
37
38 return *this;
39 }

▼ Homework 10.3.5a: input a Roman numeral

Each get function of classnum_get calls a corresponding protected, virtual member function
do_get of the same class. Derive a template class namedbasic_roman_get , parallel to
basic_roman_put , with ado_get that inputs along in Roman numeral format.
▲

A locale-sensitive operator>> for a user-defined type

A locale-sensitive operator>> for classdate would include the following code, plus more not
shown. Theist in line 5 is theistream passed to theoperator>> . As usual,get_date calls a pro-
tected, virtual member function nameddo_get_date .

Classtime_get<char> has ado_get_date that attempts to input the year, month, day of the
date in the order specified by the’x’ format ofstrftime in your locale (p. 1033).You can write your
own do_get_date if this does not satisfy you.

1 i os_base::iostate state = ios_base::goodbit;
2 s truct tm t;
3
4 t ry {
5 c onst locale loc = ist.getloc();
6 c onst time_get<char>& f = use_facet<time_get<char> >(loc);
7 f .get_date(
8 i st, //time_get<char>::iter_type(ist),
9 t ime_get<char>::iter_type(),

10 ist, //static_cast<ios_base&>(ist),
11 state,
12 &t
13);
14 }

10.3.6 Afamily of facets with its own id
The standard library has input and output facets for numbers, dates, times, and currency. A new data

type will require a new family of facets. For the phone number class in line 8, we’ll make a base class and
one derived class.

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

phone_put<char>

us_phone_put<char>

To create a family, we derive the base class directly from classlocale::facet (line 16). The
base class must have a public static data member namedid , of class locale::id . This member is
declared in line 18, defined in lines 28−29.

Ouroperator<< , in line 32, has three new features.

(1) This the firstoperator<< that we have defined as a template function. It can write to achar
stream such ascout , or to awchar_t stream such aswcout . You’ll want to do this for all your
operator<< ’s andoperator>> ’s from now on.

(2) This is our firstoperator<< that is neither a member function nor a friend.For simplicity, I
provided classphone with an operator unsigned long that exposes the value of its private data
member. If this makes you uncomfortable, letoperator<< and classphone_put be friends of class
phone . phone_put could then have a protected member function taking aphone and returns the
unsigned long value inside of it. Speaking ofunsigned long , the name of this data type should be
written once and for all in a typedef member of classphone .

(3) This is our first locale-sensitive operator<< that calls otheroperator<< ’s to do its work. If
we were concerned with speed, we could have giv en classphone_put a public, non-virtualput member
function and a protected, virtualdo_put that writes directly to theostreambuf . (I even left the IT
template argument in, just in case we use it in the future.) But it was simpler to make ato_str function
whose return value is output with<< in line 36. This << has its own sentry, so we don’t need to make our
own.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/phone/phone.h

1 #ifndef PHONEH
2 #define PHONEH
3 #include <iostream>
4 #include <sstream> //for basic_string and basic_ostringstream
5 #include <locale>
6 using namespace std;
7
8 c lass phone { //a telephone number
9 unsigned long n;

10 public:
11 phone(unsigned long initial_n): n(initial_n) {}
12 operator unsigned long() const {return n;}
13 };
14
15 template <class CHAR, class IT = ostreambuf_iterator<CHAR> >
16 class phone_put: public locale::facet {
17 public:
18 static locale::id id; //declaration
19 explicit phone_put(size_t r = 0): locale::facet(r) {}
20
21 virtual basic_string<CHAR> to_str(const phone& p) const {
22 basic_ostringstream<CHAR> ost;
23 ost << static_cast<unsigned long>(p); //cast calls line 12
24 return ost.str();
25 }

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.6 A family of facets with its own id 1055

1056 Miscellaneous Chapter 10

26 };
27
28 template <class CHAR, class IT>
29 locale::id phone_put<CHAR, IT>::id; //definition of static data member
30
31 template <class CHAR>
32 basic_ostream<CHAR>&
33 operator<<(basic_ostream<CHAR>& ost, const phone& p)
34 {
35 const locale& loc = ost.getloc();
36 if (has_facet<phone_put<CHAR> >(loc)) {
37 ost << use_facet<phone_put<CHAR> >(loc).to_str(p);
38 } else {
39 ost << static_cast<unsigned long>(p); //cast calls line 12
40 }
41 return ost;
42 }
43 #endif

The derived class inherits theid from the base class. It must not have its own.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/phone/us_phone_put.h

1 #ifndef US_PHONE_PUTH
2 #define US_PHONE_PUTH
3 #include <iostream>
4 #include <iomanip> //for setfill, setw
5 #include <sstream> //for basic_ostringstream
6 #include <cstdlib> //for ldiv, ldiv_t
7 #include "phone.h"
8 using namespace std;
9

10 template <class CHAR, class IT = ostreambuf_iterator<CHAR> >
11 class us_phone_put: public phone_put<CHAR, IT> {
12 basic_string<CHAR> to_str(const phone& p) const {
13 //dash before last four digits
14 const ldiv_t d = ldiv(p, 10000); //need L for long
15 basic_ostringstream<CHAR> ost;
16 ost.imbue(locale::classic());
17 ost << setfill<CHAR>(’0’)
18 << setw(3) << d.quot << "-"
19 << setw(4) << d.rem;
20 return ost.str();
21 }
22
23 public:
24 explicit us_phone_put(size_t r = 0): phone_put<CHAR, IT>(r) {}
25 };
26 #endif

has_facet andget_facet pay attention only to theid numbers. Iftwo classes of facet share
the sameid number, these functions cannot distinguish between them.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/phone/main.C

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

1 #include <iostream>
2 #include <cstdlib>
3 #include <locale>
4 #include "phone.h"
5 #include "us_phone_put.h"
6 using namespace std;
7
8 i nt main()
9 {

10 if (!has_facet<phone_put<char> >(cout.getloc())) {
11 cout << "The locale \"" << cout.getloc().name()
12 << "\" has no phone_facet.\n";
13 }
14 const phone p = 2345678;
15 cout << p << "\n\n";
16
17 const locale loc(cout.getloc(), new us_phone_put<char>);
18 if (has_facet<phone_put<char> >(loc)
19 && has_facet<us_phone_put<char> >(loc)) {
20 cout << "The locale \"" << loc.name()
21 << "\" has phone_put<char> and us_phone_put<char>.\n";
22 }
23
24 cout.imbue(loc);
25 cout << p << "\n";
26
27 wcout.imbue(locale(wcout.getloc(), new us_phone_put<wchar_t>));
28 wcout << p << "\n";
29
30 return EXIT_SUCCESS;
31 }

The locale "C" has no phone_facet.
2345678 but you can still print aphone number

The locale "*" has phone_put<char> and us_phone_put<char>.
234-5678
234-5678

To test it with wide characters,

32 const phone p = 2345678;
33 wcout.imbue(locale(wcout.getloc(), new phone_put<wchar_t>));
34 wcout << p << "\n";

printed 4/8/14
9:12:54 AM

All rights
reserved ©2014 Mark Meretzky

Section 10.3.6 A family of facets with its own id 1057

