Templates

Aggregation, inheritance, and templates are the three techniquesiifdinly bigger classes out of
smaller data typesAny data type can be thought of as a chunk of functionaligmplates gie s a yntax
for inserting these chunks into, or withholding them from, the bigger classes that we create.

We @an do the insertion whewe we find ourselves plugging dérent data types into the same code:

1 class wrapper_int {
2 i ntx;
3 i ntf(Q);
4},
5
6 class wrapper_date {
7 date x;
8 date f();
9},
10
11 class wrapper_pointer_to_wabbit {
12 wabbit *x;
13 wabbit *f();
14 };
15
16 class wrapper_wrapper_int {
17 wrapper_int w;
18 wrapper_int f();
19}

A “‘template classwill let us write the code once and for all with something Bkidank.

20 class wrapper {

21
22

X;
fQ);

23}

The choice of data type will be plugged into the blank at a later time, perhapsl shoices at seral
later times.

7.1 Template Functions

The abee example plugged a data type into a “template cladd/e can also plug a data type into a
“ template function’ A summary of the differences between template functions and template classes is on
p. 757. A function is simpler than a class, but it will turn out that a template function is more complicated
than a template clas©ne problem is that the data type plugged into a template clasgas apecified

PSsao A hesenea ©2014 Mark Meretzky

634 Templates Chapter7

explicitly by the userwhile the type plugged into a template function usually has ttdeduced’ by the
computer In addition, template functions kia tb compensate for their lack opartial specialization’(p.
702). Finally function templates interact with function nanvertbading, lut there is no class nameeo
loading for class templates to interact with.

It will be a long road to the final apotheosis of the template paradigm in Chapters 8\Aledndl
bite the bullet and start with template functions.

7.1.1 SimpleExamples:m n, pri nt, and swap

Operator overloading: its purpose reveled!

Let’s kuild our own version of thenin function in the C++ Standard Libraryrhe following lines
29, 34, and 39 define three functions with this name. Each function mentioferendiflata type, but tite
are otherwise identicalTo keep them identical, the objects in line 39 are passedilog.v Thg should
have beeen passed by reference, and on p. 640wtikEbe.

The three functions can beenloads of the same name since their arguments degatif. Thefunc-
tions belong to no namespace, whilettia in the standard library belongs to namessde (p. 641).

We acknowledge that the comparison in line 31 seems to be kadswy Wuldn't it be more natural
to write the code in the comment alongside? After all, the only apparent difference is that ainegb
are equal, the code returasand the comment returfis How oould this be significant when thanables
are returned by value?

But the arguments and return value will soon be passed by reference (pAGd@loser inspection
reveals that the code and the comment do not test for equality atvatt actually happens is that when
neithera norb is less than the othdhe code returna and the comment returips

Whena andb are integers, themust be equal when neither is less than the otBat for certain
exotic data typesa andb could be unequalven though neither is less than the other (p. 778). When this
happens, thenin function in the library returns a referenceatgp. 641). We want ourmin to behae the
same way.

Lines 19-21 call oumin functions with arguments of different typest , double , date . We
assume that clagtate has the default constructor in line 16, theycepnstructor in line 17, and three
overloaded operators:

(1) thebinaryoperator+ inline 17;

(2) theoperator<< inline 21;

(3) theoperator< inline 41.

We dso assume that thmin we hard-coded for class date on p. 211 has beenvedmo

Thanks to theoperator< friend of classdate , the code at line 41 can be identical to that at 31
and 36. Operatorwvarloading gves us aconvenientnotation for variables of all data types, including
objects. Butthis is only a fortunate accident. The real purpose of opera#loading is to gre ws the
same notation for variables of all data typedlow that the functions are identical, we will be able to
replace them with a singléemplate’. (For another xmple in which templates influence our coding style,
see p. 648.)

Of course, a f& exceptional data types will require different code. Line 47 needsttbep func-
tion to compare strings @har ’s for alphabetical orderThe rejected code in line 46 would merely tell us
which string begins earlier in memory.

Ourmin functions belong to no namespadothermin, belonging to namespastd , is declared
in the header filealgorithm> . We dd not include this header directlyut it might hae keen included
by a header that we did include. The double colon in line 19 ensures that we will caith tkieat belongs
to no namespaceyen if <algorithm> was included. Vith <algorithm> | and without theusing
namespace std; , std:min would have keen the one that belongs to namespsice, and an
unadornednin would not hae compiled.*

* Without theusing directive in line 6, an unadornedin in line 19 would be thenin that belongs to no namespace.
We would then hae © prependstd:: to cout , endl , wcout , strcmp , and wcscmp. Alternatvely, we oould insert

PeSs a0 A hesenea ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:mi n, pri nt,andswap 635

Theend! in line 22 flushes the characters sentdat before line 24 begins to send wide charac-
ters towcout .

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/min/minl.C

#include <iostream>

#include <cstdlib>

#include <cstring> //for strcmp
#include <cwchar> /lfor wesemp
#include "date.h"

using namespace std;

i nt min(int a, int b); /ffunction declaration

double min(double a, double b);

10 date min(date a, date b);

11 const char *min(const char *a, const char *b);

12 const wchar_t *min(const wchar_t *a, const wchar_t *b);

13

14 int main()

15{

16 date today;

17 date tomorrow = today + 1; //= operator+(today, 1);

18

19 cout << :min(10, 20) << "\n" /lcalls line 29
20 << min(3.14, 2.71) << "\n" /[calls line 34
21 << :min(today, tomorrow) << "\n" /lcalls line 39
22 << :min("hello”, "goodbye") << endl; /[calls line 44
23

24 wcout << :min(L"hello", L"goodbye™) << L"\n"; //calls line 50

25

26 return EXIT_SUCCESS;

27}

28

29 int min(int a, int b) /[function definition

30 {

31 return b<a?hb:a; [why notreturna<b ?a:b;
32}

33

34 double min(double a, double b)

35

36 return b<a?hb:a;

37}

38

39 date min(date a, date b) //should be passed and returned by reference
40 {

41 return b<a?hb:a; / Ireturn operator<(b, a) ? b : a;
42}

43

44 const char *min(const char *a, const char *b)

45 {

46 [Ireturn b <a?b: a w ouldbewrong for this data type

©CoOo~NOOOUTA, WNPE

the declaratiorusing::min; into themain function before line 19. This would let line 19vieaan unadornedmin
without the need to sastd::cout

PSsao A hesenea ©2014 Mark Meretzky

636 Templates Chapter7

a7 return strcmp(b,a)<0?b:a;
48}
49
50 const wchar_t *min(const wchar_t *a, const wchar_t *b)
51{
52 return wescmp(b, a)<0?b: a; /lwide character string compare
53}
10 Line 19 passemt arguments to line 29.
2.71 Line 20 passedouble arguments to line 34.
4/8/2014 Line 21 passedate arguments to line 39.
goodbye Line 22 passesonst char * arguments to line 44.
goodbye Line 24 passesonst wchar_t * arguments to line 50.

Consolidate the repetition with a function template

Instead of writing the same functionen and over, plugging in a different data type each time, we
will write a singlefunction templatenamedmin. Lines 29-34 on p. 637 are the definitionnah ; lines
8-9 are the declaration.

Line 19 passemt arguments tanin. This causes the computer to behas if we had pasted into
the program a cgpof the function definition in lines 30-34, and the function declaration in line 9, with
eachT changed tant . The pasted-in cgpis called aninstantiation of the template. An instantiation is
also called aimmplicit specialization,as opposed to the “explicit specializatioon pp. 664—669.

The computededucesthat T should be changed ot because th&0 in line 19 is of typent .
Lines 20 and 21 create and call other instantiations of the same template, this time witkleaued to
double anddate . TheT (for “type”) is our comventional placeholder for the name of the data type.*
The dummy name could be longer than one chardxteplease keep it uppercase for visibility.

The template made the source code smaller and less repetitibitshdd no effect on the size and
speed of thexecutable file. So for the time being, a template is merely a shorthand for the source code.
This will begin to change on pp. 734-735.

The preamble and the arguments

The following line 29 is theemplate peamble,which alvays starts with the éyword template
The same preamble appears on the function declaration in lif@eleyword also has an obscure sec-
ondary usage; see pp. 725-7ZBe<angle brackts> in a preamble and those in #iimclude directve
have rothing to do with each other.

Lines 29 and 30 could be written on the same line. No newline or other whitespace is required
between the non-alphanumeric ¢éok> and the following alphanumeric tek T (p. 101). But pleasedep
them on separate lines for legibility.

The preamble declares thats atemplate agumentstanding for the name of a data tyfggespite
the keyword class , this type does not necessarilwba be a tass. Inline 19, for examplel stands for
int ;in 20, T stands fordouble . Newer versions of C++ sensibly let us use tlegword typename
instead oftlass , but we stick with the latter out of habit.

In contradistinction to th& in lines 29 and 30, the andb in line 30 are called thiinction agu-
ments.The 10 and20 in line 19 are thectual function aguments;the data typént is theactual tem-
plate agument.

Not all template arguments stand for data tygesme will represent constant values (pp. 690-696)
or “template classe's{pp. 696-702).

* We assume that the data type has a name. See p. 660 for one that doesn't.

PSsao A hesenea ©2014 Mark Meretzky

1
2
3

N

5
6
7
8

©

10

Section 7.1.1 Simple Examples:mi n, pri nt,and swap 637

Template functions are scond-class citizens

The functions in lines 36 and 42 aren-template functionsThey are merely werloads, i.e., other
functions that happen to vmthe same name.

The"hello" and"goodbye" in line 22 hae a doice between an exact match with the non-tem-
plate function in line 36, and an equally exact match with an instantiation of the template function in line
30 with theT changed taconstchar * . But template functions are second-class citizens, so line 22
picks the non-template function. The non-template function would also win out against the template func-
tionstd::min , so he double colon in lines 22 and 24 is not needed.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/min/min2.C

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cwchar>
#include "date.h"
using namespace std;

t emplate <class T>
T mn(T a, T b); /ffunction declaration

11 const char *min(const char *a, const char *b);
12 const wchar_t *min(const wchar_t *a, const wchar_t *b);

13

14 int main()

15 {

16
17
18
19
20
21
22
23
24
25
26

date today;
date tomorrow = today + 1;

cout << :min(10, 20) << "\n" /lcalls line 30
<< min(3.14, 2.71) << "\n" /[calls line 30
<< min(today, tomorrow) << "\n" /[calls line 30

<< min("hello”, "goodbye") << endl; /[calls line 36
wcout << :min(L"hello", L"goodbye") << L"\n"; //calls line 42

return EXIT_SUCCESS;

27}

28

29 template <class T>
30 Tmin(T a, T b) /ffunction definition
31{

32
33

cout <<":min<T>\n"; /lto see which function is called
return b<a?hb:a;

34}

35

36 const char *min(const char *a, const char *b)
374

38
39

cout << ":min(const char *)\n";
return strcmp(b,a)<0?b:a;

40}

41

42 const wchar_t *min(const wchar_t *a, const wchar_t *b)
43 {

PeSsao A hesenea ©2014 Mark Meretzky

638 Templates Chapter7

44 cout << ":min(const wchar_t *)\n";
45 return wescmp(b, a)<0?b: a;
46}
min<T> Line 19 passesmit arguments to line 30, changifigto int .
10
:min<T> Line 20 passedouble arguments to line 30.
2.71
min<T> Line 21 passedate arguments to line 30.
4/8/2014
:min(const char *) Line 22 passesonst char * arguments to line 36.
goodbye
::min(const wchar_t *) Line 24 passesonst wchar_t * arguments to line 42.
goodbye

Combine the declaration and definition

The declaration and definition of a template function can be combined, in the following lines 8-12.
If the function is small enough, it can also be inline.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/min/min3.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <cstring>

4 #include <cwchar>

5 #include "date.h"

6 using namespace std;
7
8

t emplate <class T> /[function declaration and definition

9 inline T min(T a, T b)
10 {
11 return b<a?hb:a;
12}
13
14 inline const char *min(const char *a, const char *b)
15 {
16 return strcmp(b,a)<0?b:a;
17}
18
19 inline const wchar_t *min(const wchar_t *a, const wchar_t *b)
20{
21 return wescmp(b,a)<0?b: a;
22}
23
24 int main()
25{
26 date today;
27 date tomorrow = today + 1;
28
29 cout << :min(10, 20) << "\n" /lcalls line 9
30 << min(3.14, 2.71) << "\n" /[calls line 9
31 << min(today, tomorrow) << "\n" /lcalls line 9
32 << min("hello”, "goodbye") << endl; /[calls line 14

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:mi n, pri nt,and swap 639

33
34 wcout << :min(L"hello", L"goodbye") << L"\n"; //calls line 19
35
36 return EXIT_SUCCESS;
37}
10 Line 29 passesmt arguments to line 9.
2.71 Line 30 passedouble arguments to line 9.
4/8/2014 Line 31 passedate arguments to line 9.
goodbye Line 32 passesonst char * arguments to line 14.
goodbye Line 34 passesonst wchar_t * arguments to line 19.

To mention themin functions in more than on€ file of a program, the ale lines 8-22 could be
written in a header file. The header would alseehta include lines 3, 4, and 6. Until wponly a static
function or \ariable (p. 99) could be defined in a header included by more tha@ dile of a program; a
non-static would incur the “multiply definédrror message. But the definition of a template—as opposed
to an instantiation—occupies no memoAny template function, static or not, can be defined in a hé¢ader

In fact, defining the template function in a header file is the only portable way to mention it in more
than oneC file of a program.For example, the template functi@ort , the flagship function of the C++
Standard Libraryis defined in the header fikalgorithm> . For nonportable attempts attempt to declare
a template function in a header and define it i€ &ile, seeexport in pp. 677-678 andexplicit instan-
tiation” in pp. 720-721.

A ‘‘copy constructible” data type

We haveassumed that thmin in the abwee line 9 will accept function arguments ofyattata typeT,
with the exception ofhar * andwchar_t* and theirconst equiaents. Buta careful reading of the
template reeals two restrictions. Thelata typel must becopy constructibleandless-than compable.

The arguments and return valuenoiin are passed byalue, so a call to it will compile only if the
function arguments are of a data type that can be copiealist be a built-in, a pointeain emumeration, or
a dass for which no pvite or protected cgpconstructor has been declared. Our cliete , for example,
has alvays been cop constructible. Classabbit lost its copy constructibility on p. 200, ggined it on
pp. 234-236, and lost it again on p. 468. The cumasihit cannot be passed moin, dthough a
rabbit * can.

A ‘‘less-than comparable’ d ata type

Themin in the abwe line 9 also applies the operator to its function guments, so a call to it will
compile only if the function arguments can be operands of an opertiat yields ool or a data type
convertible thereto (p. 62)T could be a built-in, a pointean eaumeration, or a class with aperator<
that is not a puate or protected member functiolClassdate became less-than comparable when we
equipped it with theperator< friend on p. 281.Classwabbit has nger been less-than comparable.
Surprisingly classobj (pp. 179-180) is less-than comparablengthough it has noperator< . The

operatorint in the follaving line 6 implicitly cowerts the tvo obj 's to int ’s, which are then com-
pared.

1 #include "obj.h"

2

3 obj obl =10;

4 obj ob2 = 20;

5

6

i f (obl<ob2)({ /lif (ob1.operator int() < ob2.operator int()) {

* One exception: a template that is &xplicit specializatior’ will occupy memory Written in a header file, it will
have © be ceclaredstatic ~ orinline just like a ron-template function. See pp. 664-669.

PeSsao A hesenea ©2014 Mark Meretzky

640 Templates Chapter7

To qualify as less-than comparable, a data type wileha satisfy two additional requirementsSee
pp. 776-777.

Concepts and comments

A conceptis a set of requirements that a templatpiarentT must satisfy; examples are gogon-
structibility and less-than comparabilityVe sy that classedate andobj aremodelsof these concepts,
but rabbit s not.

To avoid nasty surprises, each template shoulkla ©omment stating the concepts of whichTts
must be a model.

/ IVersion 1 (of 3) of the comment on min.
/ IReturn the minimum of a and b.

/ IReturn a if neither is less than the other.
/ IT must be copy constructible and less-than comparable.

abhwWwNRE

Ourmin template is under no obligation to work correotliyeven compile, whenr is not a model of these
two concepts. Not¢hat the template does not requiiguality compaability (the ability to saya == b);
the comment makes no claim about what happens wiagwlb are equal.

A function argument whose type is mag than an unadorned T

A template has noay of telling what th& will stand for A function argument of an unknown type
T might be &pensve—or impossible—to cop To avoid ary attempted cop, the arguments and return
value of min should hae been passed by reference. The previous version of this template was in line 9 of
min.C on p. 638; the impneed version is in the follwing line 8. The requirements in the commenteha
been relaxed.

| IVersion 2 of the comment on min.

1
2
3 / /Return the minimum of a and b.

4 | /IReturn a if neither is less than the other.
5 / /T must be less-than comparable.

6

7

8

t emplate <class T>
i nline const T& min(const T& a, const T& b)
9 {
10 return b<a?hb:a;
11}

In some cases, a reasonable assumption can be made about the data Typ@ridatfar The stan-
dard library assumes that pass-by-value is possible and affordable for four kinds of arguments.
(1) Aniterator is alvays passed by value (p. 759).

(2) A function object (an object that has eperator() member function) is wlays passed byalue
(p. 766).

(3) A “difference_type " (an integer that counts the elements in a containeryvayslpassed by
vaue (p. 809).

(4) Anumber is akays passed by value to a “numeric algorith(p. 962).

All other function arguments of type are passed by reference. In particulae values of the ele-
ments in a container arenglys passed by reference.

The min algorithm in the C++ Standard Library

We dd not hare o write our ownmin template function; one has already been defined for us in the
<algorithm> header file.An algorithm is a template function whosegaments are iterators, usually a

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:mi n, pri nt,andswap 641

pair of iterators; our first official example will appear on p. 768n is therefore not an algorithm, but it
had to go irsomeheader file.

/ [Excerpt from <algorithm> (or from a file included thereby).

t emplate <class T>
i nline const T& min(const T& a, const T& b)

{
}

returnb<a?b:a;

NOoO o~ WNPRE

Everything in the C++ Standard Library has the last nsttie* This includes objects such asut
(p. 20), classes such asception (p. 628), and functions such asn. We nmust therefore calinin by
its full namestd::min , or @ay usingnamespacestd; before mentioningnin. In some versions of
Microsoft Visual C++min is named cpp_min .

Change T to the simplest data type.

Ou firstmin program had a template function andtwon-template functions sharing the same
name (p. 637). Our next program has three template functions sharing the same name, in lines 8, 11, and
20. Asusual, the name can beedoaded because the arguments arfedift. Butdespite their common
name, these are still three separate functiokis. will not have a engle template function consisting of
multiple templates until we get to “explicit specializaticom pp. 664—669.

Thei in line 34 has no choice of whigirint to call. Of the three functions, only the one in line 8
will accept a non-pointer.

Thep in line 38 has tw dternatives. Itcan call
(1) line8 with T changed ta@onstint *
(2) linell withT changed tant

C++ picks the function that will turfi into the simpler data type, so line 38 picks piimt in line 11.
This is fortunate because line 11, knowing that its function argument is a pcamelo more with it than
line 8 can do with its featureless

Thepp in line 42 has three alternats, of which it will pick the third. It can call

(1) line8 with T changed ta@onstint*const *

(2) linell withT changed taonstint *

(3) line20 withT changed tant

The ppp in line 46 has three alternads. noneof which is adequate for its threevdis of indirec-
tion. It will pick the third. It can call

(1) line8 with T changed t@onstint‘const*const *

(2) linell withT changed t@onst*constint *

(3) line20 withT changed taonstint *

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/min/overloadl.C

1 #include <iostream>

2 #include <cstdlib>

3 using namespace std;

4

5 / /T must be puttable (printable with <<) in the following templates.

* Except the macro€XIT_SUCCESSIn <cstdlib> , INT_MIN in <climits> , etc. A macro cannot he a hst
name.

PeSsao A hesenea ©2014 Mark Meretzky

642 Templates

6
7 t emplate <class T>
8 i nline void print(const T& t) {cout << t;}
9
10 template <class T>
11 void print(const T *p)
12 {
13 cout <<p;
14 if (p!=0){
15 cout <<"->"<<*p;
16 }
17}
18
19 template <class T>

Chapter7

/laccepts any type

/laccepts pointer to any non-void type

20 void print(const T *const *pp) //accepts pointer to pointer to any non-void type

21{
22 cout << pp;
23 if (pp!=0){
24 cout <<"->"<<*pp;
25 if (*pp!=0){
26 cout <<"->"<<*pp;
27 }
28 }
29}
30
31 int main()
32{
33 int i =10;
34 print(i);
35 cout <<"\n";
36
37 const int*p = &i;
38 print(p);
39 cout <<"\n";
40
41 const int *const *pp = &p;
42 print(pp);
43 cout <<"\n";
44
45 const int *const *const *ppp = &pp;
46 print(ppp);
47 cout <<"\n";
48
49 return EXIT_SUCCESS;
50}
The machine addresses will befeiEnt on each platform. On my platform, yhare formatted in
hex.
10 Line 34 calls 8 witlT - int

Oxffbff1b0 -> 10
Oxffbfflac -> Oxffbff1b0 -> 10
Oxffbffla8 -> Oxffbfflac -> Oxffbff1b0

Line 38 calls 11 witlll - int
Line 42 calls 20 witll - int
Line 46 calls 20 witlf - constint *

printed 4/8/14
8:58:39 AM

hesenea ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:mi n, pri nt,and swap 643

If we erase theonstT * function in the abee lines 10-17, the in line 38 will settle for the
constT& inline 8. The output of line 38 loses one of itgls.

10 Line 34 calls 8 with - int
Oxffbffod0 Line 38 calls 8 with — constint *
OxffbffOcc -> Oxffbff0dO -> 10 Line 42 calls 20 witllT - int
OxffbffOc8 -> OxffbffOcc -> 0xffbffOdO Line 46 calls 20 witlf - constint *
If we restore lines 10-17 and erase toastT*const * function in 19-29, thep in line 42

and theppp in line 46 will settle for theonstT * in line 11. Their output loses one of ityds.

10 Line 34 calls 8 withf - int

Oxffbff1f0 -> 10 Line 38 calls 11 witl - int

Oxffbfflec -> Oxffbff1fO Line 42 calls 11 witlh - constint *
Oxffbff1e8 -> Oxffbfflec Line 46 calls 11 witll - const int *const *

If we erase lines 10—-17 and 19-29, all four calls will settle for line 8.

10 Line 34 calls 8 withf - int

Oxffbff104 Line 38 calls 8 witlf - constint *

Oxffbff100 Line 42 calls 8 withf - const int *const *
OxffbffOfc Line 46 calls 8 witif - const int *const *const *

A constvoid * passed tgrint will call the abae line 11 withT changed tovoid . Line 15
will then fail to compile becausevaid * (be itconst or nonconst) cannot be dereferenced.

One instantiation can call another instantiation of the same template.

The intent of the ab@ pogram was to illustrate othe computer decides which template function
to call. With that out of the way, | am disappointed that it handled onlyot¥evds of indirection. Here is a
program that can handleyanumber of l@els with only the tve templates in lines 8 and 11.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/min/overload2.C

#include <iostream>
#include <cstdlib>
using namespace std;

/ IT must be puttable (printable with <<) in the following templates.

1
2
3
4
5
6
7 t emplate <class T>
8 i nline void print(const T& t) {cout << t;}

9
10 template <class T>
11 void print(const T *p)
12 {
13 cout <<p;
14 if (p!=0){
15 cout <<"->"
16 print(*p); /lcall line 11 if *p is a pointer, line 8 otherwise
17 }
18}
19
20 int main()
21
22 int i=10;

PeSsao A hesenea ©2014 Mark Meretzky

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39}

N -

1
2

644 Templates Chapter7

print(i);
cout <<"\n";

const int*p = &i;
print(p);
cout <<"\n";

const int *const *pp = &p;

print(pp);
cout <<"\n";

const int *const *const *ppp = &pp;

print(ppp);
cout <<"\n";

return EXIT_SUCCESS;

Line 23 calls line 8 witiT changed tant .
Line 27 calls line 11 witfl changed tant . Then line 16 calls 8 with thE in 8 changed tint .

Line 31 calls line 11 witl changed taonstint * . Then line 16 calls another instantiation of
11 with T changed tant (one fever const and one feer*). Thenthe line 16 in the second instantia-
tion calls 8 with thel in 8 changed tint .

Line 35 calls line 11 witfl changed taonstint*const * . Then line 16 calls another instanti-
ation of 11 withT changed taonstint * . Then the line 16 in the second instantiation calls a third
instantiation of 11 witi changed tant . Then the line 16 in the third instantiation calls 8 withTha 8
changed tant .

10

Oxffbff190 -> 10

Oxffbff18c -> Oxffbff190 -> 10

Oxffbff188 -> Oxffbff18c -> Oxffbff190 -> 10 Line 35: three levels!

The top-level const

To s@ay more precisely what data tyfechanges into, we introduce the notion of tbp-level
const . Itindicates that the value of the variable being declared nkanges. Exampleme underlined:

const inti=10;
const int *const p = &i
const int *const *const pp = &p;

When a function argument is not a reference, a to@-tnst in the data type of the actual func-
tion argument does not become part of The=or example, theonstinti in line 17 changes thEin
line 6 toint without the top-lgel const . This allows the function to change the value of its localcop
of i . Of course, the function cannot change the value: @f was passed byalue. Segp. 658-659 for a
way to put the deletedonst back in.

When a function argument is a reference, the entire data type of the actual furetioerdr includ-

ing the top-lgel const , is incorporated into th&. For example, theonstint in line 21 changes the
Tinline 9 toconstint , preventing the increment from compiling.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/min/toplevel.C

#include <iostream>
#include <cstdlib>

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:mi n, pri nt,andswap 645
using namespace std;

3

4

5 t emplate <class T>

6 i nline void value(T t) {cout << ++t << "\n";}
7
8

t emplate <class T>
9 i nline void reference(T& t) {cout << ++t << "\n";}

10
11 int main()
12 {
13 const inti=10;
14 const int *const p = &i;
15 const int *const *const pp = &p;
16
17 value(i); /Ichange T to int
18 value(p); /Ichange T to const int *
19 value(pp); /Ichange T to const int *const *
20
21 /Ireference(i); /Ichange T to const int won'’t compile
22 /Ireference(p); /Ichange T to const int *const won'’t compile
23 /Ireference(pp); /Ichange T to const int *const *const ~ won’t compile
24 return EXIT_SUCCESS;
25}
11
OxffbffOc4
0xffbffOcO

Mor e than one template argument
We might want to plug more than one data type into a function:

1 i nline void print(int a, date b)
2 {
3 cout<<a<<""<<b<<"n"
4}
5
6 i nline void print(char a, const char *b)
7
8 cout<<a<<""<<b<<"n"
9}
10
11 inline void print(bool a, bool b)
12 {
13 cout <<a<<""<<bs<<"\n";
14}

To accommodate these, we can yide more than one templategament. Remembdp write the
keywordclass (ortypename) twice in line 17.

15 //T1 and T2 must be copy constructible and puttable.
16

17 template <class T1, class T2>

18 inline void print(T1 a, T2 b)

19 {

PSsao A hesenea ©2014 Mark Meretzky

646 Templates Chapter7

20 cout <<a<<""<<b<<"\n"
21}

The template function will accept the following arguments.

22 print(10, date(date::july, 4, 1776));
23 print(A’, "hello™);
24 print(true, false);

Better yet, pass the arguments by reference.

25 //T1 and T2 must be puttable.

26

27 template <class T1, class T2>

28 inline void print(const T1& a, const T2& b)
29{

30 cout <<a<<""<<b<<"\n“

31}

Alocal variable of type T

The trio of functions in lines 6, 13, and 20 is another candidate for templatization. Each function
contains a local variablemp whose type depends on that of the arguments.

The header filecalgorithm> declares &td::swap . If one of the headers in lines 1-2 included
this headerthe double colon in line 31 would be necessary to get the program to compile and call our
swap.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/swap/swapl.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

i nline void swap(int *a, int *b)

{
const int temp = *a; /finitialization
*a = *D; /lassignment

10 *h = temp;

11}

12

13 inline void swap(double *a, double *b)

14 {

15 const double temp = *a;

16 *a *b;

17 *b t emp;

18}

19

20 inline void swap(date *a, date *b)

214

22 const date temp = *a;

23 *a *b;

24 *b t emp;

25}

26

27 int main()

©CoOo~NOOOUTA,WNPE

PeSsao A hesenea ©2014 Mark Meretzky

28 {
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45}

©CoOo~NOOOUTA~,WNPE

Section 7.1.1 Simple Examples:mi n, pri nt,and swap 647

int i=10;

int j=20;

swap(&i, &j);

cout <<"i=='"<<i<<"jE="<<j<<"\n"Y

double d = 3.14;

double e = 2.17;

'swap(&d, &e);

cout <<'"'d=="<<d<<" e=="<<e<<"\n"

date today;

date tomorrow = today + 1;

::swap(&today, &tomorrow);

cout <<"today ==" << today << ", tomorrow ==" << tomorrow << "\n";

return EXIT_SUCCESS;
i ==20,j==10 lines 29-32
d == 2.17,e==3.14 lines 34-37
today == 4/9/2014, tomorrow == 4/8/2014 lines 39-42

We onsolidate the three functions into the template function in the following lingd.@all it, line
21 needs ampersands.

The template gumentT must beassignable:capable of being the left operand of the assignment
operator=. It must be a built-in, pointeenumeration, or an object of a class that has natprior pro-
tectedoperator= member function.T must also be nonenst . For examplejnt is assignable but
constint is not. Classdate has alvays been assignablé€lasswabbit has neer been assignable: it
always had the pviate operator= member function in line 25 afabbit.h on p. 536.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/swap/swap2.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

/ ISwap the values of a and b.
/ /T must be copy constructable (line 12) and assignable (lines 13-14).

t emplate <class T>

10 inline void swap(T *a, T *b)

11
12
13
14
15}
16

const T temp=*a;
*a *b;
*b t emp;

17 int main()

18
19
20
21

int =
swap(&i, &j); /Ichange T toi nt

int i =10;
=20

PSsao A hesenea ©2014 Mark Meretzky

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40}

N

(€3]

648 Templates Chapter7

COUt <<"i::"<<i<<",j::"<<j<<"\n";

double d = 3.14;
double e = 2.71;
'swap(&d, &e);

Cout <<lld::ll<<d<<Il,e::"<<e<<ll\nll;

date today;

date tomorrow = today + 1;

::swap(&today, &tomorrow); //change T to d ate

cout <<"today ==" << today << ", tomorrow ==" << tomorrow << "\n";

const char *p = "hello";

const char *q = "goodbye";

lswap(&p, &Q); /Ichange T to c onstchar*
cout <<"p==\"<<p<<"\", g==\"<<q<<"\"\n"

return EXIT_SUCCESS;

i ==20,j==10 lines 19-22

== 2.71,e==3.14 lines 24-27
today == 4/9/2014, tomorrow == 4/8/2014 lines 29-32
p == " goodbye", q == "hello" lines 34-37

Program in the same style with all data types.

Sincetemp is a constant, the abe line 12 has to initialize it in the declaratioBven if it were not a
constant, we could kra done the same thing.

T temp=*a; //If Tis a class, call the copy constructor.
We muld hare lit the abee line into two gatements:

T temp; 1 T is a c lass, call the default constructor.
t emp = *a; /lIf T is a class, call operator=.

But dont split it. For most classes, the cpgonstructor is faster than the default constructordass

date , for example, the cgpconstructor merely copies an integer or two, while the default constructor gets
the current date from the operating system (pp. 142-1%@)add insult to injury the hard-won current
date is thenwerwritten by theoperator= in the abee line 3. Please keep the original code in line 1.

Now suppose thatemp and*a were intgers. Inthis case there are no constructors, so we could
split

i nttemp = *a;
into

i nttemp;
t emp = *a;

with no loss of speed. But ddreplit it. If you program with the built-in types as if thevere objects,
there will be less to change when you templatize the code. See also p. 634.

The C++ Standard Library swap

Don'’t write your avn swap: call the one in the C++ Standard Librai§ince its arguments are refer
ences, the following line 11 needs no ampersands.

PeSsao A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA,WNPE

O©CoOo~NOOOUTA,WNPE

10
11
12
13
14
15}

1
2

Section 7.1.2 Propaganda: Templates vs. Maars 649

/ [Excerpt from <algorithm>.

t emplate <class T>

i nline void swap(T& a, T& b) /Inon-const references
{
const T temp = a;
a = b;
b = temp;
}
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/swap/swap3.C

#include <iostream>

#include <cstdlib>

#include <algorithm> //for swap
using namespace std;

i nt main()

{
i nti=10;
i ntj=20;
swap(i, j); //IChange T to i nt
cout <<"i=='"<<i<<" jE="<<j<<"\nY
return EXIT_SUCCESS;

i == 20,j==10

7.1.2 Popaganda: Templates vs. Macros

Before template functions werevamted, peopledked them with macrosLet’s try it with our min
andswap functions and see what goes wrong.

min as a macro

The MIN in the following line 5 is the textbookample of a macro gone bad. It appears that line 13
increments andj , and then passes the incremented values to the macro. But that order is clearly impossi-
ble: the increments are performed at runtime, while the macraled” at compile time. In realitywhat
is passed to the macro are theetok++ andi , ++ andj , not the incrementedalues. Oneof the incre-
ments will be performed twiceVe muld predict which one, if we kmewhich variable was bigger.

Similarly, it appears that line 16 calfs andg, and then passes the return values to the malcro.
reality, what is passed to the macro is tokens such, &s and), not the return value of. One of the
functions will be called twiceWe ould predict which one, if we kmewhich one returned a biggealue
the first time it was called.

Our min template is a function, immune to these maagaxies. Itwill increment each ariable
once and call each function once.

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/propaganda/min.C

#include <iostream>
#include <cstdlib>

PSsao A hesenea ©2014 Mark Meretzky

650 Templates Chapter7

3 using namespace std;
4
5 #define MIN(a, b) ((b)y < (@) ?(b):(a))
6 i ntf();
7 i nline int g() {cout << "g returns 40\n"; return 40;}
8
9 i nt main()
10{
11 int i=10;
12 int j=20;
13 int m = NN(++, +4));
14 cout <<"i=='"<<i<<" jEEtgj<, m=="<<m<<"\n"
15
16 m = MN(f(, g0);
17 cout << "The minimum return value was " << m << ".\n";
18 return EXIT_SUCCESS;
19}
20
21intf()
22 {
23 static int n = 10;
24 n +=20;
25 cout <<"freturns"<<n<<"\n"
26 return n;
27}
i==12,j==21, m==12 i incremented twicg, once.
g returns 40 This line and the next might appear in the opposite order on some platforms.

PR R R R R
OURNWNRPRPOOONOUODWNER

f r eturns 30
f r eturns 50
The minimum return value was 50.

swap as a macro
swap is much vorse. Asa macro it requires an extra argument, itfite in line 11.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/propaganda/swap.C

#include <iostream>
#include <cstdlib>
using namespace std;

#define SWAP(T, a,b) {const T temp = (a); (a) = (b); (b) = temp;}

i nt main()

{
i nti=10;
SWAP(int, i, J); /Iwill compile
cout <M==, J — <<j << "\n™:

int temp = 30;
/ISWAP(int, i, temp); /lwon’t compile

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.1.2 Propaganda: Templates vs. Maars 651

17 size t a[] = {10, 20, 30};

18 size t k = 2;

19 SWAP(size_t, k, a[K]); /lundefined behavior
20 cout <<"k=="<<k<<" g[2] =="<<a[2] <<"\n";
21

22 const bool b = true;

23 int x = 10,y=20,z=30;

24 SWAP(int, b?x:vy, 2z), [llswap X andz
25 cout <<"x=="<<x<<"y=="<y<<" z=="<<z<<"\n"
26

27 return EXIT_SUCCESS;

28}

The abee line 15 will be rewritten as foll@s. Sinceit attempts to assign to tlemnsttemp it
will not compile.

29 {const int temp = (i); (i) = (temp); (temp) = temp;}

The abee line 19 will be rewritten as follows, attempting to store thkRi®2 into the non-gistent
array elemena[30] . If we are lucky, the program will crash.

30 {const size_t temp = (k); (k) = (a[k]); (a[k]) = temp;}

On my platform, line 19 lefa[2] unchanged.

i ==20,j==10
== 30, a[2] == 30 All behavior after line 19 is undefined.
x == 30,y==20,z==10

The preprocessor speaks a different language.
The following are some of the ways in which a macro conflicts with the rest of the language.

(1) Whitespace is permitted in C and C++ betwegnalphanumeric and nonalphanumeric token (p.
101)—except in exactly one place. There can be no whitespace in tieliabd between the name
SWARand the left parenthesis (p. 9)ith whitespace, the macro wouldveao arguments.

(2) In normal code, the parentheses arouna@gthendb’s in the abee line 5 would be unnecessary
But in a macro theare vital. For example, line 24 will be mgritten as the following line 31. Thanks to the
parentheses, the middteis aways executed. Wherb is true, the middle assigns a value to.

31 {const inttemp=(b?x:y); (b?x:y)=(2); (z) =temp;}

{ \
b|?2 |x|: |y)=]z
l |

Without the parentheses in line 5, the middlevould be e&ecuted only wherb is false. Whenit is
executed, it would assign .

32 {const inttemp=b?x:y;b?x:y=2zz=temp;}

With no parentheses in line 5, the output of lines 22-25 would change to the following.

PeSs a0 A hesenea ©2014 Mark Meretzky

652 Templates Chapter7

x == 10,y==20,z==10

(3) A macro ignores the C++ scoping rulésvariable declared in a block can be mentioned only in
that block (p. 32), but a mactaefine 'd in a Hock can be mentioned outside of it.

(4) We aan take the address of a function, but not of a macro.

Macros should be used only for conditional compilation, such a#ithéef that surrounds a
header file, and as arguments and return values of C functions, suclEX$Tth8UCCESSargument of
exit or theEOFreturned bygetchar . Every other macro should be replaced byasiable, an enumera-
tion, or an inline functionFor the macro$NT_MIN , INT_MAX and their cousins, see pp. 745-747.

7.1.3 Explicit Template Arguments

Our original min template function on p. 637 took functiongaments of data typ& and T,
upgraded on p. 640 monst T& andconst T& . In dther case, the twvactual aguments hee © be d
the same type, likthei andj in the following line 5. If the types ddr, as in ine 7, the computer will be
unable to deduce whatshould change into and the call will not compil&e encountered this problem,
without explaining it, on pp. 43-44.

One workaround is to castto double in line 9. Now that both arguments ad®uble , the com-
puter can deduce thatis double . A more elgant solution is theexplicit template agumentin line 11.
The <double> relieves the computer of the responsibility of deducifig It specifies thafl should be
changed talouble , regadless of the types of the actuadjaments. Whethe instantiation is called, the
will be implicitly cast todouble .

1 i nti=10;
2 i ntj=20;
3 double d = 3.14;
4
5 cout << :xmin(i, j) << "\n"; /iwill compile
6
7 cout << :min(i, d) << "\n"; /lwon’t compile
8
9 cout << ::min(static_cast<double>(i), d) << "\n"; //brute force
10
11 cout << :min<double>(i, d) << "\n"; /lelegant

The abwee line 7 has a surprising implication. The following classapper has an
operator int in line 16. We would therefore expect that it could be used iy eontext that would
accept annt , for example the place where thés in line 31. But line 31 rejects thve We can force it to
compile with the explicit template arguments in lines 32 and 33, or by uncommexdictty ene of the
functions in lines 23-27For another example, see pp. 751-752.

12 class wrapper {

13 int i

14 public:

15 wrapper(int initial_i): i(initial_i) {}
16 operator int() const {return i;}
17}

18

19 template <class T>

20 inline const T& min(const T& a, const T& b) {returnb<a? b : a;}
21

22 I*

23 inline const int& min(const int& a, const int& b) {returnb<a ?b: a;}
24

25 inline const wrapper& min(const wrapper& a, const wrapper& b) {

PeSs a0 A hesenea ©2014 Mark Meretzky

Section 7.1.3 Explicit Template Arguments 653

26 return b<a?hb:a;

27}

28 */

29

30 wrapper w(10);

31 cout << :min(20, w); /lwon’t compile

32 cout << :min<int>(20, w); /Iwill compile: convert w to int

33 cout << :min<wrapper>(20, w); /Iwill compile: convert 20 to wrapper

O©CoO~NOUILPWNPE

10 {
11
12
13
14
15
16}
17
18 f

No function arguments

An explicit template ayument is necessary wheeethe computer cannot dedu¢drom the actual
arguments. Irthe abee lines 7 and 31, the actuabaments were contradictoryn the following line 13,
they are nonexistent.

We will compute rwith the Taylor series

4 4

4 4 4 4
T — — 4+ — — — + — — — + ..
1 3 5 7 9 11

As more and more terms are added, the sum zigzagsardgyz Line 44 divides the last term in half.

S

— 1052 147916 2490548 47028692
45045 765765 14549535

304 135904 44257352
8 105 3456 45045 14549535

pi_double does its arithmetic witldouble ’s. pi_float does its arithmetic witliloat ’s.
The functions need different names becausghheeno aguments. Br the i/o manipulator
setprecision in line 11, see pp. 355-356.

—On the Web at
http://i5.nyu.edu/ Cmme64/book/src/explicit_argument/pil.C

#include <iostream>

#include <cstdlib>

#include <iomanip> //for setprecision
using namespace std;

f loat pi_float();
double pi_double();

i nt main()
cout << setprecision(19)
<< "float ; << pi_float() << "\n"
<< "double " << pi_double() << "\n";

return EXIT_SUCCESS;

loat pi_float()

PSsao A hesenea ©2014 Mark Meretzky

654 Templates Chapter7

19 {

20 float pi = 0;

21 float sign = 1;

22 const long n = 1000000;
23

24 for (longi=1;i<n;i+=2){
25 pi +=sign/i

26 sign = -sign;

27 }

28

29 pi +=sign/(2*n);

30 return 4 * pi

31}

32

33 double pi_double()

344

35 double pi=0;

36 double sign=1;

37 const long n = 1000000;
38

39 for (longi=1;i<n;i+=2){
40 pi +=sign/i

41 sign = -sign;

42 }

43

44 pi +=sign/(2*n);

45 return 4 * pi

46}

The digits that came out correctly on my machine are underlifad.double answer has sen
more correct digits than thwat . That's ven orders of magnitude, 10 million times more accurate.

float 3.14159 5840454101562 correct to 6 significant digitsr= 3.141592653589793238|..
double 3.141592653589 691864 correct to 13 significant digits

We @an consolidate the functions into the template function in line 7. Since it has no fungtien ar
ments, it must be called with the explicit template arguments in lines 25-27.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/explicit_argument/pi2.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <iomanip> //for setprecision
4 using namespace std,;
5
6 t emplate <class T>
7 T pi()
8 {
9 T pi_val =0;
10 T sign=1,;
11 const long n = 1000000;
12
13 for (longi=1;i<n;i+=2){
14 pi_val +=sign /i
15 sign = -sign;

PSsao A hesenea ©2014 Mark Meretzky

Section 7.1.3 Explicit Template Arguments 655

16 }
17
18 pi_val +=sign/ (2 * n);
19 return 4 * pi_val,
20}
21
22 int main()
23
24 cout << setprecision(19)
25 << "float " << pi<float>() << "\n"
26 << "double " << pi<double>() << "\n"
27 << "long double " << pi<long double>() << "\n";
28
29 return EXIT_SUCCESS;
30}
float 3.14159 5840454101562
double 3.141592653589 691864

O©CoOo~NOOOUTA, WNPE

long double 3.1415926535897932 4 correct to 17 significant digits

Another template in which T cannot be deduced

My favaite function for peeking around in memory is in the following line 13. It displays the chunk
of memory pointed to by in the format specified by.

To dsplay a series of consecotdi chunks, possibly in diérent formats, we provide the interface in
line 23. The unusuapv is a “reference to pointer teoid ", which will refer to thep in line 11 of
step.C belov. Thereferenceis read/write, because monst follows the asterisk in line 23. This will
allow line 26 to usepv to change thealue of thep in step.C . But thepointer is read-onlybecause of
theconst before thevoid in line 23. This will disallav step from usingrpv to change the value of
the variabled to whichp is pointing.

Therpt in line 25 is a “reference to pointer 10 . It refers to thep in step.C , even though that
pointer is not a pointer td. Thistype punningrequires aeinterpret_cast ; an arlier example &s
on p. 81.

stand andstep will become member functions on p. 727.
—On the Web at
http://i5.nyu.edu/ Omm64/book/src/explicit_argument/step.h

#ifndef STEPH
#define STEPH
#include <iostream>
using namespace std;

t emplate <class T>
i nline void print(const T& t) {cout << t;}

i nline void print(unsigned char c) {cout << static_cast<unsigned>(c);}

10 inline void print(const char *p) {cout << "\"" << p << "\"";}

11
12 t

emplate <class T>

13 const T& stand(const void *p)
14 {

15
16

cout <<p<<""
const T&t=*static_cast<const T *>(p);

PSS ao A hesenea ©2014 Mark Meretzky

656 Templates

17 print(t);

18 cout <<"\n";
19 return t;
20}

21

22 template <class T>

23 const T& step(const void *& rpv)

Chapter7

/Inon-const reference

244

25 const T *& r pt=reinterpret_cast<const T *&>(rpv);
26 return stand<T>(rpt++);

27}

28 #endif

An application of step
—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/explicit_argument/step.C

1 #include <iostream>

2 #include <cstdlib>

3 #include "step.h"

4 using namespace std,;

5

6 i nt main()

7

8 double d = 3.14;

9 const void *p = &d;
10
11 step<unsigned char>(p);
12 step<unsigned char>(p);
13 step<unsigned short>(p);
14 step<unsigned long>(p);
15
16 return EXIT_SUCCESS;
17}

On every machine, a&har is by definition one byte. On my machishort is two bytes,long is
four, anddouble is eight. On my machine, a byte is eight bits.

My machine representsdouble as a sign bit (1 for mgtive, 0 for non-ngative), an 11-bit gpo-

nent, and a 53-bit mantissa, in that ord®#?22 is added to the exponent, so our exponent of 2 is stored as
1024 (binary10000000000). Themantissa of a non-zero number ivals greater than or equal to ¥2
and less than 1, causing its first bit tavals be 1. Since the first bit isvedys the same, it does not need to
be stored in memoryin binary, our mantissa .785 is a fraction with 20 repeating bits.

3.14
3.14=""x4
4

. 785 x 22
.1 1001000111101011100001 x 210241022

Oxffbff021: 9
Oxffbff022: 7864
Oxffbff024: 1374389535

Oxffbff020: 64 sign bit Q), followed by first 7 bits of exponed0Q0000)

last 4 bits of exponen®Q00), followed by 1st 4 bits of mantissE001)
next 16 bits of mantiss@@01111010111000)
next 32 bits of mantiss@1010001111010111000010100011111)

printed 4/8/14
8:58:39 AM

hesenea ©2014 Mark Meretzky

Section 7.1.3 Explicit Template Arguments 657

An application of stand

On my platform, each object with a virtual function begins with a pointer to element 0 of the virtual
function table (vtbl) for that class. Element -1 of the vtbl is a pointer to a second table, whose element 1 is
a pointer to the name of the class.

vtbl for classbase second table

— 1= "7myclass\0"

The following line 16 makes the rough-and-ready assumption tlesy element of the vtbl is a
pointer tovoid . The pointer at the start of the objects therefore a pointer to pointer void , seen in
the<angle bracketsin line 16.

(1) Thecall tostand in line 16 returns the address of element O of the vtbl. The subtraction computes
the address of element -1 of the vtbl.

(2) Thecall in 17 returns thealue of element -1 of the vtbl, which is the address of element O of the
second table. The addition computes the address of element 1 of the second table.

(3) Thecall in 18 prints the value of element 1 of the second table, which is address of the first character
of the class name.

(4) Thecall in 19 prints the characters being pointed to.
The name will be displayed by clagpeid on p. 1015.
—On the Web at

http://i5.nyu.edu/ Ommé64/book/src/explicit_argument/stand.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "step.h"
4 using namespace std,;
5
6 class myclass {
7 public:
8 virtual “myclass() {}
9},
10
11 int main()
12 {
13 myclass m;
14 const void *p = &m;
15
16 p = stand<const void *const *>(p) - 1;
17 p = stand<const void *const *>(p) + 1;
18 stand<const void *>(p);
19 stand<const char *>(p);
20
21 return EXIT_SUCCESS;
22}

PSsao A hesenea ©2014 Mark Meretzky

658 Templates Chapter7

The namenyclass has seen characters:

Oxffbff070: 0x11480 ffbff070 is addr ofm 11480 is addr ofvtbl[0]
0x1147c: 0x11494 1147c is addr ofvtbl[-1] , 11494 is addr oftab2[0]
0x11498: 0x11488 11498 is addr oftab2[1] , 11488 is addr of 7’

0x11498: "7myclass"

Override the deduction

An explicit template argument is also necessary wiheould be deduced, but we want teewide it
oursehes. Fr example,

—On the Web at

http://i5.nyu.edu/ Omme64/book/src/explicit_argument/override.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 i nline void f(const T& t) {cout <<t + 1 << "\n";}
7
8 i nt main()
9 {
10 f(0); /Ichange T to int because 0 is int
11 f<int *>(0); /[change Ttoi nt*
12 f<double *>(0); //change T to double *
13 return EXIT_SUCCESS;
14}
1
0x4 On my machinesizeof (int) ==
0x8 On my machinesizeof (double) ==
An explicit template argument can peat the loss of the topael const in p. 644. The T().f()
in the following line 12 constructs an anonymous object of fiypad calls its member functidn The
classflavor in line 5 has tw f ’s, showing us whether or not the object yhiselong to isconst . For
another class witbonst and noneonst versions of the same member function, see p. 314.
Since the function gumentt in line 12 is not a reference, thenstflavors in line 24 changes
T into flavor without the top-leel const To changeT into constflavor , We @n use need the
explicit template argument in line 28.
Since the function gumentt in line 15 is a reference, tloenstflavors in line 25 change$
into constflavor with the top-leel const intact (p. 644).
The explicit template argument in line 30 changedTthre18 toconstflavor . This results in &
that is formally of data typeonstconstflavor& , but the redundardonst is ignored.
—On the Web at
http://i5.nyu.edu/ Omme64/book/src/explicit_argument/explicit.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 class flavor {
6 public:
7 void f() {cout << "non-const";}

PeSsao A hesenea ©2014 Mark Meretzky

8

Section 7.1.3

void f() const {cout << "const";}

9 };

10

11 template <class T>
12 void value(T t) {t.f(); cout << "\t"; T().f(); cout << "\n";}

13

14 template <class T>
15 void reference(T& t) {t.f(); cout << "\t"; T().f(); cout << "\n";}

16

17 template <class T>
18 void const_reference(const T& t) {t.f(); cout << "\t"; T().f(); cout << "\n";}

Explicit Template Arguments

659

19

20 int main()

21{

22 const flavor s = flavor();

23

24 value(s);

25 reference(s);

26 const_reference(s);

27

28 value<const flavor>(s);

29 reference<const flavor>(s);

30 const_reference<const flavor>(s);

31

32 return EXIT_SUCCESS;

33}
non-const non-const Line 24 calls 12 witil - flavor
const const Line 25 calls 15 witil - const flavor
const non-const Line 26 calls 18 witil - flavor
const const Line 28 calls 12 witil - const flavor
const const Line 29 calls 15 witil - const flavor
const const Line 30 calls 18 witil - const flavor

A WNBE

1

Apply an explicit template argument to an operator function
An operator function such a®perator==
argument can be applied with the syntax in line 2.
if (@ = =<int>b){
i f (operator==<int>(a, b) {

/lwon’t compile
/Iwill compile, needs no whitespace

i f (operator< <int>(a, b) { /Ineeds whitespace; see p. 101
The C++ cast syntax
C++ has four operators for type e@rsion:

static_cast
const_cast
reinterpret_cast
dynamic_cast

Their<>() syntax is borrowed from that of an explicit template argument.

double d = 3.14;

printed 4/8/14
8:58:39 AM

All rights
reserved

can be a template function. Amxgicit template

©2014 Mark Meretzky

W N

=Y

(€3]

~

10
11
12

A WNPE

660 Templates Chapter7

cout << step<unsigned char>(&d) << "\n"
<< static_cast<int>(d) << "\n";

7.1.4 TheBuilt-ins have Constructors too

Classes are not the only data types thae lranstructors and destructors. The built-in types, point-
ers, and enumerationsveatem too. But the special syntax that calls their constructors and destructors
should be used only in a template.

Default constructor

Ourswap function contained a local variable of typgin line 12 ofswap2.C on p. 647 we aveit
an explicit initial \alue. Buteven with no explicit initialization, we usually want a locarnable in a tem-
plate to be born with a sane value.

This brings us face to face with an inconsisyeimcthe syntax of C++.For an dject, a definition
with no explicit initial value will call the default constructdgee pp. 134-135.

date d; /ld is initialized.
date *const pd = new date; /[The anonymous object is initialized.

But for a built-in, pointeror enumeration, the same syntax will Weathe variable full of grbage. Sepp.
396-397.

i nti; /i is uninitialized.

i nt *const pi = new int; /[The anonymous int is uninitialized.

Fortunately the latter types h& a efault constructor that puts a zero into the newbariable.
This constructor can be called with the following syntax.

i nti=int(); /i is initialized to 0.
i nt *const pi = new int(); /[The int is initialized to O.

The same syntax will call the default constructor for an objeittes 7-8 behae the same as the alm
lines 1-2, assuming that the compiler is smart enough to elide the temporary in line 7 (p. 137).

date d = date(); /ld is initialized.
date *const pd = new date(); /[The anonymous object is initialized.

We haveused this syntax in lines 7, 10, and 11 beldhe same constructat the end of 17, will create an
anonymous temporary.

But never use this syntax outside of a template. In place of theealiwes 5-8, it is cleareand just
as fast, to say

i nti=0;
int *const pi = new int(0);
date d;

date *const pd = new date;

Incidentally line 33 would not compile without the nars®oge in line 24. There would be no
word for T to change into.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/default_constructor/default.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.1.4 The Built-ins have Constructors too 661

5
6 t emplate <class T>
7 voidf(Tt1=T()) //call default constructor if actual argument missing

8 {
9 / It1, t2, and *p will be initialized for every data type T
10 T t2=T(); /[call default constructor
11 const T *constp=new T(); /[call default constructor
12
13 I3 and *q will be uninitialized if T is built-in, pointer, enumeration
14 T t3; /Imight not call any constructor at all
15 const T *constq=newT; /Imight not call any constructor at all
16
17 cout <<l <<\t << 2 << "It << << << T() << M
18 << 3 <<t << *g << "\
19

20 delete a;
21 delete p;

22}
23
24 enum stooge {moe, larry, curly};
25
26 int main()
27 {
28 int i=10;
29
30 f(date(date::december, 31, 2014));
31 f(i);
32 f(&i);
33 f(curly);
34
35 return EXIT_SUCCESS;
36}
Line 30 outputs six sana@les. Thether lines hee garbage in their last twwalues.
12/31/2014 4/8/2014 4/8/2014 4/8/2014 4/8/2014 4/8/2014 [. 30: T - date
10 0 0 0 4 157904 3L:T-int
0xffbff0e8 0 0 0 0x4 0x268d0 32: T-int*
2 0 0 0 4 157904 33: T - stooge

Copy constructor

The built-in types, pointers, and enumerations alse laapy constructors. Oncagain, the intent is

to male them syntactically compatible with objects.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/default_constructor/copy.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

t emplate <class T>
void f(T t1) /[call copy constructor

{

O~NO O WNPE

PeSsao A hesenea ©2014 Mark Meretzky

662 Templates Chapter7

9 T t2(t1); /lcall copy constructor

10 const T *constp =new T(t2); //call copy constructor

11 cout <<l <<\t << 12 << "It << Fp << I << T(12) << "\n'

12 delete p;

13}

14

15 enum stooge {moe, larry, curly};

16

17 int main()

18{

19 int i=10;

20

21 f(date(date::december, 31, 2014));

22 f(i);

23 f(&i);

24 f(curly);

25

26 return EXIT_SUCCESS;

27}
12/31/2014 12/31/2014 12/31/2014 12/31/2014 Line 21:T - date
10 10 10 10 Line 22:T - int
Oxffbff168 Oxffbff168 Oxffbffl68 Oxffbff168 Line 23:T - int*
2 2 2 2 Line 24:T - stooge

abhwNRE

©CoOoO~NOOOUTA, WNPE

The copy constructor can be used as a shorthand for eecsion (line 4). But dort’do this: it's hard
to search for.

double d = 3.14;
cout << static_cast<int>(d) << "\n" /leasy to find
<< i nt(d) << "\n" /[copy constructor: hard to find
<< (int)d << "\n"; /[C-style cast: hard to find
Destructor

Finally, the built-in types, pointers, and enumerationget@estructors which do nothingdn the rare
occasions when a destructor is callgglieitly (line 12) we can therefore safely assume thgttgpe T has
a destructor For the placement syntax in line 10 and tkplieit call to the destructor in line 12, see p. 406.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/default_constructor/destructor.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

t emplate <class T>
void f(const T& t)
{
T *const p = reinterpret_cast<T *>(new char[sizeof (T)]);
new(p) T(t); /lcall the copy constructor
cout << *p << "\n";
p->"T(); /Icall the destructor
delete[] reinterpret_cast<char *>(p);

PSsao A hesenea ©2014 Mark Meretzky

Section 7.1.5 Explicit Specialization of a Template Function 663

14}

15

16 enum stooge {moe, larry, curly};

17

18 int main()

19{

20 int i=10;

21

22 f(date(date::december, 31, 2014));

23 f(i);

24 f(&i);

25 f(curly);

26

27 return EXIT_SUCCESS;

28}
12/31/2014 Line 22:T - date
10 Line 23:T - int
0xffbff090 Line 24:T - int*
2 Line 25:T - stooge

O©CoOoO~NOOOUOTA, WNPE

7.1.5 Explicit Specialization of a Template Function

A template function and two non-template functions

Line 7 will print a value of almost grdata type.Lines 9 and 10 are alternagi code for types that
require special handling. Since theigaments are different, the functions can berloads of the same
name. Ay call to a function namedrint will have b make a hree-way choice.

print template function print(char) function print(const string&)
at line 7 atline 9 function at line 10

Thecharc in line 9 is fast enough to pass bglue; the objecs in 10 is not. Thet in line 7 is
unknown, so we pass it by reference just in case.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/explicit_specialization/overload.C

#include <iostream>

#include <cstdlib>

#include <string> /ffor class string
using namespace std;

t emplate <class T>
i nline void print(const T& t) {cout <<t << "\n";}

i nline void print(char c) {cout << ™" << ¢ << "\n";}

PeSsao A hesenea ©2014 Mark Meretzky

664 Templates

10 inline void print(const string& s) {cout << "\"" << s << "\"\n";}

Chapter7

11

12 int main()

13

14 int i =10;

15 char ¢ ="'A;

16 string s = " hello";

17

18 print(i);

19 print(c);

20 print(s);

21

22 return EXIT_SUCCESS;

23}
10 Line 18 calls line 7 witA - int
A Line 19 calls line 9.
"hello" Line 20 calls line 10.

A template function consisting of three templates

Another way to ikoke dternatve ade for an gceptional data type is with alexplicit specializa-
tion”. Will demonstrate its quirks and then recommend that it should be used only when necessary.

The following line 7 is general-purposetemplate. Lined0 and 13 arexplicit specializationsof
line 7. The<char> in line 10 says that whewer we decide to instantiate line 7 withchanged tehar ,
we should instantiate 10 instead.

An explicit specialization mustabys follow the definition, or at least a declaration, of the general-
purpose template. Anxplicit specialization has n®; its preamble (line 9) isabys empty Thus if ary
template argument is explicitly specialized ytla must be. (This will come back to haunt us on p. 709.)

In this example, thechar> in line 10 is redundant and can be reetb If theconstchar& in
line 10 is indeed a special case of tastT& line 7, the computer can figure out that dhar in 10
corresponds to thEin 7. We @an remee the entire<char> or just the worcchar . Similarly, the
<string> inline 13 can be renved. For an &le where thechar> or <string> are needed, see
p. 668.

| reget that thechar has to be passed by reference in line Bfr.a anall built-in data type, pass by
value would be &ster because ivaids the extra fetch from memorfut line 10 will compile only if itis a
special case of line 7, and line 7 is a pass-by-referelficge change the function argument in 10 to an
unadornectharc , we would hare o match it by changing 7 td t and 13 tostrings

What we really want is a general templatedonstT& , as in Ine 7, with an explicit specialization
for char passed byalue. W\ will be able to get this combination on pp. 779-781 when we fmplate
classes as well as template functions.

Template function vs. function template

A note on nomenclatureA function templateis a template that manufactures instantiations of a
function. Latera “class templatéwill manufacture instantiations of a class (p. 683).

The set of all possible instantiations of the following thpaet function templates is emplate
function. Included in this set are th@int that takes aifnt , instantiated from line 7; therint that
takes adouble , dso instantiated from line 7; thggint that takes &har , instantiated from line 10; and
theprint that takes &tring , instantiated from line 13. The set is indefinitehgabecaus& could be
ary one of indefinitely may data types. Recall that a virtual function was also defined as a set of func-
tions; see p. 488.

PeSsao A hesenea ©2014 Mark Meretzky

©CoOo~NOOOTA, WNPE

Section 7.1.5 Explicit Specialization of a Template Function 665

Lines 7, 10, and 13 represent a single template function that is written with three function templates.
A template function must ke exactly one general-purpose template, but it mayehany mmber of
explicit specializations.

Our min template function was a set of functions that differed only in the data type plugged into
them. W were therefore able to instantiate that template function from one function template. But the fol-
lowing print template function is a set of functions that differ in othaysv Thistemplate function had
to be instantiated from more than one function template.

Three kinds of specialization

An implicit specialization is the imaginary source code pasted into the program when a template is
instantiated (p. 636). Arxplicit specialization is actual source code, as the following line/®will also
see “partial’ specializations (p. 702), but only for template classes, not functions.

The code in line 7 occupies no memory: it is not an instantiattwen without the &ywords
static orinline it could be written in a header file included by more than.Gnéle in the same pro-
gram. Butthe code in lines 10 and 13 does ogcagemory: these lines are instantiations. In a header file
included by more than on€ file in the same program, thenust bestatic orinline

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/explicit_specialization/explicit.C

#include <iostream>
#include <cstdlib>
#include <string>
using namespace std;

t emplate <class T>
i nline void print(const T& t) {cout <<t << "\n";}

t emplate <>

10 inline void print<char>(const char& c) {cout << """ << ¢ << "\n";}

11

12 template <>
13 inline void print<string>(const string& s) {cout << "\"" << s << "\"\n";}

14

15 int main()

16 {

17 int i =10;

18 char ¢ ="' A}

19 string s = " hello";

20

21 print(i);

22 print(c);

23 print(s);

24

25 return EXIT_SUCCESS;

26}
10 Line 21 calls line 7 witll - int
A Line 22 calls line 10.
"hello" Line 23 calls line 13.

PeSsao A hesenea ©2014 Mark Meretzky

666 Templates Chapter7

Binding is performed in two geps.

When writing a[n explicit] specialization, be careful about its location; or temak
it compile will be such a trial as to kindle .. self-immolation.

—The normally staidC++ Standard,§14.7.3, § 7

Line 6 is a template function that will print alue of almost andata type. Lines 9 and 12 constitute
another template function that will print pointers. Since their arguments are different, the functions can be
overloads of the same name.

The<char> in 12 is redundant and can be remth Thecast in line 9 ensures that only strings of
char , not of unsignedchar or signedchar , are printed as strings. If theqament in line 9 is a
pointer to a function, the cast will not compile; see line 2interpret_cast.C on p. 67.

Line 16 must decide which function to callVe say that it musbind the nameprint in line 16 to
the function that is actually called. This decision is performed andeps.

Step 1 chooses the template function. In this step xihlecié specializations are ignored. When line
16 callsprint , only lines 6 and 9 are considered. Line 6 would chah@g&o constchar *: line 9
would chang€l into an unadornedhar . Line 9 wins because it change#to the simpler data type.

Step 2 chooses the function template within the template funchiow that we hae decided to
instantiate the template function whose general-purpose template is in line 9, lines 9 and 12 are compared.
The latter is chosen.

print template function
atline 6

print template function
atline 9

print<char> function template
at line 12

print function template
atline 9

—On the Web at
http://i5.nyu.edu/ Omm64/book/src/explicit_specialization/immolatel.C

#include <iostream>
#include <cstdlib>
using namespace std;

t emplate <class T>
i nline void print(const T& t) {cout << t;}

t emplate <class T>
9 i nline void print(const T *p) {cout << static_cast<const void *>(p);}

11 template <>

12 inline void print<char>(const char *p) {cout << "\"" << p << "\"";}
13

14 int main()

15 {

16 print("hello");

PeSsao A hesenea ©2014 Mark Meretzky

17
18

19}

=

print function template

CQOwo~NOOUOID WNPE

Section 7.1.5 Explicit Specialization of a Template Function 667

cout <<"\n";
return EXIT_SUCCESS;

"hello" Line 16 calls therint<char>(const char *) in line 12 (good).

The following program is almost the same. It seems thathko" in line 16 will once agin
call the explicit specialization in line 9. After all, the actual argument in 16 and the fundionent in 9
are bothconstchar * . But by placing the explicit specialization at line 9, weeharnde it an eplicit
specialization of line 6. An explicit specializationval/s belongs to thprevious template of which it is a
special case. Lines 6 and 9moonstitute one template function; line 12 consititutes another.

When binding the namgrint in line 16, step 1 will choose theint in line 12 wer the one in
line 6. The explicit specialization in line 9 is ignore8tep 2 find that line 16 has no explicit specializa-
tions.

print template function
atline 6

print template function
at line 12

print<const char *> function template
atline 6 atline 9

Since line 12 aVays prevents 9 from being called, it seems anticlimactic to remark that¢best
char *> in 9 is redundant and can be resea

The reader will hae roticed that theconstT&t in line 6 of the abee immolatel.C was
changed to the unadornddt in the following line 6. We would prefer to pass the unkan T by refer
ence. Buthe following line 9 will compile only if it is a special case of line 6. Had we continued td pass
by reference in line 6, the in line 9 would hae © be aconstchar*const&p , a reference to a
pointer Because of theonst after the*, the reference could not be used to change #hgevof the
pointer; because of the othmanst , the pointer could not be used to change the value ahitue.

Could we pass$ by reference and by value? Carthe binding be made independent of the order in
which the templates are writter\®e will accomplish both on pp. 779-781, when template classes interact
with template functions.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/explicit_specialization/immolate2.C

#include <iostream>
#include <cstdlib>
using namespace std;

t emplate <class T>
i nline void print(T t) {cout << t;}

t emplate <>
i nline void print<const char *>(const char *p) {cout << "\"" << p << "\"";}

PeSsao A hesenea ©2014 Mark Meretzky

668 Templates Chapter7

11 template <class T>
12 inline void print(const T *p) {cout << static_cast<const void *>(p);}

13

14 int main()

15

16 print("hello");

17 cout <<"\n"

18 return EXIT_SUCCESS;
19}

0x10e68 Line 16 calls therint(const T *) in line 12 (bad).

Why make an eplicit specialization?
Let’'s sum up the difficulties with explicit specialization.

(1) We annot hae a gneral-purpose template taking@nstT& followed by a specialization taking a
pass by value (p. 664).

(2) We can specialize fomt* andconstint * put not forT * andconstT *. An explicit spe-
cialization neer has anyT.

(3) An explicit specialization can accidentally belong to the wrong general-purpose template (pp.

667-668).

In the light of these infirmities, please use function namedaading when possible, explicit special-
ization only when necessaryhe latter is necessary only when the general-purpose template has no func-
tion agument with &r in its data type. The simplest example is the template function in the following lines
6-12, which has no function arguments at all.

The<char> in line 9 is required because there isTnia the data types of the function arguments or
return \alue. Wthout the<char> , the computer could not tell which data type this is an explicit special-
ization for.

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/explicit_specialization/name.C

#include <iostream>
#include <cstdlib>
#include <string>
using namespace std;

t emplate <class T>
string name(); /lgeneral-purpose template deliberately undefined

©CoOoO~NOOOUTA, WNPE

t emplate <> inline string name<char>() {return "char";}
10 template <> inline string name<int>() {return "int";}

11 template <> inline string name<double>() {return "double";}
12 /letc.

13

14 template <class T>

15 inline void print(const T& t) {

16 cout << static_cast<const void *>(&t) <<": "

17 << name<T>() <<" (" << sizeof (T) << " bytes) " <<t <<"\n";
18}

19

20 int main()

214

22 char ¢ ="A]

PeSsao A hesenea ©2014 Mark Meretzky

23
24
25
26
27
28
29
30
31}

Section 7.1.6 Pass a read/write pointer to a template function 669

int i =

10;
double d =

3.14;
print(c);

print(i);

print(d);

return EXIT_SUCCESS;

Oxffbff187: char (1 bytes) A
Oxffbff180: int (4 bytes) 10 Number of bytes is platform-dependent.
Oxffbff178: double (8 bytes) 3.14

7.1.6 Rass a read/write pointer to a template function

Template functions and non-template functions feltlifferent rules when we pass them a read/write
pointer Our example will be the pointgrin line 31.

Lines 5 and 6 are twnon-template functions namdéd Theint* amgument in line 5 is anxact
match for thent* argument in line 33.

Lines 9, 12, and 15 are three template functions nameddnes 9 or 12 are exact matches for the
int* argument in line 34. Line 12 is selected because it chahdgeghe simpler data type. Note that
theconstT * line 15 does not match thet * in line 34: anint is not aconstT

Lines 18, 21, and 24 are one template function with eéxplicit specializations. Lines 18 or 21 are
exact matches for thmt * argument in line 35.Line 21 is selected because it changes the simpler
data type. The&int*> and<constint *> in lines 21 and 24 are unnecessaxpte that theonst
T * line 24 does not match tliet * in line 35: anint is not aconstT

—On the Web at

http://i5.nyu.edu/ Omme64/book/src/explicit_specialization/pointer.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nline void f(int *p) {cout << "f(int *) " << *p << "\n";}
6 i nline void f(const int *p) {cout << "f(const int *) " << *p << "\n";}
7
8 t emplate <class T>
9 i nline void g(const T& t) {cout << "g(const T&) " <<t << "\n";}
10
11 template <class T>
12 inline void g(T *p) {cout << "g(T *) " << *p << "\n";}
13
14 template <class T>
15 inline void g(const T *p) {cout << "g(const T *) " << *p << "\n";}
16
17 template <class T>
18 inline void h(T t) {cout << "h(T t) " <<t << "\n";}
19
20 template <>

21 inline void h<int *>(int *p) {cout << "h(int *) " << *p << "\n";}

22

PeSsao A hesenea ©2014 Mark Meretzky

670 Templates Chapter7

23 template <>
24 inline void h<const int *>(const int *p) {

25 cout << "h(constint*)" << *p <<"\n";
26}
27
28 int main()
29 {
30 int i=10;
31 int *p=&i
32
33 f(p);
34 g(p);
35 h(p);
36 return EXIT_SUCCESS;
37}
f(int *) 10 Line 33 calls thd(int *) in line 5.
o(T*) 10 Line 34 calls thg(T *) inline 12 withT - int .
h(int *) 10 Line 35 calls théa<int *>(int *) in line 21 withT - int .
How do the template functions dér from the non-template functions? If we comment out the
int* function in the abee line 5, line 33 will happily settle for theonstint * function in line 6. It
has no trouble casting ti@ * in line 33 toconstint *,

But if we comment out th& * template function in line 12, something upected happend.ine
34 will not call theg(constT ~ *) in line 15; as explained abg 15 is rot a match for 34 at all. Line 34
will call the lowest common denominatgiine 9.

Similarly, if we comment out thént * explicit specialization in line 21, line 35 will not call the

h<constint *>(constint *) in line 24. Line 35 will call the general function template in line 18.
Here is the output with 5, 12, and 21 commented out.
f(const int *) 10 Line 33 now calls line 6.
g(const T&) Oxffbff0d4 Line 34 now calls line 9 with - int *
h(T t) Oxffbff0d4 Line 35 now calls line 18 with — int *

Thet in the abwe line 18 must be passed by value to permitptken lines 21 and 24 to be passed
by value. Ifthet in 18 were passed by reference, the pointers in 21 and 24 would eéso he @mssed
by reference.For example, thep in 21 would hae © become the “read-only reference to a read/write
pointer to arint " i n the following line 42.

38 template <class T>

39 inline void h(const T& t) {cout << "h(const T&) " << t << "\n";}
40

41 template <>

42 inline void h<int *>(int *const& p) {

43 cout << "h(int *const&) " << *p << "\n";

441

45

46 template <>

47 inline void h<const int *>(const int *const& p) {

48 cout << "h(constint *const&) " << *p << "\n";
49}

What we really vant is a general template foonstT& with explicit specializations for pointers
passed byalue. W\ will be able to get this combination on pp. 779-781 when we tanplate classes as

PSS ao A hesenea ©2014 Mark Meretzky

Section 7.1.7 typenane 671

well as template functions.

7.1.7 typenane
A human nger stands so tall as when stooping to help a small computer.
—Infocom poster
Although no one does it, we could write parentheses in the following declaration.

=Y

i nt i; //declare and define i
2 i nt (i); //does same thing; parens make no difference (see footnote*)

If we didn't recognize that thmat in the abwe line 2 is the name of a data type, we might think that the
int(i) was a @ll to a function nameiht , with the argument .t

This problem can occur in a template, in the following line 24. Because of the preamble in line 17,
we knaw that T is the name of a data type. And because oktineember ofT in line 24, we kno even
more: T is a data type that is a class. But what kind of membé&rxs ? If T::x is the name of a data
type, like clinton::hillary_t in line 17 ofclinton.h on p. 420, we will do the comment in line
20. If T::x is not the name of a data type, we will do lines 21 or 22-23. As wénsihe abee line 2,
the identity of the name in front of the parentheses can spell fleeedife between a declaration and a
function call.

A similar ambiguity occurs in the following lines 28 and 32. It would seem that line 28 should be a
declaration, since it would ser\no purpose as a multiplication: the product would be discarded. But if
eitherT:ly orp were of a usedefined type, line 28 would call aperator* function which might do
work that is not discarded.

The ambiguity een prevents the computer from deciding if line 32 should compifeT::z were a
static data membgewe would perform a “bitwise and’or call anoperator& function, and eerything
will be fine. But if T::z were the name of a data type, we would try to declare a refarenca \ariable
of that type. The reference, having no initialjzegould fail to compile.

13inti=10;

14 int p = 20;

15int r = 30;

16

17 template <class T>
18 void f()

* The parentheses would neak dfference in the name of a compound data type. The simplest examples are the pairs
in lines 4-5 and 9-10.

3 i nline int func() {return 10;}
4 int * () lla function that returns a pointer to an int
5 i nt *p)() = &func; /la pointer to a function that returns an int
6
7 i nti=10,=20;
8 i ntarr[2] = {10, 20};
9 int *a [2]={& &} /lan array of two pointers to int
10 int (*g)[2] = &arr; /la pointer to an array of two int's
T Even if we did recognizent as a data type, thegressionint(i) in some contexts could still be a function call.

For example, thant(i) in the following line 12 would call the cgmonstructor for typent (pp. 661-662), with the
argument .

11 int i
12 int

10;
i nt(i); /lunnecessarily complicated way to say int j = 10;

Theint(i) in the abwoe line 2, havever, is a declaration. Whener a gatement could be a declaration or merely a func-
tion call (in this case, a constructor call that creates an anonymous temporary)w@ysttiaats it as a declaratiofor a
painful example, see pp. 854-855.

PeSsao A hesenea ©2014 Mark Meretzky

672 Templates Chapter7

19{

20
21
22
23
24
25
26
27
28
29
30
31
32

/IDeclare a | ocal variable named i of data type T::x,

/lor pass the argument i to a static member function named T::x,
/lor pass the argument i to an operator() member function of a static
//data member named T::x?

Tox (i)

/IDeclare a | ocal variable named p of data type "pointer to T::y",
/lor multiply a static data member named T::y times p?

Ty *p;

/IDeclare a | ocal variable named r of data type "reference to T::z2",
/lor "bitwise and" a static data member named T::z with r?
T:z & r;

33}

NOoO O~ WNPRE

The ambiguity is a very real problemAlthough most class members are not the name of a data type,
some of them are. The ones wevdnaeen so far are listed be&lo hillary t andbill appeared only
once, just to illustrate the syntax; the others occur quite frequdntlfact, e/ery container class in the
standard library has #vdata type members namedrator , const_iterator , value_type
size_type , anddifference_type

(1) thehillary_t member of classlinton in line 17 ofclinton.h on p. 420;

(2) thebill member of classlinton in lines 21-26 otlinton.h on p. 420;

(3) thebill member of clasgates in lines 6-13 ofjates.h on p. 421;

(4) thevalue_type member of classtack inline 3 on p. 423;

(5) the matrix t andmatrix t members of cladife inlines 4 and 7 on pp. 423-424;

(6) thedifference_type member of clasgector<int> in line 12 on p. 434;
(7) thesize_type member of classector<int> in line 12 ofiterator.C on p. 434;
(8) theiterator member of classector<int> in line 26 ofiterator.C on p. 434;
(9) theconst _iterator member of clasgector<int> in line 14 of

const_iterator.C on p. 436;

(10) themaster_t member of clasgame on p. 465;
(11) theconst _iterator member of claswabbit on p. 578.

One possible resolution: T::x is the name of a data type

To resohe the ambiguitya member ofT is assumed to be the name of a data type only when it is pre-
ceded by thedyword typename . TheT::x in the following line 14, for example, is wahe name of a
data type, and the line declaresaaiable of this type. The parentheses are unnecessary aedsigrio
confuse the issue. Buven without them, theéypename would still be necessary.

Another leyword that helps the computer understand a template iethglate on pp. 725-726.
Classobj was on p. 179-180.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/typename/resolvel.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

/ /T must be a class with public members X, y, z that are names of data types.
/ [T::x and T::z must have default constructors.

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.1.7 typenane 673

8 / /Warning: i will be uninitialized if T::x is built-in, pointer, or enumeration.
9
10 template <class T>

11 void f()

12 {

13 /IDeclare a | ocal variable named i of data type T::x.

14 typename T:x(i);

15

16 /IDeclare a | ocal variable named p of data type "pointer to T::y".
17 typename T:y *p;

18

19 /IDeclare a | ocal variable named z1 of data type T::z.

20 typename T:z z1 = typename T::z();

21

22 /IDeclare a | ocal variable named r of data type "reference to T::z".
23 typename T:z&r=1z1;

24

25 /lUse the local variables i, p, r that we just defined.

26 Cout <<&i<<""<<&p<<"" K< &r<<"\n"

27}

28

29 class myclass {

30 public:

31 typedef obj x;
32 typedef inty;

33 typedef int z;

34}

35

36 int main()

37 {

38 f<myclass>();

39 return EXIT_SUCCESS;

40}
default construct O Line 14 constructs.
Oxffbff140 Oxffbff13c Oxffbff138
destruct O Line 27 destructs.

The other resolution: T::x is not the name of a data type

Without thetypename , a member ofT is assumedot to be the name of a data typé must there-
fore be a data membanember function, or enumeratiomlue. TheT::x in the follaving line 22, for

example, is not the name of a data type. Whénthemyclass in line 33, line 22 calls the function
myclass::x

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/typename/resolve2.C

#include <iostream>
#include <cstdlib>
using namespace std;

class detectable {};
i nline void operator*(int i, detectable d) {cout << "multiply\n";}
i nline void operator&(int i, detectable d) {cout << "bitwise and\n";}

PeSs a0 A hesenea ©2014 Mark Meretzky

674 Templates Chapter7

8
9 inti=10;
10 detectable p;
11 detectable r;
12
13 //T must be a class with a static member function x, or a static data
14 //member x with an operator() member function that takes one int argument.
15 /IT must also have static data members y and z that are convertible to int.

16

17 template <class T>

18 void f()

19{

20 /IPass the argument i to a static member function named T::x, or to an

21 /loperator() member function of a static data member named T::x.

22 Tx(i);

23

24 /IMultiply a static data member named T::y times p.

25 Ty *p;

26

27 /I"Bitwise and" a static data member named T::z with r.

28 Tz & r,;

29

30 //Did not create any local variables named i, p, r.

31}

32

33 class myclass {

34 public:

35 static void x(int i) {cout << "myclass::x(" << i << ")\n";}

36 static constinty = 10;

37 static const int z = 20;

38}

39

40 int main()

41 {

42 f<myclass>();

43 return EXIT_SUCCESS;

44}
myclass::x(10) Line 22 callanyclass::x in line 35.
multiply Line 25 callsoperator* in line 6.
bitwise and Line 28 callsoperator inline 7.

The leyword typename , used in this sense, is needed only within a templée saw its other use
back on p. 636.) Another member neediyigename will be thevector<T>::const_iterator in
line 15 ofset.h on p. 697 and line 60 afrapper.h on p. 704.

A realistic example of typename

The functionprint in line 13 takes aector list, or other containgand prints each elemento tell
line 15 thatCONTAINER::const_iterator is the name of a data type, we witigpename in front
of it. Other data type members are in lines 18, 22 and 25.

A member that is not the name of a data type ICBBITAINER::size in line 23; we write no
typename in front of it. size is a public member function-or simplicity | would have preferred a data

membey but the standard library containersvhaone that are public, and rightly so. Line 23 takes the

address of this member function; line 22 stores the address into a poaxgurisitely engineered for this

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.1.7 typenane 675

purpose. Itis a pointer to a&onst member function of clas€ONTAINER taking no arguments and
returning aCONTAINER::size_type . Line 25 calls the member function indicatedfyybelonging to
the object.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/typename/typename.C

#include <iostream>
#include <cstdlib>
#include <vector>
#include <list>
#include "date.h"
using namespace std;

/ IPrint the elements of CONTAINER c.

/ ICONTAINER must have the members const_iterator, begin, and end.
10 /[The elements must be puttable.

11

12 template <class CONTAINER>

13 void print(const CONTAINER& c)

O©CoOoO~NOOOUTA, WNPE

14 {

15 for (typename CONTAINER::const_iterator it = c.begin();
16 it !=c.end(); ++it) {

17

18 const typename CONTAINER::value_type x = *it;
19 cout <<x<<"\n"

20 }

21

22 typename CONTAINER::size_type (CONTAINER::*p)() const =
23 &CONTAINER::size;

24

25 typename CONTAINER::size_type s = (c.*p)();

26 cout << "The container has " << s << " elements.\n\n";
27}

28

29 int main()

30 {

31 const intaf] = {10, 20, 30};

32 const size_t n = sizeof a/ sizeof a[0];

33 list<int> li(a, a + n);

34 print(li);

35

36 const dated[] ={

37 date(date::july, 4,1776),

38 date(date::october, 29, 1929),

39 date(date::december, 7,1941),

40 date(date::july, 20, 1969),

41 date(date::september, 11, 2001)

42 3

43 const size_t dn = sizeof d / sizeof d[0];

44 vector<date> v(d, d + dn);

45 print(v);

46

47 return EXIT_SUCCESS;

48}

PeSsao A hesenea ©2014 Mark Meretzky

676 Templates Chapter7

The abee lines 18-19 may be combined to
cout << *it<<"\n";
The abee lines 22-25 may be combined to

typename CONTAINER::size_type s = c.size();

10 Line 34 printdi
20

30

The container has 3 elements.

71411776 Line 45 printsv.
10/29/1929

12/7/1941

7/20/1969

9/11/2001

The container has 5 elements.

With notypename in the abwee line 15, the program will not compile. The error messageste-
ally get to the point.

typename.C: In function 'void print(const CONTAINER&):

typename.C:15:7: error: need 'typename’ before 'CONTAINER::
const_iterator’ because 'CONTAINER'’ is a dependent scope
typename.C:15:33: error: expected ’;’ before 'it’

typename.C:16:3: error: 'it’ was not declared in this scope

typename.C: In function 'void print(const CONTAINER&) [with CONTAINER =
std::list<int>]";

typename.C:34:10: instantiated from here

typename.C:15:47: error: dependent-name 'CONTAINER:: const_iterator’ is
parsed as a non-type, but instantiation yields a type

Theprint function in line 13 otypename.C on still has tw limitations.
(1) Itwas hardwired to print eery element of the containe¥e mght want to print only some of them.

(2) Thefunction argument oprint had to be an object of a class satisfying the requirements in the
above line 9. For example, the array in line 31 could notveaeen passed forint

These problems will be solved on pp. 757-760 when the functipnmants ofprint become a pair of
iterators.

v Homework 7.1.7a: consolidate the repetition with a template function

We illustrated a‘thunk” on pp. 547-548.The main.C file there contained three identical chunks
of code difering only by a data type (lines 10-19, 22-31, 34-42 had to write the same chunkes
and wer because until ne we had no way of passing a data type to a function.

Consolidate the repetion with the fallmg template function. This will also demonstrateywine
gave eachlayout class a first name and last narfegh(er::layout) rather than a compoundend
name father_layout).

There will be tvo complications:

(1) Lines 10 and 11 will need theyword typename to tell the computer thak::layout is the
name of a data type.

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.1.8

Export a template definition 677

(2) For the time being, you will ka © pass the name of the data type as the functignnaent
namein line 8. We will eliminate this on p. 1017 when weveaRuntime Type Identification.

1/7*
2 T nust be father or a class derived therefrom.
3

T nust also have a data

t ype member layout containing a pointer v to a structure containing a
4 pointer f to a function taking a pointer to T and returning void.

*/

t emplate <class T>

void print(const char *name, const T *p)
9 {

10 const typename T:layout& flay =

11 reinterpret_cast<const

13 /letc.

14 p->f();

15 flay.ptr_to_vtbl->ptr_to_f(p);
16 /letc.

17}

18

19 int main()

20{

typename T::layout &>(*p);

/Now-level way to do the same thing

21
22
23
24
25
26

father

fath(10);

print<father>("father",

derived

d(20, 30, 40);

print<derived>("derived",
print<father>("father",

&fath);

&d);
&d);

27
28 return
29}

A

EXIT_SUCCESS;

7.1.8 Exporta template definition

Can a template function (or template class) be declared in a header file and defirgdiia?a We

attempt to do so with theeword export

—On the Web at
http://i5.nyu.edu/

#ifndef FH
#define FH

export template <class T>
void f(const T& t);
#endif

/ldeclaration

OO, WN P

—On the Web at
http://i5.nyu.edu/

#include <iostream>
#include "f.h"
using namespace std;

A WN PP

printed 4/8/14
8:58:39 AM

in line 4.

COmmé64/book/src/export/f.h

COmmé64/book/src/export/f.C

hesenea ©2014 Mark Meretzky

0o ~NO O

O©CoOoO~NOOOUTA, WNPE

678 Templates Chapter7

t emplate <class T>
void f(const T& t) { //definition
cout << "f<T>(" <<t << ")\n";

}

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/export/main.C

#include <cstdlib>
#include "f.h"
using namespace std;

i nt main()

{
f (10);
r eturn EXIT_SUCCESS;

The GNUg++ compiler says

In file included from main.C:2:0:
In file included from f.C:2:0:
f.h:4:1: warning: keyword 'export’ not implemented, and will be ignored

Undefined first referenced
symbol in file
void f<int>(int const&) Ivaritmp//ccGDaWEz.o

Id: fatal: symbol referencing errors. No output written to /dev/null
collect2: Id returned 1 exit status

The SunCCcompiler says

main.C:
f<T>(10)

7.1.9 Point of definition vs. point of instantiation

The following lines 7-12 define a template function These lines are th@oint of definitionfor the
template.

Line 18 calls the template function, pasting an instantiation of it into the program apeorhef
instantiation. Where is the point of instantiation, and does it mattariz 18 is inside thenain function.
According to the C++ Standard (814.6.4.1, 1), the point of instantiation should therefore be at line 21,
immediately after the definition ofiain .

Armed with this terminologywe @an introduce more terminologyrhe nameprint in line 10 is
independenbecause its binding—the choice of which function the name refers to—has nothing to do with
which data type th& stands far An independent name is bound at the point of definition for the template.
At this point, lines 7-12, the computer has seen onlytim(double) in line 5, not the other
print ’'sin 14 aad 22. The namerint in line 10 is bound to the functigrint(double) in line 5,
and the A’ is corverted to adouble . (For binding a name to a function, see p. 666.)

The namerrint in line 11 isdependenbecause its binding does depend on which data type the
stands far A dependent name is bound at the point of instantiation for the template, which should be line

21. Atthis point, the computer has seen fhmt(double) in 5 and theprint(int) in 14. The
nameprint in line 11 is therefore bound to the functiprnnt(int) , since this is the best match for
thet .

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classst ack 679

—On the Web at

http://i5.nyu.edu/ Omme64/book/src/instantiation/main.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nline void print(double d) {cout << fixed << d << "\n";}
6
7 t emplate <class T>
8 void f(const T& t)
9 {
10 print(CA"); /[This print is bound at f's point of definition.
11 print(t); /[This print is bound at f's point of instantiation.
12}
13
14 inline void print(int i) {cout << i << "\n";}
15
16 int main()
174
18 fCAY);
19 return EXIT_SUCCESS;
20}
21

22 inline void print(char c) {cout << ™" << ¢ << "\n";}

The correct output is

65.000000 Line 10 calls line 5 (assume ASCII).
65 Line 11 calls line 14.

The GNUg++ compiler incorrectly placed the point of instantiation at the end of the program, after
line 22.

65.000000 Line 10 calls line 5.
65.000000 Line 11 calls line 22.

The Sun CC compiler version 5.11 options and the Microsoft Optimizing Compilersion
16.00.21003.01 areven farther from the Standard.

‘A’ Line 10 calls line 22.
‘A’ Line 11 calls line 22.

The moral is: do not scatter the declarations ofptfire functions all around the progran®lace
them together.

7.2 Template Classes

We dten find ourselves writing the same clasgesd times, plugging in a different data type each
time. Containeclasses are the classikaenples: asector of int ’s will be almost identical to gector
of objects. We @an define the class once and for all as a “template class”.

PeSsao A hesenea ©2014 Mark Meretzky

680 Templates Chapter7

7.2.1 ASimple Example: classt ack

A template class

Our classstack , seen first on pp. 149-154 and most recently on 503-585,hardwired to store
and retrige anly int 's. Here it is agin, renamedtack_int . We provide one of gerything you wuld

want to see: a data type member (line 7), data members both static and non-static (lines 9 and 10), member

functions both inline and non-inline (lines 13 and 14), a friend function (line 19), and a function that is nei-
ther a member nor a friend (line 22). Tein line 23 calls th@perator== in line 19.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/stack_template/stack_int.h

#ifndef STACK_INTH
#define STACK_INTH
#include <cstddef> [[for size_t

class stack_int {
public:
t ypedef int value_type;
private:
static const size_t max_size = 100;
10 value_type a[max_size];
11 size t n; //stack pointer: subscript of next free element
12 public:
13 stack_int(): n(0) {}
14 “stack_int();
15
16 void push(value_type i);
17 value_type pop();
18
19 friend bool operator==(const stack_int& s1, const stack_int& s2);
20}
21
22 inline bool operator!=(const stack_int& s1, const stack_int& s2) {
23 return I(s1 ==s2); [Ireturn loperator==(s1, s2);
241}
25 #endif

O©CoOoO~NOOOUTA,WNPE

Thevalue_type in the following line 15 does not need the last nataek_int , but the one in
line 28 does. See pp. 422-423.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/stack_template/stack_int.C

#include <iostream>
#include <cstdlib>
#include "stack_int.h"
using namespace std;

stack_int::"stack_int()
{
if(n!=0) {
cerr << "Warning: stack still contains " << n << " value(s).\n";

©CoOo~NOOOUTA, WN P

10 }

13 //Push a value onto the stack.

PSs a0 A hesenea ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classst ack 681

14

15 void stack_int::push(value_type i)

16 {

17 if (n==max_size){ /loverflow
18 cerr << "Can't push when size " << n << " == capacity "
19 << max_size << ".\n";

20 exit(EXIT_FAILURE);

21 }

22

23 a[n++] =i;

24}

25

26 //Pop a value off the stack.

27

28 stack_int::value_type stack_int::pop()

29 {

30 if (n==0){ /lunderflow
31 cerr << "Can't pop when size " << n << " ==0.\n"
32 exit(EXIT_FAILURE);

33 }

34

35 return al--nj;

36}

37

38 bool operator==(const stack_int& s1, const stack_int& s2)
39 {

40 if (sl.n!=s2.n){

41 return false;

42 }

43

44 for (size_ti=0;i<sl.n;++i){

45 if (sl.afi] '=s2.a[i]) {

46 return false;

47 }

48 }

49

50 return true;

51}

Here is the class renamed and modified to store andveatioeble 's. Note that the data members
max_size andn remainsize t ’s.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/stack_template/stack_double.h

#ifndef STACK_DOUBLEH
#define STACK_DOUBLEH
#include <cstddef> [[for size_t

class stack_double {
public:
t ypedef double value_type;
private:
static const size_t max_size = 100;
value_type a[max_size];
size t n; //stack pointer: subscript of next free element

PO OWoOoO~NOOUODWNLPE

B

PeSsao A hesenea ©2014 Mark Meretzky

682 Templates Chapter7

12 public:

13 stack_double(): n(0) {}
14 “stack_double();

15

16 void push(value_type d);
17 value_type pop();

18
19 friend bool operator==(const stack_double& s1, const stack_double& s2);
20}
21
22 inline bool operator!=(const stack_double& s1, const stack_double& s2) {
23 return I(s1 ==s2);
241}
25 #endif
—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/stack_template/stack_double.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "stack double.h"
4 using namespace std,;
5
6 stack_double::"stack_double()
7
8 if(n!=0 {
9 cerr << "Warning: stack still contains " << n << " value(s).\n";
10 }
11}
12
13 //Push a value onto the stack.
14
15 void stack_double::push(value_type d)
16 {
17 if (n==max_size){ /loverflow
18 cerr << "Can't push when size " << n << " == capacity "
19 << max_size << ".\n";
20 exit(EXIT_FAILURE);
21 }
22
23 a[n++] = d;
24}
25
26 //Pop a value off the stack.
27
28 stack_double::value_type stack_double::pop()
29{
30 if (n==0){ /lunderflow
31 cerr << "Can't pop when size " << n << " ==0.\n"
32 exit(EXIT_FAILURE);
33 }
34
35 return al--nj;
36}
37

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classst ack 683

38 bool operator==(const stack_double& s1, const stack_double& s2)
39 {

40 if (sl.n!=s2.n){

41 return false;

42 }

43

44 for (size_ti=0;i<sl.n;++i){
45 if (sl.afi] '=s2.a[i]) {

46 return false;

47 }

48 }

49

50 return true;

51}

The stacks cannot be consolidated with inheritance.

Can we consolidate the almtwo dasses by deriving them from a common base class. But we can
do this only if the functions constituting a virtual function agree in the data types of their arguments and
return values.

1 / /will not compile

2
3 class stack {
4 public:
5 t ypedef ??7? value_type; //What data type would go here?
6
7 virtual “stack();
8 virtual void push(value_type v);
9 virtual value_type pop();
10}
11
12 class stack_int: public stack {
13 public:
14 typedef int value_type;
15
16 void push(value_type i);
17 value_type pop();
18}
19
20 class stack_double: public stack {
21 public:
22 typedef double value_type;
23

24 void push(value_type d);
25 value_type pop();
26},

Consolidate the repetition with a class template

To consolidate the alve dasses, we can define ttemplate classn the following line 14.The
standard library already has a template cdask (pp. 155-157), but we will write our own.

For a ron-template class, the class itself can be defined in a header file but the static data members
and non-inline member functions must be defined in the correspor@ifite. For a template class, the
class definition and all of its member definitions can go in the header file. As on p. 639, this is the only

PeSsao A hesenea ©2014 Mark Meretzky

684 Templates Chapter7

portable way to mention the class in more than.@Gnéile of a program.The template clasgector , for
example, the flagship class of the C++ Standard Libisugefined in the header filevector>

Once again, we provide one aofegything you would want to see: a data type member (line 16), data
members both static and non-static (lines 18 and 20), static data members initialized both inside and outside
the class definition (lines 18 and 19), member functions both inline and non-inline (lines 23 and 24), a
friend function (line 29), and a function that is neither a member nor a friend (line 87).

The class definition begins with the template preamble in lineAl®ember definition written out-
side the class definition requires the same preantldeexample, the member functigrush in line 46
and the static data membein line 33 h&e the preambles in 45 and 32 respestyi. But a declaration or
definition inside the class definition must not\Vea opy of the class preamblef-or example, the con-
structor in 23 and the destructor in 24/é& a0 preambles of their own.

We @n saystack instead ofstack<T> within the { curly brace} of the class definition in lines
14-30. The<T> after eacltstack in lines 23, 24, and 29 is therefore unnecesséfy can also say
stack instead oltack<T> within the definition of a membgirom the double colon (line 36) to the end
of the definition (line 41). The lastT> in lines 36 and 33 are therefore unnecessBuyt everywhere else,
the<T> in stack<T> is required.For example, the firskT> in lines 36 and 33 will hae © remain. So

will the <T>’s in lines 71 and 87, becausperator== andoperator!= are not members of class
stack<T> .

We ould hae witten value_type in place of the lastT in line 46, and
stack<T>:value_type in place of the firsT in line 60. ButT is more concise.

A friend of a template class

The first<T> in line 29 shows thaiperator== is a template function. (ThEis optional, but the
<angle brackets must be written.)For each data typd&, operator==<T> will be a friend of the cer
responding classtack<T> . Thusoperator==<int> will be a friend ofstack<int> ;
operator==<double> will be a friend ofstack<double> . This correspondence is calledae-to-
one friendship; for others, see pp. 729-734.

A <T> can be applied to the name of a function only if the functiaa previously declared to be a
template function.We nust therefore write the template declaration in line 11 before the friend declaration
in line 29. Unfortunatelyline 11 can be only a declaration, not the definitionpfmrator== . The def-
inition for operator==" mentions some of the members of clsisgk (e.g., then in line 73), so it must
come after the definition for clastack .

A <T> can be applied to the name of a class only if the class was previously declared to be a tem-
plate class.We nust therefore write the template declaration in line 8 before mentistacf in line 11.
For other examples of forward declarations, see pp. 465-466.

Template class vs. class template

As on pp. 664-665, elass templatds a template that maradtures instantiations of a classhe
following lines 13-30 are a class template; lines 35-41 are a function template. Lines 32-33 must be a
static data member template.

The set of all possible instantiations of a class templatécimplate classA template class is not a
data type. Itis an indefinitely large set of data typeck<int> |, stack<double> | etc.

Our template classtack is a set of classes thatféif only in the data type plugged into thekve
were therefore able to instantiate the template class from a single class te@plge. 702-707 we will
see a set of classes that differ in othaysv W\ will have b instantiate this template class from more than
one class template. The extra templates will be called “pasdiadf “explicit’” specializations.

The double colons in lines 71 and 87 ensure that we're talking abostiattie that belongs to no
namespace, natd::stack . They are needed in case the headers in lines 3 and 4 include the standard
library headekstack> .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stack_template/stack.h

PSsao A hesenea ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classst ack 685

#ifndef STACKH

#define STACKH

#include <iostream> //iostream includes cstddef, which defines size t
#include <cstdlib>

using namespace std;

t emplate <class T>
class stack; /fforward declaration for a template class

©CoOo~NOOOUTA,WNPE

10 template <class T>

11 bool operator==(const stack<T>& s1, const stack<T>& s2);
12

13 template <class T>

14 class stack {

15 public:

16 typedef T value_type;

17 private:

18 static const size_t max_size = 100;

19 static size tx; /ljust to demonstrate the syntax

20 T a[max_size];

21 size t n; [Istack pointer: subscript of next free element
22 public:

23 stack<T>(): n(0) {}

24 “stack<T>();

25

26 void push(const T& t);

27 T& pop();

28

29 friend bool operator==<T>(const stack<T>& s1, const stack<T>& s2);
30}

31

32 template <class T>

33 size_t stack<T>::x = sizeof (stack<T>); //definition of static data member
34

35 template <class T>

36 stack<T>::"stack<T>()

374

38 if (n!'=0){

39 cerr << "Warning: stack still contains " << n << " value(s).\n";
40 }

41}

42

43 //Push a value onto the stack.

44

45 template <class T>

46 void stack<T>::push(const T& t)

474

48 if (n==max_size){ /loverflow

49 cerr << "Can't push when size " << n << " == capacity "
50 << max_size << ".\n";

51 exit(EXIT_FAILURE);

52 }

53

54 a[n++] =t;

PSsao A hesenea ©2014 Mark Meretzky

686 Templates Chapter7

55}

56

57 /IPop a value off the stack.

58

59 template <class T>

60 T& stack<T>::pop()

61 {

62 if (n==0){ /lunderflow
63 cerr << "Can't pop when size " << n << " ==0.\n"
64 exit(EXIT_FAILURE);

65 }

66

67 return al--nj;

68 }

69

70 template <class T>

71 bool operator==(const ::stack<T>& s1, const ::stack<T>& s2)
72 {

73 if (sl.n!=s2.n){

74 return false;

75 }

76

77 for (size_ti=0;i<sl.n;++i){

78 if (sl.afi] '=s2.a[i]) {

79 return false;

80 }

81 }

82

83 return true;

84}

85

86 template <class T>

87 inline bool operator!=(const ::stack<T>& s1, const ::stack<T>& s2) {

88 return I(s1 ==s2);
89}
90 #endif

Create new data types

An instantiation of a template function usually requires no explicit template argument; the computer
can deducd from the function ayjuments. Butan instantiation of a template classvals requires an
explicit template argument; examples are in the following lines 9, 16, and 23. Note that the data types
stack<double> in 9 andstack<date> in 23 are not devied from a common base class and are not
friends of each other.

We @n nav create man stack types with only one template class definition. The soli@®ax this
diagram represent data types; the dashed box represents a template class. The dashed lines in this diagram
represent instantiation. The solid lines mean “gets plugged intoahgle brackets of"".

For the possibility of templates other than function templates and class templates, see pp. 706-707.

PeSs a0 A hesenea ©2014 Mark Meretzky

Section 7.2.1

A Simple Example: classst ack 687

date

r-———=—-=-=-=-=-= -
double | stack |
|

stack<double> stack<date>

Lines 25-26 construct an object with a declaration and then insert it into a conBuhen object
mentioned only once should be an anonymous tempaileeythedate in line 28.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stack_template/main.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "stack.h"

4 #include "date.h"

5 using namespace std,;

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40}

i
{

nt main()
. :stack<double> s1;
sl.push(2.71); /le
sl.push(3.14); Ipi

cout << sl.pop() <<"\n";
cout << sl.pop() <<"™\n\n";

::stack<double> s2 =sl; /[copy constructor
if (s1==s2){ /lif (operator==(s1, s2)) {
cout << "They are equal.\n";

}

cout <<"\n";
::stack<date> s3;

date independence_day(date::july, 4, 1776);
s3.push(independence_day);

s3.push(date(date::october, 29, 1929));
s3.push(date(date::december, 7, 1941));
s3.push(date(date::july, 20, 1969));
s3.push(date(date::september, 11, 2001));

cout << s3.pop() <<"\n";
cout << s3.pop() <<"\n";
cout << s3.pop() <<"\n";
cout << s3.pop() <<"\n";
cout << s3.pop() <<"\n";

return EXIT_SUCCESS;

printed 4/8/14
8:58:39 AM

hesenea ©2014 Mark Meretzky

41
42

13
14

15
16
17

688 Templates Chapter7

3.14
271

They are equal.

9/11/2001
7/20/1969
12/7/1941
10/29/1929
71411776

Warning: the abwe lines 13-14 cannot be combined to the following.

cout << sl.pop() <<"\n"
<< sl.pop() << "\n\n";

Had we done this, we could still predict that g operators will be xecuted from left to right. But we
could not predict which call tpop would be &ecuted first: neither of the dashed boxes contains the. other
See pp. 14-16.

<<i|{sl|. (pop |l i|<<|"™\n\n

cout < 1[[s1]. pop || 1|<<|™n
|

Hide the name of an instantiation of a template class

If you have a nother-in-lav with only one eye and she has it in the center of her
forehead, you dohkeep her in the living room.

—Lyndon Baines Johnson, quoted in David Halberstdin&s Best and the Brighteghapter 19

If you are uncomfortable with theangle brackts> in the abwe line 9, you can hide them in a type-
def.

#include "stack.h"
#include "date.h"

/ [From now on, stack_double_t means ::stack<double>.
t ypedef ::stack<double> stack_double_t;

stack _double_tsl; //means ::stack<double> s1;

/ [from now on, stack_date_t means stack<date>
typedef ::stack<date> stack date t;

stack_date t s2;

Many common data types are actually typedefs for an instantiation of a templateVdlabavebeen
using them without suspecting their true nature. Their full names will often appear in error messages.

/[Excerpt from <string>.
typedef basic_string<char> string;

/[Excerpts from <iostream>.
typedef basic_istream<char> istream; /le.g., cin
typedef basic_ostream<char> ostream; /le.g., cout, cerr, clog

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classst ack 689

18 /[Excerpts from <fstream> for file i/o.
19 typedef basic_ifstream<char> ifstream;
20 typedef basic_ofstream<char> ofstream;
21 typedef basic_fstream<char> fstream;

The same header files contain a parallel series of typedefs for wide characters.

22 typedef basic_string<wchar_t> wstring;

23 typedef basic_istream<wchar_t> wistream; /le.g., wcin

24 typedef basic_ostream<wchar_t> wostream; /le.g., wcout, wcerr, wclog
25 typedef basic_ifstream<wchar_t> wifstream;

26 typedef basic_ofstream<wchar_t> wofstream;

27 typedef basic_fstream<wchar_t> wfstream;

Default value for a template argument

Let's make the T default to the data typmt in the abwe emplate classtack . Change the pre-
amble in line 13 oftack.h on p. 685 to the follwing. Donot change anof the other preambles.

1 t emplate <class T = int>

We @n nav create a stack aht ’s as follows. Notethat the<angle brackts> in line 4 are still

required.
2 #include "stack.h"
3
4 : :stack<> s1; /la stack of int's
5 : :stack<int> s2; /lanother stack of int's
6 . :stack<double> s3; /la stack of double’s
7 / I::stack s4; /lwon’t compile

Only a template class, not a template function, cam @akfault value for a template argument.

Nested instantiations need whitespace.

Instantiations can be nested. In othards, the name of an instantiation of a template class can be
plugged into the<angle brackts> of another templateWhen we do this, we mustvedys separate the
closing>’s with whitespace Whitespace is alays needed betweenyoonsecutie bkens that would oth-
erwise look lilke ane big tolen. See. 101.

The other template will usually be a template class:

1 #include <vector>
2 #include <list>
3 #include <string>
4 #include <complex> //for class complex, p. 210
5 using namespace std;
6
7 complex<double> c; /la complex number
8 v ector<complex<double> > v; /la vector of complex numbers
9 v ector<list<string> > hs(100); /la hash table of strings
10 vector<list<complex<double> > > hc(100); //a hash table of complex numbers

But the other template could also be a template function, such stegheon pp. 655-658. On my
platform, avector begins with a pointer to the first elemer®n every platform, the remaining elements
are stored consecudly.

PSsao A hesenea ©2014 Mark Meretzky

690 Templates Chapter7

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/stack_template/nest.C

#include <iostream>
#include <cstdlib>
#include <vector>
#include <complex>
#include "step.h"
using namespace std;

i nt main()
{
complex<double> af] ={
complex<double>(10, 20),
complex<double>(30, 40),
complex<double>(50, 60),
¥
const size_t n = sizeof a/ sizeof a[90];
vector<complex<double> > v(a,a+n);

const void *p = stand<const complex<double> *>(&v);

NRPRRRRRERRRRE
QOO ~NOUDWNROOON®UANWNPR

step<complex<double> >(p); /lelement 0
step<complex<double> >(p); /lelement 1
21 step<complex<double> >(p); /lelement 2
22 return EXIT_SUCCESS;
23}

Oxffbffof4: 0x22d68
0x22d68: (10,20)
0x22d78: (30,40)
0x22d88: (50,60)

7.2.2 ConstanfTemplate Arguments

We @an plug ay data type into the template clastack , but the maximum number of elements is
still hardwired to 100.We will now parameterize this number withlcanstant template gument.

A constant template argument must be integral (p. 61), a poimtan éaumeration, not aouble
or an object.For example, the constant templatgamentMAX_SIZEin line 13 is asize_t , which is a
typedef forunsigned or unsignedlong . We @an gve it a default value (100) becausgack is a
template class, not a template function.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/const_arg/stack.h

1 #ifndef STACKH

2 #define STACKH

3 #include <iostream> /liostream includes cstddef, which defines size_t
#include <cstdlib>

using namespace std;

N

5
6
7 t emplate <class T, size_t MAX_SIZE>
8 class stack;

9
10 template <class T, size_t MAX_SIZE>

11 bool operator==(const stack<T, MAX_SIZE>& s1, const stack<T, MAX_SIZE>& s2);

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.2 Constant Template Aguments 691

12
13 template <class T, size_t MAX_SIZE = 100> //Don’t write the = 100 anywhere else.
14 class stack {

15 public:

16 typedef T value_type;

17 private:

18 T a[MAX_SIZE];

19 size t n; //stack pointer: subscript of next free element
20 public:

21 stack(): n(0) {}

22 “stack();

23

24 void push(const T& t);

25 T& pop();

26

27 friend bool operator==<T, MAX_SIZE>(const stack& s1, const stack& s2);
28}

29

30 template <class T, size_t MAX_SIZE>

31 stack<T, MAX_SIZE>:"stack()

32{

33 if (n!'=0){

34 cerr << "Warning: stack still contains " << n << " value(s).\n";
35 }

36}

37

38 //Push a value onto the stack.

39

40 template <class T, size_t MAX_SIZE>

41 void stack<T, MAX_SIZE>::push(const T& t)

42

43 if (n==MAX_SIZE){ /loverflow
44 cerr << "Can't push when size " << n << " == capacity "
45 << MAX_SIZE << "\n";
46 exit(EXIT_FAILURE);

47 }

48

49 a[n++] =t;

50}

51

52 //Pop a value off the stack.

53

54 template <class T, size_t MAX_SIZE>

55 T& stack<T, MAX_SIZE>::pop()

56 {

57 if (n==0){ /lunderflow
58 cerr << "Can't pop when size " << n << " <=0.\n"
59 exit(EXIT_FAILURE);

60 }

61

62 return al--nj;

63}

64

65 template <class T, size_t MAX_SIZE>

PSsao A hesenea ©2014 Mark Meretzky

692 Templates Chapter7

66 bool operator==(const ::stack<T, MAX_SIZE>& s1, const ::stack<T, MAX_SIZE>& s2)
67 {

68 if (sl.n!=s2.n){

69 return false;

70 }

71

72 for (size_ti=0;i<sl.n;++i){

73 if (sl.afi] '=s2.a[i]) {

74 return false;

75 }

76 }

77

78 return true;

79}

80

81 template <class T, size_t MAX_SIZE>

82 inline bool operator!=(const ::stack<T, MAX_SIZE>& s1,

83 const :stack<T, MAX_ SIZE>& s2) {
84 return I(s1 ==s2);

85}

86 #endif

The value of a constant templatg@amnent must be a constant expression (p. 234), raigble. An
example is thel00 in line 9.

—On the Web at

http://i5.nyu.edu/ Cmm64/book/src/const_arg/main.C

1 #include <iostream>

2 #include <cstdlib>

3 #include "stack.h"

4 #include "date.h"

5 using namespace std;

6

7 i nt main()

8 {

9 . :stack<double, 100> s1; /lcould also say 50 + 50
10 ::stack<double> s2; /lsame data type: 100 is the default
11
12 sl.push(2.71); /le
13 sl.push(3.14); /pi
14
15 cout << sl.pop() <<"\n";

16 cout << sl.pop() <<"\n\n";

17

18 .:stack<date, 4> s3;

19

20 s3.push(date(date::july, 4, 1776));
21 s3.push(date(date::october, 29, 1929));
22 s3.push(date(date::december, 7, 1941));
23 s3.push(date(date::july, 20, 1969));
24 s3.push(date(date::september, 11, 2001)); /Iwill overflow the stack
25

26 cout << s3.pop() <<"\n";

27 cout << s3.pop() <<"\n";

28 cout << s3.pop() <<"\n";

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.2 Constant Template Aguments 693

29 cout << s3.pop() <<"\n";
30 cout << s3.pop() <<"\n";
31
32 return EXIT_SUCCESS;
33}
3.14
271
Can’t push when size 4 == capacity 4. caused by line 24 @hain.C

Recognize the angle brackets
The default value of a constant template argument could be an expression.

t emplate <class T, size_t MAX_SIZE =10 + 20>
2 class stack {

=Y

But an expression containing theperator must be enclosed in parentheses.

3 t emplate <class T, bool B = (10 > 20)>
4 class stack {

For a real-world example, see p. 710\ similar use of parentheses is to enclose a comma operator in a
function argument; see p. 264.

v Homework 7.2.2a: let the dimensions of the game of life be constant template arguments

We @n give dmensions to an arrayWith constant template arguments, we can alge dinensions
to a class. Change cld#fe from

1 class life {

2 static const size_t xmax = 10;

3 static const size_t ymax = 10;

4 t ypedef bool _matrix_t[ymax + 2][xmax + 2]; //array needs height first

5 __matrix_t matrix;

6 public:

7 t ypedef bool matrix_t[ymax][xmax];

to

8 t emplate <size_t XMAX =10, size_t YMAX = 10> /lusers expect width first

9 class life {
10 typedef bool _matrix_t[YMAX + 2][XMAX + 2]; /larray needs height first
11 public:

12 typedef bool matrix_t[YMAX][XMAX];

We @n then construct games as follows.

13 life<10, 20> gl = argument for constructor / 110 x 20 (width % height)
14 life<30> g2 = argument for constructor / 130 x 10
15 life<> g3 = argument for constructor / /10 x 10

A

v Homework 7.2.2b:
Version 4.0 of the Rabbit Game: create the four rank classes with one template

The ranks in the food chain are represented by four classes, introduced on pp. 564-565 and last mod-
ified on p. 582.

PeSsao A hesenea ©2014 Mark Meretzky

694 Templates Chapter7

inert
victim
predator
halogen

They are identical except for theuds of hunger and bitterness in lines 7-8.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/private/inert.h

#ifndef INERTH

#define INERTH

#include <climits> /lfor INT_MIN and INT_MAX
#include "wabbit.h"

class inert: private virtual wabbit {
i nt hungry() const {return INT_MIN;}
i nt bitter() const {return INT_MAX;}
public:
10 inert(game *initial_g, unsigned initial_x, unsigned initial_y,
11 char initial_c)
12 :wabbit(initial_g, initial_x, initial_y, initial_c) {}
13}
14 #endif

©CoOoO~NOOOUOTA,WNPE

Remaore the four classesnert , victim , predator , and halogen , and their header files.
Replace them with the template class in the following line 7. Then reinstate atesses victim
predator , and halogen as the typedefs in 16—2@lassboulder , for example, will nav be cerived
fromimmobile andinert_t , and the constructor fdsoulder will call the constructors for
immobile andinert_t

In place of the macrtNT_MIN in line 18, | would rather call the function
numeric_limits<int>::min() on pp. 745-747. But a templategament must be a constant
expression (p. 234), not the return value of a function.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/rank.h

#ifndef RANKH
#define RANKH
#include <climits>
#include "wabbit.h"

t emplate <int HUNGRY, int BITTER>
class rank: private virtual wabbit {
i nt hungry() const {return HUNGRY}
i nt bitter() const {return BITTER;}

©CoOo~NOOOUTA, WNPE

10 public:

11 rank(game *initial_g, unsigned initial_x, unsigned initial_y,
12 char initial_c)

13 : wabbit(initial_g, initial_x, initial_y, initial_c) {}
14}

15

16 //Convenient names for the rank classes:

17

18 typedef rank<INT_MIN, INT_MAX> inert_t;

19 typedef rank<INT_MIN, INT_MIN> victim_t;

20 /letc.

PSsao A hesenea ©2014 Mark Meretzky

Section 7.2.2 Constant Template Aguments 695

21 #endif

A

v Homework 7.2.2c:
Version 4.1 of the Rabbit Game: create the sixteen grandchild classes with one template

The \arious species of animalbqulder , rabbit , wolf , etc.) becameyrandchildren of class
wabbit on pp. 565-566, and were last modified on p. 5B2ey are identical except for the names of the
two base classes and the value ofc¢har literal.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/private/boulder.h

1 #ifndef BOULDERH
2 #define BOULDERH
3 #include "immobile.h"
4 #include "rank.h"
5
6 class boulder: private immobile, private inert_t {
7 public:
8 boulder(game *initial_g, unsigned initial_x, unsigned initial_y)
9 wabbit(initial_g, initial_x, initial_y, 'b’),
10 immobile(initial_g, initial_x, initial_y, 'b"),
11 inert_t (initial_g, initial_x, initial_y, 'b")
12 {
13}
14 #endif
Remore dassedoulder |, rabbit , wolf , etc., and their header filefReplace them with the tem-
plate class in the following line 8.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/grandchild.h
1 #ifndef GRANDCHILDH
2 #define GRANDCHILDH
3
4 / IMOTION must have member functions decide and (optionally) punish;
5 / /RANK must have member functions hungry and bitter.
6
7 t emplate <class MOTION, class RANK, char C>
8 class grandchild: private MOTION, private RANK {
9 public:
10 grandchild(game *initial_g, unsigned initial_x, unsigned initial_y)
11 wabbit(initial_g, initial_x, initial_y, C),
12 MOTION(initial_g, initial_x, initial_y, C),
13 RANK(initial_g, initial_x, initial_y, C)
14 {3
15}
16 #endif
Reinstate classémulder ,rabbit , wolf , etc., as the instantiations of clag@ndchild in the
following lines 14, 18, etc.
1 / /Excerpt from game.C.
2
3 / IThe header files for the four styles of motion.
4 #include "manual.h”

PeSsao A hesenea ©2014 Mark Meretzky

696 Templates Chapter7

5 #include "brownian.h"
6 / letc.

7

8 #include "rank.h"

9 #include "grandchild.h"

10
11 //Excerpt from game::game
12
13 case ’'b: //boulder
14 new grandchild<immobile, inert_t, 'b’>(this, X, y);
15 break;
16
17 case 'r': [lrabbit
18 new grandchild<brownian, victim_t, 'r'>(this, X, y);
19 break;
Or male the code self-documenting by hiding each data type in a typedef:

20 case b
21 typedef grandchild<immobile, inert_t, ’'b’> boulder_t;
22 new boulder_t(this, X, y);
23 break;
24
25 case T
26 typedef grandchild<brownian, victim_t, 'r'’> rabbit_t;
27 new rabbit_t(this, x, y);
28 break;

A

7.2.3 ‘Template” Template Arguments

A template argument can stand for a data tiipef a ®nstant valueNJAX_SIZE). Both possibili-
ties appeared in line 13 sfack.h on p. 691. A template argument can also stand for a template class
such awector ,list , or grandchild

Why can't our existing T stand forvector ? AT can indeed stand for ydata type, btvector is
not a data type. It is a template class, which is an indefinitejg lset of data typeslo g¢and for a tem-
plate class, a mekind of template argument had to bednted.

Our examples will be rudimentary versions of the container clagte@ndmap in the C++ Stan-
dard Library The template arguments of the reat and map are diferent from the arguments used
belon. And the return values of the member functions of thesetalandmap are much more useful than
the simple data types b&lo

A set

A set object contains values of tyge but only at most one cgpof any value. W will present
three implementations of the class; the third willdha ‘template’ template argument.

We first implement the class on top ofector , the data member in line 12. Since we wrote no
default constructor foset , it behaves as if we lad written one that calls the default constructornf@nd
does nothing else.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/set/setl/set.h

1 #ifndef SETH
2 #define SETH

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.3 “ Template” Template Arguments 697

3 #include <iostream>

4 #include <cstdlib>

5 #include <vector>

6 using namespace std,;

7

8 / /T must be copy constructable (line 31) and equality comparable (line 17).
9

10 template <class T>

11 class set {

12 vector<T> v,
13 public:
14 bool find(const T& t) const {
15 for (typename vector<T>::const_iterator it = v.begin();
16 it I=v.end(); ++it) {
17 if (tit==1){
18 return true;
19 }
20 }
21
22 return false;
23 }
24
25 void insert(const T& t) {
26 if (find(t)) {
27 cerr << "Sorry, the value is already in the set.\n";
28 exit(EXIT_FAILURE);
29 }
30
31 v.push_back(t);
32 }
33}
34 #endif
—On the Web at
http://i5.nyu.edu/ Cmme64/book/src/set/setl/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include "set.h"
5 using namespace std;
6 i nt main()
7
8 . iset<string> s; //lborn empty
9 s.insert("Mercury");
10 s.insert("Venus");
11 s.insert("Earth");
12
13 cout << boolalpha
14 << s.find("Mercury") << "\n"
15 << s.find("Mongo") << "\n";
16
17 return EXIT_SUCCESS;
18}

PeSsao A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA, WNPE

10

698 Templates Chapter7

true Mercury was inserted in line 8.
false Mongo was never inserted.

Our choice ofvector as the underlying container was hardwired into lines 12 and 15 of thie abo
set.h . We can parameterize it with the template argum@@NTAINERN the following line 11.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/set/set2/set.h

#ifndef SETH

#define SETH
#include <iostream>
#include <cstdlib>
#include <vector>
using namespace std;

/ IT must be copy constructable and equality comparable.
/ ICONTAINER must have const_iterator, begin, end, push_back.

11 template <class T, class CONTAINER = vector<T> > //needs whitespace
12 class set {

13 CONTAINER c;
14 public:
15 bool find(const T& t) const {
16 for (typename CONTAINER::const_iterator it = c.begin();
17 it I=c.end(); ++it) {
18 it (tit==1){
19 return true;
20 }
21 }
22
23 return false;
24 }
25
26 void insert(const T& t) {
27 if (find(t)) {
28 cerr << "Sorry, the value is already in the set.\n";
29 exit(EXIT_FAILURE);
30 }
31
32 c.push_back(t);
33 }
34}
35 #endif
Line 10 uses the default container; line 1@rddes it.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/set/set2/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 #include <string>
5 #include "set.h"
6 using namespace std,;
7

PSS ao A hesenea ©2014 Mark Meretzky

Section 7.2.3 “ Template” Template Arguments 699

8 i nt main()
9 {
10 :iset<string> S; /limplemented atop vector<string>
11 s.insert("Mercury");
12 s.insert("Venus");
13 s.insert("Earth");
14
15 cout << boolalpha
16 << s.find("Mercury") << "\n"
17 << s.find("Mongo") << "\n\n";
18
19 :iset<string, list<string> > s2; /limplemented atop list<string>
20 s2.insert("Mercury");
21 s2.insert("Venus");
22 s2.insert("Earth");
23
24 cout << boolalpha
25 << s2.find("Mercury”) << "\n"
26 << s2.find("Mongo") << "\n";
27
28 return EXIT_SUCCESS;
29}
true
false
true
false
I’'m afraid that the tw copies ofstring in the abwoe line 19 might get out of synd.wish we could
say
30 ;iset<string, list> s2;

But CONTAINERhas to be a data type, digt is not a data type. If we try it, the program will not com-
pile.

main.C: In function ’int main()’:

main.C:19:21: error: type/value mismatch at argument 2 in template
parameter list for 'template<class T, class CONTAINER> class set’
main.C:19:21: error: expected a type, got ’list’

The solution is to IefEONTAINERbe atemplatetemplate aygument. Thdollowing line 15 declares
that CONTAINERSs a template class that will accept one template arguthefWe dn’t haveto write the
U, but it makes the declaration GONTAINERook more familiar) For exampleCONTAINERcould be
myvector , which is exactly the same as the standard libvagtor except that it takes only one tem-

plate agument. $td::vector takes tvo.) Lines17 and 20 apply one template argument to the
CONTAINER

—On the Web at

http://i5.nyu.edu/ Ommé64/book/src/set/set3/set.h

1 #ifndef SETH

2 #define SETH

3 #include <iostream>
4 #include <cstdlib>

5 #include <vector>

PSsao A hesenea ©2014 Mark Meretzky

6
7
8
9

700 Templates Chapter7

using namespace std;

t emplate <class T>
class myvector: public vector<T> {

10}

11

12 /IT must be copy constructable and equality comparable.
13 //ICONTAINER must have const_iterator, begin, end, push_back.

14

15 template <class T, template <class U> class CONTAINER = myvector>
16 class set {

17

CONTAINER<T> c;

18 public:

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

bool find(const T& t) const {
for (typename CONTAINER<T>::const_iterator it = c.begin();
it I=c.end(); ++it) {
if (fit==1t){
return true;
}
}

return false;

}

void insert(const T& t) {
if (find(t)) {

cerr << "Sorry, the value is already in the set.\n";
exit(EXIT_FAILURE);

}

c.push_back(t);
}

38}
39 #endif

We @an nav define the following template class at line 7wdin.C on p. 698.

40 template <class T>
41 class mylist: public list<T> {
42}

43
44

and change line 19 ofiain.C to the follaving. Theoutput remains the same.
/Istring is a data type, mylist is a template class w/ 1 template arg
:iset<string, mylist> s2;
In real life, we would neer write the abwe dassset . We would simply include the standard library
header file<set> , declare aset<string> , and call its member functioriesert , find , erase , €tc.

A ‘‘template” template argument that takes tve different T's

It scarcely seems worthwhile to introduce avrianguage feature just towad writing the name
string twice in line 19 ofmain.C on p. 699. The real purpose of this feature is tonaidemplate to
apply two different template arguments to tB®NTAINERas in he following lines 18 and 19.

A map object contains pairs ofalues of typeKEYandVALUE Think of it as an array whose sub-
scripts are of typ&EY and whose elements are of typALUE Lines 18 and 19 can apply one template
argument tacCONTAINERhanks to the declaration in line 16.

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.3 “ Template” Template Arguments 701

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/mymap/map.h

#ifndef MAP

#define MAP
#include <iostream>
#include <cstdlib>
using namespace std;

t emplate <class T>
class myvector: public vector<T> {

b

O©CoOoO~NOOOUTA, WNPE

10

11 /IKEY must be copy constructable and equality comparable.

12 /IVALUE must be copy constructable.

13 //ICONTAINER must have const_iterator, begin, end, push_back.

14
15 template <class KEY, class VALUE,
16 template <class U> class CONTAINER = myvector>
17 class map {
18 CONTAINER<KEY> key;
19 CONTAINER<VALUE> value;
20 public:
21 const VALUE& find(const KEY& k) const {
22 typename CONTAINER<VALUE>::const_iterator itv = value.begin();
23
24 for (typename CONTAINER<KEY>::const_iterator itk = key.begin();
25 itk 1= key.end(); ++itk, ++itv) {
26
27 if (titk==Kk){
28 return *tv;
29 }
30 }
31
32 cerr << "key not found\n";
33 exit(EXIT_FAILURE);
34 }
35
36 void insert(const KEY& k, const VALUE& v) {
37 key .push_back(k);
38 value.push_back(v);
39 }
40 };
41 #endif
Here is amapthat contains each planetravity as a fraction of the earth’s.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/mymap/main.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <vector>

4 #include <string>

5 #include <list>

6 #include "map.h"

PeSsao A hesenea ©2014 Mark Meretzky

7
8

702 Templates Chapter7

using namespace std;

9 t emplate <class T>
10 class mylist: public list<T> {

11}

12

13 int main()

14 {

15 “‘map<string, double> gravity; /limplemented atop 2 vectors
16

17 gravity.insert("Mercury", .27);

18 gravity.insert("Venus", .85);

19 gravity.insert("Earth", 1.00);

20 cout << "Mercury" << ", " << gravity.find("Mercury") << "\n";

21

22 ‘‘map<string, double, mylist> gravity2; //implemented atop 2 mylists
23 gravity2.insert("Mercury", .27);

24 cout << "Mercury" << ", " << gravity2.find("Mercury") << "\n";

25

26 return EXIT_SUCCESS;

27}

Mercury, 0.27
Mercury, 0.27

A map should contain only at most one pair with aegi subscript. V& declined to check for this
because dind function whose return type MALUEor VALUE&has no graceful way of returning an
indication of &ilure. Een worse, parallel containers such as those in theealites 18 and 19 tend talf
out of sync. It would be better to Veone data structure containing objects each of which has a pair of
data members. These “paiobjects will appear on pp. 785-787.

In real life, we would neer write the abwe dassmap. We would simply include the header file
<map>and declare thmap<string,double> on p. 787.

7.2.4 Rartial and Explicit Specialization of a Template Class

We @an wverload the name of a function or template function, but not the name of a class or template
class. © compensate, a template class carpasially specializedandexplicitly specialized.Only tem-
plate classes, not template functions, can be partially specialized.

The following class is merely a wrapper for the data mermberine 9. We pgrovide member func-
tions defined inside and outside the class definition, in lines 11 and 12.

Line 8 is theprimary templatefor classwrapper because it has neangle brackts> after the
namewrapper . The primary template will instantiateverapper for ary data type not ogered by the
specializations beloit.

Line 19 is apartial specializationbecause it has angle brackets containiffig dhis template will
instantiate avrapper for ary type of pointer not ogered by an wen more specific specialization.

Line 37 is anexplicit specializationbecause its angle brackets containTnoThis template will

instantiate only one type @frapper , for a pointer to @onstchar . Its preamble in line 36 has Ao
just like the preamble for anxplicit specialization of a template function. (See line @xflicit.C on
p. 665.)

The primary template and its specializations may differ in the names and types of their members and
friends; compare the in line 9 with thep’s in 20 and 38.

PeSs a0 A hesenea ©2014 Mark Meretzky

A WNPE

5
6
7
8

9

Section 7.2.4 Partial and Explicit Specialization of a Template Class 703

Patial and explicit specializations can be written ity arder as long as tlgecome after the primary
template. Thusin plicit specialization belongs to the template class as a whole, not paditular pas
tial specialization.For example, the wplicit specialization forconstchar * could hae keen defined
before the partial specialization foonstT ~ *, or without ary partial specialization at allRecall that the
rules were different for template functions: an explicit specialization of a template function belonged to one
particular template function, not to of all the template functions sharing the same name.

Oddly, the explicit specializatios’member function in line 45 has no preamble of W& 0 Alsonote
than lines 36—42 are redundanile an comment them out because 18-24 will instantiate the same code.
If we do this, howeer, we must comment line 44 back in.

Line 48 is a partial specialization foryatype ofvector . Theconst_iterator in line 60 is a
member of an instantiation @kctor . But the primary template farector and its various specializa-
tions may differ in the names and types of their members. Theoretthalgpnst_iterator of
vector<int> might be name of a data type, while dwnst_iterator of vector<char> might
be a data memheifo show thatconst_iterator is the name of a data type, we need #aavord
typename as on pp. 671-676.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/partial/wrapper.h

#ifndef WRAPPERH
#define WRAPPERH
#include <iostream>
#include <vector>
using namespace std;

t emplate <class T>
class wrapper { [lprimary template
constTt;

10 public:

11
12

wrapper(const T& initial_t): t(initial_t) {}
void print() const;

13}

14

15 template <class T>
16 inline void wrapper<T>::print() const {cout << t;}

17

18 template <class T>

19 class wrapper<const T *> { [/partial specialization
20 const T *constp;

21 public:

22 wrapper(const T *initial_p): p(initial_p) {}

23 void print() const;

24},

25

26 template <class T>
27 void wrapper<const T *>::print() const
28{

29
30
31
32
33

cout <<p;

if (p'=0){
cout <<"->"
wrapper<T>(*p).print();

34}

35

36 template <>

PeSsao A hesenea ©2014 Mark Meretzky

704 Templates

37 class wrapper<const char *> { //explicit specialization

char *initial_p): p(initial_p) {}

38 const char *const p;
39 public:

40 wrapper(const

41 void print() const;
42 };

43

44 /template <>

/INo preamble.

45 inline void wrapper<const char *>::print() const {cout << "\'"" << p <<"\"";}

46

47 template <class T>

48 class wrapper<vector<T> > { /lanother partial specialization
49 const vector<T>yv;

50 public:

51 wrapper(const vector<T>& initial_v): v(initial_v) {}

52 void print() const;

53}

54

55 template <class T>
56 void wrapper<vector<T> >::print() const

57 {
58
59
60
61
62
63
64
65
66
67
68
69}

cout << u(n;

for (typename vector<T>::const_iterator it = v.begin(); it = v.end();

++it) {

if (it = v.begin()) {

cout

}

<< ||, n;

wrapper<T>(*it).print();

}

cout << u)n;

70 #endif

71
72

73
74
75

A WN PP

The abee line 32 constructs an anonymous object and cal|srirs

uncomfortable, gie the object a name:

const wrapper<T> w(*p);

w.print();

Thefor loop in the abee lines 60-61 can tamed with a typedef:

typedef typename vector<T>:.const_iterator const_iterator;

for (const_iterator it = v.begin(); it != v.end(); ++it) {

Thewvi in the following line 25 is born holding twempty vector<int>

gers into them.

—On the Web at
http://i5.nyu.edu/

#include <iostream>
#include <cstdlib>
#include <vector>
#include "wrapper.h'

printed 4/8/14
8:58:39 AM

COmmé64/book/src/partial/main.C

All rights
reserved

Chapter7

function. If this makes you

's. We then push inte-

©2014 Mark Meretzky

Section 7.2.4 Partial and Explicit Specialization of a Template Class 705

using namespace std;
i nt main()

i nti=10;
wrapper<int>(i).print(); /[construct anonymous temporary and print it
cout <<"\n%

wrapper<const int *>(&i).print();
cout <<"\n%

wrapper<const char *>("hello").print();

cout <<"\n%

const char *a[] = {"moe", "larry", "curly"};
const size_t n = sizeof a/ sizeof a[0];
vector<const char *> v(a, a + n);
wrapper<vector<const char *> >(v).print();
cout <<"\n"

vector<vector<int> > wi(2); //2nd func arg defaults to vector<int>()
wi[0].push_back(10);

wi[0].push_back(20);

wvi[1].push_back(30);

wvi[1].push_back(40);

wvi[1].push_back(50);

wrapper<vector<vector<int> > >(vvi).print();

cout <<"\n"

return EXIT_SUCCESS;

10 line 10:int
Oxffbff084 -> 10 line 13:const int *
"hello" line 16:const char *

"moe", "larry", "curly") line 22:vector<const char *>
((10, 20), (30, 40, 50)) line 31:vector<vector<int> >

v Homework 7.2.4a: a partial specialization for T *

Without theconst , line 13 of the abee main.C would instantiate the primary template for class
wrapper , not the template fowrapper<constT *>_ After all,int is not aconstT , so heint *
in line 13 could not be eonstT ~ *.

Oxffbfflfc

Remedy this by defining a partial specializationioapper<T *> without theconst .
A

v Homework 7.2.4b: create an operator<< friend

Createoperator<< friends for classwvrapper and each of its specializationghen let each
print member function do its work by calling the correspondipgrator<<

You will have o define fouroperator<< functions (five, with the previous homerk). The
operator<< that takes avrapper<constchar *> will not be a template function; the others will

PSsao A hesenea ©2014 Mark Meretzky

706 Templates Chapter7

be. Theones that ta&kwrapper<T> andwrapper<constchar *> will be inline; the others will not
be.
A

v Homework 7.2.4c: try to make a partial specialization of a template function

A template function cannot & a m@rtial specialization. Learn to recognize the error message on
your platform when you accidentally try it.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/partial/function.C

#include <iostream>
#include <cstdlib>
using namespace std;

t emplate <class T>
i nline void print(const T& t) {cout << t;}

t emplate <class T>
void print<const T *>(const T *p)

O©CoOo~NOOOTA, WNPE

10{

11 cout <<p;

12 if (p!=0){

13 cout <<"->"<<*p;
14 }

15}

16

17 int main()

18{

19 int i =10;

20 print(&i);

21 cout <<"\n"

22 return EXIT_SUCCESS;
23}

The GNUg++ compiler says

function.C:9:33: error: function template partial specialization
'print<const T*>' is not allowed

The SunCCcompiler says

sh[1]: CC: not found [No such file or directory]

A

Simulating other kinds of templates
The only kinds of templates are function templates and class templates. oBuihéns can be con-
vincingly faked.

(1) Imagine a‘variable templaté’ Let's say that each built-in data tydeneeded itswn int vari-
able namedligits10 , giving the number of decimal digits that can be heldTn a

1 t emplate <class T> /IT must be a numeric type (char to long double).
2 void f()

3 {

4 / Iwishful thinking, won’t compile

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 707

cout << "This data type can hold " << digits10<T>
<< " d ecimal digits.\n";

0o ~NO O

We @an implement this family of variables by making a template class with a public static data mem-
ber namedligits10 , and then specializing the class for each type.att, fthis has already been done for
us. Seehedigits10 static data member of the template clagseric_limits on p. 746.

(2) Imagine a “typedef template’ Let's sy that each of theult-in character typeschar and
wchar_t , needed its own typedef giving the corresponding type ofémtbig enough to hold grvalue
for that type of characteas vell as the end-of-file value.

9 t emplate <class CHAR> //CHAR could be char or wchar_t.

10 void f(CHAR c) /[can be passed by value

11

12 /Iwishful thinking; won't compile

13 int_type<CHAR> i =cC;

14

15 cout << "The corresponding integer value is " << i << "\n";
16}

We @an implement this family of typedefs by making a template class with a public typedef member
namednt_type , and then specializing the class for each type. In fact, this has already been done for us.
See thant_type typedef member of the template clabar_traits in lines 8 and 11 of
char_traits.C on p. 749.

7.2.4.1 Bmplate Metaprogramming
Wheneer possible, we want to compute at compile time rather than at runtime. Consider

1 cout << 10 + 20 << "\n";
or even

1 i nti=10;

2 constint j = 20;

3 cout<<i+j<<"n"

All the operands of the operator areonstants,in the sense ofvalues that are known at compile tirme’
A smart, well-motvated compiler can perforwonstant foldingand behee & if we had said

4 cout << 30 << "\n";

Constant folding also includines making decisions at compile time. When we write

5 i f(true){

6 cout << "true\n";
7 } else{

8 cout << "false\n";
9 }

a gnart compiler can beka as if we had said

10 cout << "true\n";

To guarantee that a constant will be folded at compile time, we use a techniquetealfsdte
metapogramming. It exploits constant template arguments, explicit specialization, and enumerations.

PeSsao A hesenea ©2014 Mark Meretzky

708 Templates Chapter7

Change function arguments to template arguments.

Our first kample is the classior loop, which has to perform a comparison and increment during
each iteration.

1 for(inti=1;i<=4;++i){
2 cout << i<<"\n";
3 }
We oould avoid this runtime arithmetic bynrolling the loop:
4 cout << 1<<"\n";
5 cout << 2 << "\n";
6 cout << 3 << "\n";
7 cout << 4 << "\n";

Template metaprogramming will let us unroll the loop without typingsér @nd over. To ease the transi-
tion to metaprogramming, we first rewrite the loop using recurdi@n.the time being, the comparisons
and increments will still be done at runtime.

8 / /Output the integers from 1 to last inclusive.
9 / /If last <= 0, output nothing.

10

11 inline void count(int last)

12 {

13 if (last>0){

14 count(last - 1)

15 cout <<last<<"\n"

16 }

17}

18

19 int main()

20{

21 count(4);

22}

Incidentally theinline declaration in the alve line 11 can be honored only if the valudaxt
is known at compile timeA smart compiler might look ahead to then line 21, but there is no guarantee
of this. If the value is unknown, an inlined function that calls itself wilblp to infinite size.

We row change the function gumentlast to the template gumentLAST in the following line 9.
This results in a series of different functioonsunt<0> , count<1> , count<2> , etc. Thecalls can nw
be inline because no function calls itself.

The walue of a constant template argumerdligays computed at compile time, so each subtraction
in line 12 will nav be bne at compile time. And the name of a functioaligays bound at compile time,
unless the function is a virtual member functidtar example, eacltount<LAST-1> in line 12 will be
bound at compile time either to an instantiation of line 10 or to lineEBth comparison dfAST-1 to
zero will therefore be done at compile time.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/meta/unroll1.C

#include <iostream>
#include <cstdlib>
using namespace std;

/ [Output the integers from 1 to LAST inclusive. LAST must be non-negative.

/ [count is a template function consisting of the general-purpose template
/ fin line 10 and the explicit specialization in line 17.

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 709

8
9 t emplate <int LAST>
10 inline void count()

11

12 count<LAST - 1 >();
13 cout << LAST <<"\n";
14}

15

16 template <>
17 inline void count<0>() {}

18

19 int main()

20 {

21 count<4>(); //4 lines of output

22 count<0>(); /Ino output

23 /lcount<-1>(); /lwon’t compile: “instantiation depth exceeds maximum"
24

25 return EXIT_SUCCESS;

26}

A WN P

v Homework 7.2.4.1a: allev LAST to be negatve
The abeoe program will not compile iLAST is neggative (ine 23). Remedy this in three easy steps.
(1) In the abwe lines 5-17, change the name of the template functiondmmt to_count .

(2) After the definition of count , define the following template function. Line 5 is the only place
where the program will callcount .

1 / /Output the integers from 1 to LAST inclusive.
2 | NIf LAST < 1, output nothing.
3
4 t emplate <int LAST>
5 i nline void count() { count<LAST <1 ? 0: LAST>();}
(3) Themain function will continue to calcount , but nawv it will be thecount we just intro-
duced.
A

Explicit specialization of more than one template argument

The starting point 1 as implicitly hardwired into the ale loop, although it is hard to see whete.
took the form of the explicit specialization for zero in line 1ofoll1.C . The starting point can also
be parameterized as the first templatiarent in the following line 20. When line 12 senses that the loop
is done, it will pass te zeroes to the explicit specialization in line 16. As on p. 664,iftamplate agu-
ment is explicitly specialized, thell must be.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/meta/unroll2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

PeSsao A hesenea ©2014 Mark Meretzky

710 Templates Chapter7

4

5 / /Output the integers from FIRST to LAST inclusive.
6 / /If FIRST > LAST, just print FIRST.

7

8 t emplate <int FIRST, int LAST>

9 void count()

10{

11 cout << FIRST <<"\n";

12 count<FIRST >=LAST ?0: FIRST + 1, FIRST >=LAST ? 0 : LAST>();
13}

14

15 template <>
16 inline void count<0, 0>() {}

17

18 int main()

19{

20 count<-1, 4>(); 11-1 to 4 inclusive
21 return EXIT_SUCCESS;

22}

To consolidate the repetition in the ateoline 12, rewrite it as folls. Thevalue of an enumeration
is aways computed at compile time, allowing it to be part of a constant template argument.

23 enum {done = FIRST >= LAST};
24 count<done ? 0 : FIRST +1,done ? 0: LAST>();

-bool\naol;

v Homework 7.2.4.1b: allav FIRST to be greater than LAST

The abwee function should produce no outputRfRST>LAST . Accomplish this in three easy
steps.

(1) In the abwe lines 5-16, change the name of the template functiondmmt to_count .

(2) After the definition of count , define the following template function. Line 6 is the only place
where the program will callcount . Note that a template argument containing the operatoust be
enclosed in parentheses; see p. 693.

1 / /Output the integers from FIRST to LAST inclusive.
2 [/ If FIRST > LAST, output nothing.
3
4 t emplate <int FIRST, int LAST>
5 i nline void count() {
6 _count<(FIRST > LAST ? 0 : FIRST), (FIRST > LAST ? 0 : LAST)>();
7}
To oconsolidate the repetition in the atedine 6, rewrite it as follows.
8 enum {empty = FIRST > LAST};
9 _count<empty ? 0 : FIRST, empty ? 0 : LAST>();

PeSs a0 A hesenea ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 711

(3) Themain function will continue to calcount , but naw it will be thecount we just intro-
duced.
A

v Homework 7.2.4.1c: bubblesort

The following function bubblesorts an arrayrofntegers into increasing order (pp. 47-48). In con-
trast to the usual C++ practice, we pass it a starting address and a count of elé/atg): thesize_t
n is unsigned.If n were zero, th@-1 in line 4 would be a huge posie rumber and the loop would iter
ate too maptimes. Line3 prevents this from happening.

1 void sort(int *p, size_t n)

2 {
3 for(;n>1;-n){
4 for(size ti=0;i<n-1;++){
5 if (pli+1]<pl]{ /fif in wrong order,
6 const int temp = pi]; /I[swap them
7 p[i] = pli + 1];
8 p[i + 1] = temp;
9 }
10 }
11 }
12}

The comparision in the abe line 5, and the initializations and assignments in lines 6—-8, wié loa
be performed at runtimeOnly then are the values of the array elementsvknoButif the number of ele-
ments was knen at compile time, we could unroll the loops. The comparisons, decrement, and increment
in lines 3 and 4, and the miscellaneous additions in lines 5-8, could all be done at compile time.

The first step is to write the loops recuehy.

13 /[This function does the work of the inner loop (lines 4-10 above).

14 /[Examine and modify the elements whose subscripts are i to j inclusive.
15 //Since this function is called only from lines 27 and 37,

16 //it can assume that i <j.

17

18 void inner(int *p, size_ti, size t))

19 {

20 if (pli+1] <pli]) { /fif in wrong order,
21 const inttemp = pJi]; /[swap them
22 pll = pli+1];

23 pi + 1] =t emp;

24 }

25

26 if ((+1<j{

27 inner(p, i+ 1,)

28 }

29}

30

31 /[This function does the work of the outer loop (lines 3 and 11 above).
32 /ISort n elements (subscripts 0 to n-1 inclusive).

33

34 void sort(int *p, size_t n)

35{

36 if (n>1){

37 inner(p, 0,n-1);
38 sort(p, n-1)

PeSsao A hesenea ©2014 Mark Meretzky

712 Templates

39 }
40}

Chapter7

The next step is to change the function arguments to tempiateants. Definéhe following tem-

plate functions, including the explicit specializations shownvielthe if
done at runtime; the ones in lines 26 and 36 will disappear.

41 //[Examine and modify the elements whose subscripts are | to J inclusive.

42

43 template <size t|, size_t J>
44 void inner(int *p)

45

46 il this in;

47}

48

49 template <>

50 inline void inner<0, 0>(int *p) {}
51

52 //Sort N elements (subscripts 0 to N-1 inclusive).

53

54 template <size_t N>

55 void sort(int *p)

56 {

57 il this in;

58}

59

60 template <>

61 inline void sort<0>(int *p) {}

in the abwoe line 20 will still be

When you are done, try to change allithite 's in the abee lines 41-64 td’s. What goes wrong?

A

Change a template function to a template class.

The factorial function is the product of all the posttintegers up to a gen integer For example,

the factorial of 4 is

41=1x2x3%x4=24

The factorial of zero is defined to be zero; the factorial obative integer is undefined.

A straightforward way to compute a factorial is with the following loop.

i nt factorial(int n)
{
i nt product = 1;

for(;n>1;--n){
product *= n;

}

1
2
3
4
5
6
7
8
9 r eturn product;
0

10}

A more elgant function uses recursion.

11 inline int factorial(int n) {return n <=1 ? 1 : n * factorial(n - 1);}

printed 4/8/14
8:58:39 AM

All rights
reserved

©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 713

We @n perform the comparisons and subtractions at compile time by changing the furgiion ar
ments to template arguments.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/meta/factorial1.C

1 #include <iostream>

2 #include <cstdlib>

3 using namespace std;

4

5 t emplate <int I>

6 i nline int factorial() {return | * factorial<l - 1>();}

7

8 t emplate <>

9 i nline int factorial<0>() {return 1;}
10
11 int main()
12 {
13 cout << factorial<4>() << "\n";
14 return EXIT_SUCCESS;
15}

24
What about the multiplicationsPor al we know, the abee line 13 might still be compiled as
16 cout <<4*3*2*1<<"\n"
leaving the product to be computed at runtinve would like a giarantee that the line will be compiled as
follows.
17 cout << 24<<"\n%
A simple adjustment is all that is necessavye changefactorial from a function with a return

value to a class with a public enumeratidrhe* in the following line 7 computes the value of the enumer
ation, and the value of an enumeratioalisays computed at compile time.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/meta/factorial2.C

#include <iostream>
#include <cstdlib>
using namespace std;

t emplate <int I>
struct factorial {
enum {value = | * factorial<I - 1>::value};

b

O©CoOoO~NOOOUTA, WNPE

10 template <>
11 struct factorial<0> {

12 enum {value =1},

13}

14

15 int main()

16 {

17 cout << factorial<4>::value << "\n";
18 return EXIT_SUCCESS;

PeSs a0 A hesenea ©2014 Mark Meretzky

19}

©CoOo~NOOOTA, WNPE

714 Templates Chapter7

24

Were the multiplications really nwed up to @mpile time? There is noay to tell from the output;
we will have b examine the translation of the program into assembly language. My compiler ¢&NU
lets me see this with th& option.

1$ g++ -S factorial2.C minus uppercase S
2% Is -l factorial2.s minus lowercase L
3% more factorial2.s

main:
letc.
mov 24, %ol

A compile-time array

Each clasg in the following lines 52-55 tas a Julian date in the range 1 to 365 inetusnd
offers public enumerations\iing the corresponding month and day of the month. All arithmetic, testing,
and looping are done at compile time.

The general-purpose template for clessgth must be declared in line 8 before the explicit spe-
cializations can be defined in lines 10—Aut the general-purpose template need not be defined: there is
no such value as the length of a general-purpose month.

In line 31,same_month is true (or at least non-zero) if the Julian dagelongs to the same month
asJ-1 .
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/meta/month.C

#include <iostream>
#include <cstdlib>
using namespace std;

/ length<MONTH>::value is the number of days in month MONTH (1 to 12 inclusive).

t emplate <int MONTH>
struct length;

10 template <> struct length< 1> {enum {value = 31};} [ljanuary
11 template <> struct length< 2> {enum {value = 28};}; [ffebruary
12 template <> struct length< 3> {enum {value = 31};} //march

13t
14 t
15t
16t
17t
18t
19t
20t
21t
22

emplate <> struct length< 4> {enum {value = 30};}; [fapril
emplate <> struct length< 5> {enum {value = 31};}; /Imay
emplate <> struct length< 6> {enum {value = 30};}; /fjune
emplate <> struct length< 7> {enum {value = 31};}; ljuly
emplate <> struct length< 8> {enum {value = 31};}; /laugust
emplate <> struct length< 9> {enum {value = 30};}; //september
emplate <> struct length<10> {enum {value = 31};}; /loctober
emplate <> struct length<11> {enum {value = 30};}; /Inovember
emplate <> struct length<12> {enum {value = 31};}; /ldecember

23 /lj<J>::month is the month (1 to 12 inclusive) and j<J>::day is the day
24 /lof the month (1 to 31 inclusive) of Julian date J (1 to 365 inclusive).

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.4.1

25

26 template <int J>

27 class j{

28 enum {

29 d = j<J-1>:day,

30 m = j <J-1>:month,

31 same_month = d < | ength<m>:value
32 3

33 public:

34 enum {

35 month = same_month?m:m+ 1,
36 day = same_month?d+1:1

37 b

38}

39

40 template <>
41 class j<1> {
42 public:

43 enum {
44 month =
45 day =1
46 b

47},

48

49 int main()

50 {

51 cout

52 <<
53 <<
54 <<
55 <<
56

57 return
58}

/[Julian date 1 is january 1.

11

j< 1>:month <«<"'"<<j<
j< 31>:month << " " << j< 31>::day << "\n"
j< 32>:month << " " << j< 32>::day << "\n"
j<365>::month << " " << j<365>::day << "\n";

EXIT_SUCCESS;

1>::day << "\n"

Template Metaprogramming 715

/ljanuary 1
/ljanuary 31
/lfebruary 1
/ldecember 31

1
31

BN R R

1
231

Plug the derived class into the base class.

Our metaprogramming examplesvhased constant template arguments such asdJ. We @an
also use a data type templatguanentT. First, though, we will mak a &de trip to examine a surprising

but curiously recurrent template pattern.

Consider a base class that keeps countwfrhary of its objects currently exist.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/meta/curious1.C

1 #include <iostream>
2 #include <cstdlib>

3 using hamespace std;
4

5 class base {

printed 4/8/14
8:58:39 AM

hesenea ©2014 Mark Meretzky

716 Templates Chapter7

6 static int n;
7 public:
8 base() {++n;}
9 base(const base& another) {++n;}
10 “base() {--n;}
11 static int count() {return n;}
12}
13
14 int base::n = 0;
15
16 class derivedl: public base {
17 /letc.
18}
19
20 class derived?2: public base {
21 /letc.
22},
23
24 int main()
25
26 derivedl a, b, c;
27 derived2 d;
28
29 cout <<"derivedl::count" << derivedl::count() << "\n"
30 << "derived2::count" << derived2::count() << "\n";
31 return EXIT_SUCCESS;
32}

CQowo~NOOUODWNLPE

=Y

derivedl::count 4
derived2::count 4

We row havethe total number of objects of clabase and its descendantdzor this reason, it
would male more sense for the ab® ines 29-30 to call the function Base::count . But what if we
wanted a separate count for each tidass? Eaclerived dass would need its own static data member
n and its own static member functicount . In fact, we would hee © replicate the entire base class for
each deried dass.

Not surprisingly we dfect this replication by letting the base class be a temp&uieprisingly the
argument passed to the template in line 18 will be thevetbdass. Carwe usederivedl in the angle
braclets in line 18 before we @ sen the end of its class definition in line 2¥8s, as long as the tem-
plate clasdase has no code that construct3 @r needs to kne the size of &. A simpler example as
the classiode on p. 214, whose name was mentioned before the end of its class definition.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/meta/curious2.C

#include <iostream>
#include <cstdlib>
using namespace std;

t emplate <class T>
class base {
static int n;
public:
base() {++n;}
base(const base& another) {++n;}

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 717

11 “base() {--n;}

12 static int count() {return n;}
13}

14

15 template <class T>
16 int base<T>::n = 0;

17

18 class derivedl: public base<derived1> {

19 /letc.

20}

21

22 class derived?2: public base<derived2> {

23 /letc.

24},

25

26 int main()

27 {

28 derivedl a, b, c;

29 derived2 d;

30

31 cout <<"derivedl::count" << derivedl::count() << "\n"
32 << "derived2::count" << derived2::count() << "\n";
33 return EXIT_SUCCESS;

34}

derivedl::count 3
derived2::count 1

Pdymorphism at compile time

We ae nav ready for our final example of metaprogramming. The following line 9 calls the
implementation member function of a dexéd dass. Thefunction is selected at runtime because of

the keyword virtual in line 8. To make the runtime selection possible, each object contains a pointer to
a uvtbl (p. 498).
—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/meta/polymorphism1.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 class base {
6 public:
7 virtual "base() {}
8 virtual void implementation() const = 0O;
9 void interface() const {implementation();}
10}
11
12 class derivedl: public base {
13 public:
14 void implementation() const {cout << "derived1\n";}
15}
16

17 class derived2: public base {

PeSsao A hesenea ©2014 Mark Meretzky

718 Templates Chapter7

18 public:
19 void implementation() const {cout << "derived2\n";}
20}
21
22 int main()
23{
24 derivedl di;
25 dl.interface();
26
27 derived2 dz;
28 d2.interface();
29
30 cout << "sizeof (base) ==" << sizeof (base) << "\n"
31 << "sizeof (derivedl) ==" << sizeof (derivedl) << "\n"
32 << "sizeof (derived2) ==" << sizeof (derived2) << "\n";
33
34 return EXIT_SUCCESS;
35}
derivedl
derived2

sizeof (base) ==
sizeof (derivedl) ==
sizeof (derived2) ==

When the abee line 9 is called from line 25, it\wbys selectdlerivedl::implementation
A smart compiler might recognize thisf it does, it can let the member function be called without use of
the vtbl. To guarantee thaany compiler will recognize this, the folldng program will use the curiously
recurrent template patterihe code is faster and the objects smallére bad news is thall andd2 are
no longer dexied from a commmon base class; no pointey@oe a rock-bottonvoid *) can point to
both of them.

A downcastis a comersion from “pointer to baséto ‘‘pointer to denved”. Sincethe cast in the fol-
lowing line 16 is merely a downcast, it can be performed witfaic cast , hot a
reinterpret_cast . But downcasting is not whys this simple. If theDERIVED class vas denved
from two copies of clasbase class (sayfrom abase mother and @ase paternal grandparent), the
downcast would hee o way to tell which of the tewbase objects it is receiving the address &for an
upcast, see p. 544.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/meta/polymorphism2.C

#include <iostream>
#include <cstdlib>
using namespace std;

/ *
DERIVED must be publicly derived from class base
and must have a member function named implementation.
Class DERIVED can have only at most one class base among its ancestors.
9 i nterface can be called only when the base object is part of a DERIVED object.
10%
11
12 template <class DERIVED>
13 class base {
14 public:

1
2
3
4
5
6
7
8

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.5 Explicit Instantiation 719

15 void interface() const {
16 static_cast<const DERIVED *>(this)->implementation();
17 }
18}
19
20 class derived1: public base<derived1> {
21 public:
22 void implementation() const {cout << "derived1\n";}
23}
24
25 class derived?2: public base<derived2> {
26 public:
27 void implementation() const {cout << "derived2\n";}
28}
29
30 int main()
31{
32 derivedl di;
33 dl.interface();
34
35 derived2 dz;
36 d2.interface();
37
38 cout << "sizeof (base<derivedl>) ==" << sizeof (base<derived1>)
39 << "\n"
40 << "sizeof (base<derived2>) == " << sizeof (base<derived2>)
41 << "\n"
42 << "sizeof (derivedl) ==" << sizeof (derivedl) << "\n"
43 << "sizeof (derived2) ==" << sizeof (derived2) << "\n";
44
45 return EXIT_SUCCESS;
46}
derivedl
derived2

sizeof (base<derived1>) ==
sizeof (base<derived2>) ==
sizeof (derivedl) ==
sizeof (derived?2) ==

7.2.5 Explicit Instantiation

A template ignstantiatedwhen we ma& the computer belve & if we had pasted a cgmf the tem-
plate into the program, changing each template argument to what it standbdamost common ay to
instantiate a template class is by constructing an object of that éldesaplate class can also be instanti-
ated without actually constructing an object.

How can we confirm the instantiation if no object of that class is constructed? In fgalyoukd we
want to do this at allAVell, we might want to instantiate the following template clagsent in order to
construct its static data membets.fact, we’'ll instantiate it twice in order to construct the static data mem-
bersabsent<int>::s andabsent<double>::s

The output of lines 6 and 7 ofain.C confirm the tve instantiations. Thé&ck of output from line
12 ofabsent.h confirms that no object of clasdsent<int> or absent<double> has been con-
structed.

PeSsao A hesenea ©2014 Mark Meretzky

©CoOoO~NOOOUTA,WNPE

10

720 Templates Chapter7

Classobj was on p. 179-180.For another example where a class must be explicitly instantiated,
see line 27 oMmain.C on p. 733.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/instantiate_class/absent.h

#ifndef ABSENTH
#define ABSENTH
#include <iostream>
#include "obj.h"

using namespace std;

t emplate <class T>
class absent {
static const obj s;
T

11 public:

12

absent(const T& initial_t): t(initial_t) {cout << "constructed\n";}

13}

14

15 template <class T>
16 const obj absent<T>::s = static_cast<int>(sizeof (T));

17 #endif
—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/instantiate_class/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "absent.h"
4 using namespace std,;
5
6 t emplate class absent<int>;
7 t emplate class absent<double>;
8
9 i nt main()
10{
11 return EXIT_SUCCESS;
12}
construct 4 line 6 ofmain.C instantiates clasabsent<int>
construct 8 line 7 instantiates clasabsent<double>
destruct 8 line 11 destructs the statically allocated objects
destruct 4

Derive a emplate class from a base class

As the abwe autput shavs, each instantiation of a template class has its owyn @bp datic data
member To make dl the instantiations share the sameydpe member can be placed in a non-template
base class. The template classes can then hedi&éom the base clas$or an xkample, see
curiousl.C on pp. 715-716.

Explicit instantiation of a template function

Lines 3 and 4 of the folieing f.C instantiate a template function without calling it, possibly to
place the instantiations in a librar§he details are platform dependent, of coufsa. another example of
instantiating a function without calling it, see line 1Zwiction.C on p. 781.

PSsao A hesenea ©2014 Mark Meretzky

A WN PP O~NO O WNPE

©CoOo~NOOOUOTA, WNPE

Section 7.2.6 Template Member Functions 721

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/instantiate_function/f.h

#ifndef FH

#define FH

#include <iostream>
using namespace std;

t emplate <class T>
i nline void f() {cout << sizeof (T) << "\n";}
#endif

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/instantiate_function/f.C

#include "f.h"

t emplate void f<int>();
t emplate void f<double>();

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/instantiate_function/main.C

#include <iostream>
#include <cstdlib>
#include "f.h"

using namespace std;

i nt main()

{
}

r eturn EXIT_SUCCESS;

The symbol table for theobject” file f.o shows thatf has been instantiated twic&he-C option
unmangles the name of the function.

1$ g++ -cf.C

2% Is-If.0

3% nm -C f.o | egrep "\[Index\]|f<.*>’

[Index] Value Size Type Bind Other Shndx Name

[23] 0| 56|FUNC |WEAK |0 |6 [void f<double>()
[18] 0| 56|FUNC |WEAK |0 [5 [void f<int>()

7.2.6 Template Member Functions

A member function of a template classipso factoa template function.A member function can
also be a template function in its own righgarelless of whether its class is a template class.

A template member function of a non-template class

The following class represents a point in a three-dimensional space, with member functions for rotat-
ing the point around the X,,¥%r Z ais. Thepoint (1,0, 0)in the diagram is on line 11 ofiain.C on p.
723; its 45° rotation around the Z axis is in line 14. Since the point lies in the X-Y plane, and the Z axis
rises vertically out of the plane, the point simply rotates around the origin.

PeSsao A hesenea ©2014 Mark Meretzky

722 Templates Chapter7

y
A
1 1
—,=-,0
(\/2 V2)
45°
] 1,00 "
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/rotl/point.h
1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>
4 using namespace std;
5
6 class point {
7 double x; /[Cartesian coordinates
8 doubley;
9 double z;
10 public:
11 point(double initial_x = 0, double initial_y = 0, double initial_z = 0)
12 : X(initial_x), y(initial_y), z(initial_z) {}
13
14 point& xrot(double theta); /ltheta in radians
15 point& yrot(double theta);
16 point& zrot(double theta);
17
18 friend ostream& operator<<(ostream& ost, const point& p) {
19 return ost<<"("<<px<<", "<<py<<", "< pz<<"),
20 }
21}
22 #endif
The three rotation functions are identical except for their choice of data meriheysconvert the
point’s mdrdinates from Cartesian to polarg in the plane of rotation, perform the rotation, andvedn
them back. As on p. 364, wead callingatan2 with two zero arguments.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/rotl/point.C
1 #include <cmath> //for atan2
2 #include "point.h"
3 using namespace std;
4
5 / /Rotate this point around the X axis.
6
7 point& point::xrot(double theta)
8 {
9 if(y!=0 .0|]|]z!'=0.0){ /ifthis pointis not on the X axis,
10 const doubler=sqrt(y *y + z * 2);

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.6 Template Member Functions 723

11 theta +=atan2(z,y);

12 y = r * ¢ os(theta);

13 z =r1 * s in(theta);

14 }

15 return *this;

16}

17

18 //Rotate this point around the Y axis.

19

20 point& point::yrot(double theta)

214

22 if (z!=0.0]|x!=0.0){ //ifthis point is not on the Y axis,
23 const double r=sqrt(z * z + x * x);
24 theta +=atan2(x, z);

25 z =r1 * ¢ os(theta);

26 X = r * s in(theta);

27 }

28 return *this;

29}

30

31 //Rotate this point around the Z axis.

32

33 point& point::zrot(double theta)

344

35 if (x!=0.0]]y!'=0.0){ /ifthis pointis not on the Z axis,
36 const doubler=sqrt(x *x +y*y);
37 theta +=atan2(y, x);

38 X = r * ¢ os(theta);

39 y = r * s in(theta);

40 }

41 return *this;

421}

The following line 14 multiplies the 45 degrees ?%0 to corvert it to radians. Each function
returns*this , dlowing lines 20-21 to chain the calls together and print teevadue of thepoint

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/rotl/main.C

#include <iostream>
#include <cstdlib>
#include <cmath>
#include "point.h"
using namespace std;

i nt main()

{

O©CoOoO~NOOOUOTA, WNPE

const double pi =4 * atan2(1, 1);

11 point p(1, 0, 0);
12 cout <<p<<"\n"

14 p.zrot(45 *pi /1 80)
15 cout <<p<<"\n"

PSS ao A hesenea ©2014 Mark Meretzky

724 Templates Chapter7

17 p.xrot(45 *pi /1 80)

18 cout <<p<<"\n“

19

20 cout << p.xrot(-45 * pi / 180) //Undo the previous rotations.
21 .zrot(-45 *pi /1 80)<<"\n"

22

23 return EXIT_SUCCESS;

24}

1
The0.707107 represent%. The-7.85046e-17 should hae keen a perfect zero, but the point

didn’t quite come back to its original position.

(14,0,0) lines 11-12

(0.707107, 0.707107, 0) lines 14-15: rotate around the Z axis
(0.707107, 0.5, 0.5) lines 17-18: rotate around the X axis
(1, 0, -7.85046e-17) lines 20—21: bak to ariginal position

Instead of writing the same member function three times, we can define it once and fortathas a
plate member functiorSince it is a template function, its declaration in the following line 16 and its defi-
nition in 30 ha&e a peamble. TheA and B in the preamble are constant template arguments of type
“ pointer todouble data member of clag®int ". As on p. B4, this type of pointer can be dereferenced
only with .* and->* . Since these operators are binaay gerand must be written in front of them, the
unfortunatethis in lines 33—-38. Of course, the template arguments could also be of a less exotic type.

A copy constructor cannot be a template member function, because a clasveanly@ne coy
constructar Also, a virtual member function cannot be a template functibit.were, the vtbl would be
infinitely large.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/rot2/point.h

1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>
4 #include <cmath>
5 using namespace std,;
6
7 class point {
8 double x; /[cartesian coordinates
9 doubley;
10 double 7z
11 public:
12 point(double initial_x = 0, double initial_y = 0, double initial_z = 0)
13 . X(initial_x), y(initial_y), z(initial_z) {}
14
15 template <double point::*A, double point::*B>
16 point& rot(double theta); /Itheta in radians
17
18 friend ostream& operator<<(ostream& ost, const point& p) {
19 return ost<<"("<<pX <<, "KLK py << "< p.z <<y
20 }
21}
22
23 I*

24 Rotate this point around the axis that is neither A nor B.
25 A positive theta rotates in the direction from the positive half of the A axis

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.6 Template Member Functions 725

26 towards the positive half of the B axis.

27 %

28

29 template <double point::*A, double point::*B>
30 point& point::rot(double theta)

31{

32 /i this point is not on the axis,

33 if (this->*A1=0.0 || this->*B != 0.0) {

34 const doubler=

35 sqrt(this->*A * t his->*A + this->*B * this->*B);
36 theta += atan2(this->*B, this->*A);
37 this->*A = r * ¢ os(theta);

38 this->*B = r * s in(theta);

39 }

40 return *this;

41}

42 #endif

To call the template member function, change lines 14-2fhaif.C on pp. 723-724 to the folle
ing. To mention the data membexsy, andz in main , they must become public.

43 p.rot<&point::x, &point::y>(45 * pi / 180);

44 cout <<p<<"\n“

45

46 p.rot<&point::y, &point::z>(45 * pi / 180);

47 cout <<p<<"\n“

48

49 cout << p.rot<&point:y, &point::z>(-45 * pi / 180)

50 .rot<&point::x, &point::y>(-45 * pi / 180) << "\n";

The output should remain the same. The source code looks giirtiebnext group of hommrks
will clean it up.

v Homework 7.2.6a: call the template member function from a template

There might be manclasses of objects that we want to rotate around an axis: a point, a circle, a rec-
tangle. Thefollowing spin function is therefore a template function. In line 10 it should accept the

address of thpointp in line 19. But the explicit template guments<&T::x, &T::y> in line 13 do
not compile.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/rot2/spin.C

#include <iostream>
#include <cstdlib>
#include <cmath>
#include "point.h"
using namespace std;

/ IT must have data members x and y, and template member function rot.

O~NO O WNPE

9 t emplate <class T>
10 void spin(T *p)

11 {

12 static const double pi = 4 * atan2(1, 1);
13 p->rot<&T::X, &T::y>(45 * pi / 180);
14}

PeSsao A hesenea ©2014 Mark Meretzky

726 Templates Chapter7

15

16 int main()

17 {

18 point p(1, 0, 0);
19 spin(&p);

20 cout <<p<<"\n"
21 return EXIT_SUCCESS;
22}

What happens when the computer first sees theedime 13? It knows thait is a member of,
thanks to the> in front of it. It also knows thatot is not the name of a data type, thanks to the absence
of typename in front of it. The computer mightven figure out thatot is a member function of,
thanks to the argument list in parenthesBst the computer will not bele tatrot is atemplatemem-
ber function ofT. It thinks that the angle brackets are thess than’ and “greater thar’'operators, result-
ing in cryptic error messages.

spin.C: In function 'void spin(T*) [with T = point]”:

spin.C:19:9: instantiated from here

spin.C:13:2: error: invalid operands of types '<unresolved overloaded
function type>’ and 'double point::*' to binary 'operator<’

spin.C:13:2: error: invalid operands of types 'double point::* and
'double’ to binary 'operator>’

To tell the computer that theot in the abee line 13 is a template member function, insert the
keywordtemplate immediately before theot .
A

v Homework 7.2.6b: simplify the function calls

To gare the user the pain of calling tlee template function direct)ygive classpoint the follow-
ing three inline public member functions.

1 / IRotate this point around the X, Y, or Z axis.
2 point& xrot(double theta) {return rot<&point::y, &point::z>(theta);}
3 point& yrot(double theta) {return rot<&point::z, &point::x>(theta);}
4 point& zrot(double theta) {return rot<&point::x, &point::y>(theta);}
You can nav changemain back to its original wrding. Therot template function can be pae, and the
data members can beyate again.
A
v Homework 7.2.6c¢: simplify the function definition
Introduce tvo referencesa andb, to make therot template function more legible.
1 t emplate <double point::*A, double point::*B>
2 point& point::rot(double theta)
3 {
4 double& a = this->*A;
5 double& b = this->*B;
6
7 if(@a'!=0 .0]|b!=0.0){ /ifthis pointis not on the axis,
8 const double r = sgrt(a *a + b * b);
9 / letc.
A

PeSsao A hesenea ©2014 Mark Meretzky

1
2
3

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

Section 7.2.6 Template Member Functions 727

v Homework 7.2.6d: a template member function

A series of function calls that use the sameable should be packaged as an object. The functions
should be member functions; the variable should be a data meSssep. 177.

We saw a eries of calls in lines 11-14 step.C on p. 656. Package them as an object, with the
data membep in the folloving line 2 and the template member functions in lines 16 and &8print
functions can be member functions too.

class stepper {
const void *p;
public:
stepper(const void *initial_p): p(initial_p) {}
stepper operator=(const void *new_p) {p = new_p; return *this;}

t emplate <class T>
static void print(const T& t) {cout << t;}

static void print(unsigned char c) { /* etc. */ }
/letc.: static print member functions for other data type(s)
/Ithat require special handling

template <class T>
const T& stand() const { /* etc. */ }

template <class T>
const T& step() {/* etc. */}

20}

©CoOoO~NOOOUTA,WNPE

10
11
12
13

Since thestep member function is called the most frequentlywould like to rame it
operator() as on p. 299. But an explicit template argument can be applieddpesaator function
only if we write the name of the function in full; see p. 659.

A

A template member function of a template class

Ever wonder hw classvector got so map two-argument constructors? The following line 14
calls a constructor that takesawgointers, 15 the one that &k two list<obj> iterators (pp. 179-180),
and 16 the one that takesotwector<int> iterators. Wherelid all these constructors come froraipw
mary are there?

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/template_constructor/mainl.C

#include <iostream>
#include <cstdlib>
#include <vector>
#include <list>
#include "obj.h"

using namespace std;

i nt main()

{
const inta[] = {10, 20, 30};
const size_t n = sizeof a/ sizeof a[0];
list<obj> li(a, a + n);

PeSsao A hesenea ©2014 Mark Meretzky

14
15
16
17
18
19}

728 Templates Chapter7

vector<int> vl(a, a + n); //born containing 10, 20, 30
vector<int> v2(li.begin(), li.end()); //born containing 10, 20, 30
vector<int> v3(v2.begin() + 1, v2.end()); //born containing 20, 30

return EXIT_SUCCESS;

The following classrector shavs hav they were defined, without bothering to actually holgy an
values. ltis a template class, with thanfiliar <classT> preamble in lines 6 and 16. Its constructor is a
template member function, with itsva <classITERATOR> preamble in lines 9 and 17. The function
definition at line 18 has both preambles. Do not attempt to combine them.

Line 18 is a tw-algument constructor taking wpair of iterators—variables to which lines 21-22
can apply the operatots , *, and ++. Specifically, the arguments are what pp. 834-837 will catiput
iterators’, which can be used to read a seriesalfigs. Thestandard library assumes that an iterator can be
passed by value; we follothis corvention here.

For a template member function defined inside the template class definition, see line 13.
—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/template_constructor/vector.h

1 #ifndef VECTORH

2 #define VECTORH

3 #include <iostream>

4 using namespace std,;

5

6 t emplate <class T>

7 class vector {

8 public:

9 t emplate <class ITERATOR>
10 vector(ITERATOR first, ITERATOR last); /ldeclaration
11
12 template <class ITERATOR>
13 void f(ITERATOR it) {} /ldeclaration and definition
14}
15

16 template <class T>
17 template <class ITERATOR>

18 ::vector<T>::vector(ITERATOR first, ITERATOR last) //definition
19{
20 cout << "Constructing a vector that contains";
21 for (; first != last; ++first) {
22 cout <<"" << *irst;
23 }
24 cout <<"An"
25}
26 #endif
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/template constructor/main2.C

OO, WN P

#include <iostream>
#include <cstdlib>
#include <vector>
#include <list>
#include "obj.h"
#include "vector.h"

PeSsao A hesenea ©2014 Mark Meretzky

7
8
9

10{

11

12

13

14

15

16

17

18

19

20

21}

Section 7.2.7 “ One-to-Many” and “Many-to-Many” Friendships 729

using namespace std;
i nt main()

const intaf] = {10, 20, 30};
const size_t n = sizeof a/ sizeof a[0];

list<obj> li(a, a + n);

std::vector<int> v(a, a + n);
:vector<int> vi(a, a + n);

::vector<int> v2(li.begin(), li.end());
::vector<int> v3(v.begin() + 1, v.end());

return EXIT_SUCCESS;

construct 10 Line 13 constructs a list.
copy construct 10

destruct 10

construct 20

copy construct 20

destruct 20

construct 30

copy construct 30

destruct 30

Constructing a vector that contains 10 20 30. line 16

Constructing a vector that contains 10 20 30. line 17

Constructing a vector that contains 20 30. line 18

destruct 10 Line 20 destructs the list.
destruct 20

destruct 30

7.2.7 '‘One-to-Many” and “Many-to-Many” Friendships

Our template classtack and itsoperator== friend enjqy the kind of friendship that you proba-
bly want for your template classes and their frierlach instantiation abperator==is a friend of, and
takes arguments of, the corresponding instantiatiatack . Thusoperator==<int> is a friend of
stack<int> ; operator==<double> is a friend ofstack<double> . See line 29 oftack.h on
p. 685.

There are actually three possible correspondences between a friend function and a template class:
(1) One-to-may. A non-template function can be a friend eénry instantiation of a template class.

(2) One-to-one Each instantiation of a template function can be a friend of the corresponding instan-
tiation of a template class. The function and class must agree in the nhumber and type of their template
argument(s). Br examplepperator== andstack both hae the template argument liskass T

(3) Mary-to-mary. Every instantiation of a template function can be a friendvefyeinstantiation of
a template class. The function and class do ne¢limagree in the number and type of their templaggiar
ment(s).

Of course, a non-template class can alsee lmfiend function. This friend can be a non-template
function (one-to-one) or gninstantiation of a template function (nyatm-one). Butthese combinations
are completely straightforward, so only template classes are discussed here.

PeSs a0 A hesenea ©2014 Mark Meretzky

730 Templates Chapter7

One-to-many

The template classrapper has the data memberin the followving line 7, the constructor in 9, and
precious little else. The non-template functariside in line 10 is a friend ofwery instantiation of
wrapper . To demonstrate this umérsal friendship, it mention the pete membett of three diferent
instantiations. (Br each instantiation, an anonymous object is constructed.)

Surprisingly,outside was &le to achige these friendships without being a template functiBnt
outside had to be defined outside the body of the class definition, and it had to be defined after the class
definition since it mentions. Hadoutside been defined within the class definition, it wouldéaeen
instantiated—copied and pasted into the prograweryetime the class template was instantiatddhis
could causeutside to be multiply defined, or not defined at all.

But dont probe the limits of what will compile. Please define this kind of friend outside the class
definition, at line 13, allowing the tem,plate to be instantiatgdhamber of times.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/many/one_to_many.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 class wrapper {
7 T
8 public:
9 wrapper(const T& initial_t = T()): t(initial_t) {}
10 friend void outside();
11}
12
13 void outside()
14 {
15 cout << wrapper<bool>().t <<"\n";
16 cout << wrapper<int>().t <<"\n";
17 cout << wrapper<double>().t << "\n";
18}
19
20 int main()
21
22 cout << boolalpha << fixed;
23 outside();
24 return EXIT_SUCCESS;
25}
false Line 23 callsoutside
0
0.000000

A non-template function with a T

Like the abwe functions, the follwing outside andinside in lines 14 and 15 are friends of
evay instantiation of the clas0ddly, their declarations can mentidneven though thg are not template
functions. Eachinstantiation of the class defines anotinside and declares anotheutside . A sep-
arate definition has to be written for eamiiside function (lines 18-20); the GNg++ compiler ques-
tions our judgement in undertaking this oblign. We recommend that you define this kind of friend
inside the class definition.

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.7 “ One-to-Many” and “Many-to-Many” Friendships 731

If the functions had @ in their body or return valuepubnot in their arguments, function namese
loading would be impossible. In this case, we would be unable to instantiate the class more th@heonce.
GNU g++ compiler sometimes lets us getay with this, but it shouldn’t.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/many/t.C

#include <iostream>
#include <cstdlib>
using namespace std;

bool inside(const bool& t1);
i ntinside(const int& t1);
double inside(const double& t1);

O©CoOo~NOOOUTA, WNPE

t emplate <class T>
10 class wrapper {

11 T t

12 public:

13 wrapper(const T& initial_t = T()): t(initial_t) {}

14 friend T outside(const T& t1);

15 friend T i nside(const T& t1) {return wrapper<T>(t1).t;}
16 };

17

18 inline bool outside(const bool& b) {return wrapper<bool>(b).t;}
19 inline int outside(const int& i) {return wrapper<int>(i).t;}

20 inline double outside(const double& d) {return wrapper<double>(d).t;}
21

22 int main()

23

24 cout << boolalpha

25 << outside(true) << "\n"

26 << outside(10) << "\n"

27 << outside(3.14) << "\n"

28

29 << inside(true) << "\n"

30 << inside(10) << "\n"

31 << inside(3.14) << "\n";

32

33 return EXIT_SUCCESS;

34}

t.C:14:37: warning: friend declaration 'T outside(const T&)’ declares a
non-template function

t.C:14:37: note: (if this is not what you intended, make sure the
function template has already been declared and add <> after the
function name here)

true Lines 25-27 calbutside

10

3.14

true Lines 29-31 calinside

10

3.14

PeSsao A hesenea ©2014 Mark Meretzky

732 Templates Chapter7

One-to-one with a template function

We havealready endorsed theperator== template function for its one-to-one friendship with a
template class (line 29 stack.h on p. 685). Here its is again, with some notes on portability.

Each instantiation afperator==is a friend of the corresponding instantiatiomoépper .
operator== andwrapper must agree in the number and type of their templafenaents (lines 8 and
11). <classT> and<classT> . Since the do, we can omit the leftmo3tin lines 18 and 20, although
the<angle brackts> must remain.But before these lines can apgly> or <> to the nameperator==,
there must be a prior declaration tbaerator== is a template function (line 9). And before line 9 can
apply<T> to the namevrapper , there must be a prior declaration thabpper is a template class (line
6).

The GNUg++ forces us to defineperator== outside the body of the class definition, at line 28.
Line 20 is rejected, possibly because it looks Ekmrtial specialization of a template function (p. 702).
The program can be conditionally compiled with the macr@NUC__ (four underscores), predefined for
the GNUcompiler.

We recommend that you define this kind of friend outside the class definition, in line 28, thus satisfy-
ing every compiler That's what we did in line 71 aftack.h on p. 686.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/many/one_to_onel.C

#include <iostream>
#include <cstdlib>
using namespace std;

t emplate <class T>
class wrapper;

t emplate <class T>
bool operator==(const wrapper<T>& w1, const wrapper<T>& w2);

O©CoOoO~NOOOUTA, WNPE

10
11 template <class T>
12 class wrapper {

13 T

14 public:

15 wrapper(const T& initial_t = T()): t(initial_t) {}

16

17 #ifdef _ GNUC__

18 friend bool operator==<T>(const wrapper<T>& w1, const wrapper<T>& w2);
19 #else

20 friend bool operator==<T>(const wrapper<T>& w1, const wrapper<T>& w2) {
21 return wl.t==w2.t,

22 }

23 #endif

24},

25

26 #ifdef __ GNUC__
27 template <class T>
28 inline bool operator==(const wrapper<T>& w1, const wrapper<T>& w2) {

29 return wl.t==w2.t;
30}

31 #endif

32

33 int main()

34 {

PeSsao A hesenea ©2014 Mark Meretzky

35
36

37}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Section 7.2.7 “ One-to-Many” and “Many-to-Many” Friendships 733

cout << boolalpha << (wrapper<int>() == wrapper<int>()) << "\n";
return EXIT_SUCCESS;
true

Many-to-many
Every instantiation of the template functions in the folleg lines 13 and 16 is a friend ofeey

instantiation of the classThe functions and the class need not agree in the number and type of their tem-
plate aguments. ® emphasize this, the preambles in line 6 and 15 are totally different.

I’'m sorry thatoutside needs the additional templatgamentU in line 12. | hoped | could elimi-
nate theclassU , and change theonstU& u in line 13 toconstT& t1 . But when | tried it, | had to
remove theclassU from line 22. | then had to write a cgpof lines 22-25 with eacbl changed tant
(because of thd0 in line 31), and another cyppof lines 22-25 with eacl changed tounsigned
(because of th&0u in line 33).

| also tried to change thdto T in lines 22 and 23For consisteny, | then wanted to makthe same
change in lines 12 and 13. Bufan line 12 would conflict with theT in line 6. We recommend that you
define this kind of friend inside the class definition.

Line 27 instantiates the class so timside will be declared before we get to line 31.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/many/many_to_many.C

#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

t emplate <class T>
class wrapper {
T
public:
wrapper(const T& initial_t = T()): t(initial_t) {}

template <int BASE, int WIDTH, class U>
friend void outside(const U& u);

template <int BASE, int WIDTH>
friend void inside(const T& t1) {
cout << setbase(BASE) << setw(WIDTH)
<< wrapper<T>(tl).t << "\n";

20 };

21

22 template <int BASE, int WIDTH, class U>
23 inline void outside(const U& u) {

24

cout << setbase(BASE) << setw(WIDTH) << wrapper<U>(u).t << "\n";

25}

26

27 template class wrapper<double>; //explicit instantiation

28

29 int main()
30{

PeSsao A hesenea ©2014 Mark Meretzky

734 Templates Chapter7

31 outside<16, 2>(10); /[The 10 changes U to int.
32 inside<10, 2>(10);
33 outside<16, 2>(10u); /IThe 10u changes U to unsigned.
34 inside<10, 2>(10u);
35 return EXIT_SUCCESS;
36}
a
10
a
10

7.2.8 Uncouplethe Data Types

A breadboard for plugging data types together

We introduced templates as glorified carbon pap#ing us &oid writing the same source codeep
and wer. But we can also think of templates as a way of building bigger data types out of smaller ones,
fully coequal with the agggeation and inheritance on p. 257.

Consider har we joined classebrownian andvictim_t with private multiple inheritance to cre-
ate the following class. See lines 18 and 26 on p. 696.

grandchild<brownian, victim_t, 'r'>

The user who plugs the templatgaments into the alve <angle brackts> does not need to worry about
private vs. public, single vs. multipleThe glue that joins the arguments is hidden by the tempRaehaps
agrandchild contains ebrownian , or contains a pointer or reference td@wnian , or is derived
from classbrownian , ether publicly or prvately. Or perhaps there is exactly omeownian object,
shared by all thgrandchild objects. Operhaps ndrownian object exists at all, and a

grandchild object merely calls the static member functions of ddasg/mnian

The arguments and angle brackets cgam &e hidden in a typedef. The person writing line 27 in the
code on p. 696 does natea need to knw that a template is wolved.

The standard library has manlasses in which a template hidesahthe data types were plugged
together Consider the familiar clasgector

#include <vector>
#include "date.h"
using namespace std;

ab~hwWwNRE

v ector<date> v;

Classvector actually accepts a second templatguarent. Vé reve had to write it because it has the
following default:

6 vector<date, allocator<date> > v;
The member functions of claafiocator<date> perform the dynamic memory allocation and deallo-
cation for a growing and shrinkingector<date> . Once again, the template hides the exact relationship

between the data typeBoes avector contain arallocator or a pointer thereto? Or doesector
call the static member functions of cladlecator ? The user does not need to no

An interface for keeping the data types separate

Pages 163-179 presented four reasons to package a chunk of code or functionality asfafidtass.
reason is that a class is a unit of syntax that can be plugged into—or withheld from—a teWivplaié.
see three examples.

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data pes 735

(1) The error checking in lines 39-43mintable.h on p. 736 has been packaged as a class
printable so that it can be plugged into—or withheld from—teeminal template on pp. 740-745.

(2) The> operator in line 14 omain3.C on p. 768 has been packaged as a ¢eesaer_int SO
that it can be plugged into tlserter template in line 17 aforter2.h on p. 767.

(3) A wabbit s gyle of motion has been packaged as classes sumtowsian andmanual so
that it can be plugged into tigeandchild template on pp. 695-696.

If the template is a function template, we can pass it more than just a temgleteiatT. We can
also pass it a function argument whose data tyfde iBor example,T could be a class and the function
argument could be an object of that class, carrying data members. An example is in limad&84o€
on p. 771.0r T could be a the data type of a pointer to a function, and the function argument could be a
pointer of that type. See line 55m&in4.C on p. 771.

The template clasgrandchild was a lveadboard for plugging other data types together (pp.
695-696). Inthe following example, a template will keep the data typéstable and terminal
cleanly separated from each oth&hese tw ways of using templates are opposite sides of the same coin.

Until now, our C++ code has been a straightforward extension of C. An object is just a glorified
structure; a virtual member function is a call through a pointer; a template is@nown macro. But
starting here, and culminating in Chapters 8 and 9, these features will come together in a synthesis that has
no counterpart in CFunctions, classes, objects, and templates will interpenetratevimaygs. Thevery
appearance of the code on the page will become remote from anything seen in a C program.

Class printable

Here is the clasprintable we wrote on pp. 343-344, upgraded to whithe exceptions on pp.
628-629. Itsheart is theechar data member in the following line 11.

A printable object has the look and feel othar . Wheneer we try to read the objec’value,
the operatorchar in line 33 is transparently calledzor example, line 14 ofmain.C on p. 738
behaes as if we lad written the comment alongside.

But aprintable object will accept only printablealues. Wheneer we try to write a value into
an object, th@perator= member function in line 37 gifrintable.h is ultimately called. This func-
tion will reject non-printing characters such'@ (alarm),\b’ (backspace), ant¥’ (formfeed). It
will store only a printable value into the data member mfistable object.

For example, line 12 ofmain.C calls the constructor in line 31 pfintable.h , which calls the
operator= in line 37. And theoperator+= in line 49 ofprintable.h callsoperator char to
read andperator= to write.

The = operator in line 37 is binary: it takesdwgperands, as in line 10 pfintable.C on p. 738.
An operator= must do nothing if its operands are the same varialsex(). Mostoperator= s there-
fore begin with anf to verify that their ajuments are in fact owiifferent \ariables. Butheif is unnec-
essary hereWe dready knaev that the operands are féifent variables because of their different data types:
the left operand*this) is aprintable , while the right operand {) is aT that is not grintable
(If the right operand was @rintable , we would hare alled theoperator= function provided for us
implicitly.) For an earlieoperator= that needed nid , see p. 309.For the tests in lines 14 and 18 of
printable.h , and the cowersion in line 21, see pp. 343-344.

The isprint member function in line 13 calls thsprint function in the standard library
Without thestd:: in line 14, we would go into an infinite loop.

We wrote no cop constructor for clasprintable because we were satisfied with the one pro-
vided implicitly. It can assume that its argument isgdlgrintable . We dso get an implicit
operator= whose argument is@intable

Classprintable delivers no functionality other than the error checking in the ¥ahg lines
39-41. W havepackaged the error checking as a class so that we can plug it cleanly into—and unplug it
cleanly from—the clasterminal on pp. 740-745.

PeSsao A hesenea ©2014 Mark Meretzky

736 Templates Chapter7

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/printable2/printable.h

1 #ifndef PRINTABLEH
2 #define PRINTABLEH
3 #include <iostream>
4 #include <sstream> //for ostringstream
5 #include <cctype> /ffor std::isprint
6 #include <climits> //for UCHAR_MAX
7 #include "except.h"
8 using namespace std;
9
10 class printable {
11 char c;
12
13 static bool isprint(char c) throw () {
14 return std::isprint(static_cast<unsigned char>(c)) != 0;
15 }
16
17 static bool isprint(int i) throw () {
18 return i >= 0 &% i <= U CHAR_MAX && std::isprint(i) = 0;
19 }
20
21 static unsigned code(char c) throw () {
22 return static_cast<unsigned char>(c);
23 }
24
25 static int code(int i) throw () {return i;}
26 public:
27 template <class T> /IT must be char or int.
28 printable& operator=(T t) throw (except);
29
30 template <class T> /IT must be char or int.
31 printable(T t) throw (except) {*this = t;}
32
33 operator char() const throw () {return c;}
34}
35

36 template <class T>

37 printable& printable::operator=(T t) throw (except)

38 {

39 if (lisprint(t)) {

40 ostringstream ost;

41 ost << "character code " << code(t) << " is not printable";
42 throw except(ost);

43 }

44

45 c =1t;

46 return *this;

47}

48

49 inline printable& operator+=(printable& p, int i) throw (except) {

50 return p = p + i,/ [return p.operator=(p.operator char() + i);
51}

52

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data ypes 737

53 inline printable& operator-=(printable& p, int i) throw (except) {

54 return p=p-i;

55}

56

57 inline printable& operator++(printable& p) throw (except) {return p +=1;}
58 inline printable& operator--(printable& p) throw (except) {return p -=1;}

59

60 inline const printable operator++(printable& p, int) throw (except) {
61 const printable old = p;

62 ++p;

63 return old;

64}

65

66 inline const printable operator--(printable& p, int) throw (except) {
67 const printable old = p;

68 -p;

69 return old;

70}

71

72 inline const printable operator+(printable p, int i) throw (except) {
73 return p +=1i;

74}

75

76 inline const printable operator+(int i, printable p) throw (except) {
77 return p +=1i;

78}

79

80 inline const printable operator-(printable p, int i) throw (except) {
81 return p-=1i;

82}

83

84 istream& operator>>(istream& ist, printable& p) throw (except);
85 #endif

The constructor for clagwintable , and mary other functions that takand returnprintable
call each otherBut this is no sin. All are inline, so no time is wasted.

(1) The='sin lines 31, 50, and 54 of the alegrintable.h , and line 10 ofprintable.C , call the
operator= in line 37 ofprintable.h . But the=in line 45 ofprintable.h does not call
anyoperator= function. ltis the built-in= that performs assignmente¢bar orint .

(2) Thet+=sinlines 57, 73, and 77 gfintable.h call theoperator+= in line 49. The

-='sin lines 58 and 81 gdrintable.h call theoperator-= in line 53.

(3) Theprefix++ in line 62 ofprintable.h calls the prefboperator++ in line 57. The prefix
-- in line 68 ofprintable.h calls the prefioperator-- in line 58.

(4) The+ and- inlines 50 and 54 gifrintable.h do not call theoperator+ and
operator- inlines 72 and 80, since these functiongehat yet been seen. (The rules will change
on p. 751.)

(5) Therightmostp (the one used as an rvalue) in lines 50 and Piofable.h calls the
operatorchar in line 34.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/printable2/printable.C

1 #include <iostream>
2 #include "printable.h"

PeSs a0 A hesenea ©2014 Mark Meretzky

738 Templates Chapter7

using namespace std;

3
4
5 i stream& operator>>(istream& ist, printable& p) throw (except)
6
7
8

{
char c; /luninitialized variable
9 if (ist>>c){ /lif (operator>>(ist, c).operator void *()) {

10 p = c; | Ip.operator=(c);
11 }
12
13 return ist;
14}

We @an easily combine the following lines 14-17 into a single statement, but this would complicate
the comments.

—On the Web at

http://i5.nyu.edu/ Cmm64/book/src/printable2/main.C

1 #include <iostream>

2 #include <cstdlib>

3 #include "except.h"

4 #include "printable.h”

5 using namespace std;

6

7 i nt main()

8 {

9 i nt status = EXIT_FAILURE;
10
11 try |
12 printable p="A;
13
14 cout <<p; /loperator<<(cout, p.operator char());
15 cout <<"\n";
16 cout << ++p; /loperator<<(cout, p.operator++().operator char());
17 cout <<"\n";
18
19 p ="'\0;
20 status = EXIT_SUCCESS;
21 }
22
23 catch (const except& e) {
24 cerr << e.what() <<"\n";
25 }
26
27 return status;
28}

A
B my machine is ASCII

character code 0 is not printable

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data ypes 739

Class terminal has the same error checking as class printable.

A well-written function begins by checking that its arguments alid.vFor example, the follwing
member function, originally appearing on p. 161, checks thelh#s argument is printable.

1 / /Excerpt from terminal.C.

2
3 void terminal::put(unsigned x, unsigned y, char c) const
4 {
5 i f (isprint(static_cast<unsigned char>(c)) == 0) {
6 ostringstream ost;
7 ost << "unprintable character "
8 << static_cast<unsigned>(static_cast<unsigned char>(c))
9 << " \n";

10 throw except(ost);

11 }

12

13 check(x, y);

14 term_put(x, Yy, C);

15}

The error checking becomes more intvasi we make it optional via conditional compilation, and
also provide an exception specification.

16 void terminal::put(unsigned x, unsigned y, char c) const

17 #ifdef CHECK

18 throw (except)

19 #endif

20 {

21 #ifdef CHECK

22 if (isprint(static_cast<unsigned char>(c)) == 0) {
23 ostringstream ost;

24 ost << 'unprintable character "

25 << static_cast<unsigned>(static_cast<unsigned char>(c))
26 << "\n";

27 throw except(ost);

28 }

29 #endif

30

31 check(x, y);

32 term_put(x, Yy, C);

33}

Now that we are checking the functiogaments, we should also check the retwaines. Br exam-
ple, here is théerminal::get from p. 160.

34 /[Excerpt from terminal.C, showing the definition of a public member function
35 /lthat was inline when it originally appeared.

36

37 char terminal::get(unsigned x, unsigned y) const
38{

39 check(x, y);

40 return term_get(x, y);

41}

With conditionally compiled error checking for printabiliityneeds an extra variable.

42 char terminal::get(unsigned x, unsigned y) const

PeSsao A hesenea ©2014 Mark Meretzky

740 Templates Chapter7

43 #ifdef CHECK

44 throw (except)

45 #endif

46 {

a7 check(x, y);

48

49 const char c =term_get(x, y);

50 #ifdef CHECK

51 if (isprint(static_cast<unsigned char>(c)) == 0) {
52 ostringstream ost;

53 ost << 'unprintable character "

54 << static_cast<unsigned>(static_cast<unsigned char>(c))
55 << "\n";

56 throw except(ost);

57 }

58 #endif

59 return C;

60 }

Is there a less intrug way to check thatwery character is printable? And if we did want teelifast
and dangerouslys there a cleaner way to turn the checking on ahdtofompile time? We ae about to
see that the printability checking shouldserehavebeen bundled together with clagsminal . Tem-
plates will let us put asunder what shouldendiavebeen joined.*

v Homework 7.2.8a:
Version 4.2 of the Rabbit Game: clasgerminal becomes a template class

Independent concepts should be independently represented .
—ABjarne StroustrupThe C++ Pogramming Languge p. 37

The member functions of clagsrminal will check that their character arguments and retatn v
ues are printableTo turn the checking on, the arguments and retaioes will beprintable objects
that are passed and returned layue. (W assume that anything playing the role of a characteass f
enough to pass byalue.) Thechecking will then be performed by the constructors for these objéots.
turn the checking off, we will change the arguments and return values back to plcharold.

Classterminal will be a template class, just élvector , list , and all the other containerst

should hae keen a template class all alonlgs template argument will be the data type of the characters

passed to and from the member functions. This will let us turn the error checking oh cedrdy.

We will now be ale to construct the terminals in lines 4-8/e will also hare aken our first step
towards the terminal in line 8.

#include "printable.h"
#include "terminal.h"

1

2

3

4 t erminal<char> term1(’.’);

5 t erminal<> term2(’."); /lthe same data type
6 t erminal<printable> term3(’.’);

7
8

t erminal<wchar_t> term4(L"."); /hw is "wide", L is "long"

9 / [This file is terminal.h, showing some of the members of class terminal.
10 #ifndef TERMINALH
11 #define TERMINALH

* For another example of counterproduethundling, see p. 563.

PSsao A hesenea ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data pes 741

12

13 #extern "C" {

14 #include "term.h"

15}

16

17 template <class CHAR = char>
18 class terminal {

19 const CHAR _background;

20 const unsigned _xmax;

21 const unsigned _ymax;

22

23 public:

24 terminal(const CHARG& initial_char);

Theput member function will be simplified to the folling template.We wrn the character error check-
ing on and off, without anexplicit conditional compilation, by our choice of the argument in<thegle
brackets in the following lines 31 and 38. Do not write an exception specification at the end of line 26.

25 template <class CHAR>
26 void terminal<CHAR>::put(unsigned x, unsigned y, CHAR c) const

274
28 check(x, y);
29 term_put(x, Y, C);
30}
If we say
31 terminal<char> term(’.’);
32 term.put(0, 0,'A);

the abwoe line 32 will instantiate line 26 as the following function. No error checking will be performed on
the third argument:

33 void terminal::put(unsigned x, unsigned y, char c) const

344
35 check(x, y);
36 term_put(x, Y, C);
37}
But if we say
38 terminal<printable> term(’.’);
39 term.put(0, 0,'A);

the abee line 39 will instantiate line 26 as the following function.

40 void terminal::put(unsigned x, unsigned y, printable c) const

414

42 check(x, y);

43 term_put(x, Yy, C);
441

The third argument in the ab® line 40 is passed by value, calling a constructor for gassable
The third argument in the ab®line 39 was &har , so he constructor will be the one that takeshar in
line 31 ofprintable.h on p. 736. It will thrav an exception if its argument is not printable.

(1) Move the definitions of the non-inline member functions of classminal from
terminal.C toterminal.h . Thenremegeterminal.C entirely.

(2) Give the following preamble to the template class definition, as in theedibe 17.

PeSsao A hesenea ©2014 Mark Meretzky

742 Templates Chapter7

45 template <class CHAR = char>

But do not write the default value in the preamble for the definitionyhan-inline member function, as
in the abee line 25. The default char is written only once.

(3) Change the data membdyackground from constchar to constCHAR . Change the fol-
lowing from char to CHAR the return type of the member functibackground ; the argument of the
constructor for clasterminal ; the return alue of the member functiayet ; and thechar argument of
the member functioput .

(4) The character\Q’ is not printable, so there can be @ -terminated arrays of
printable ’s. This means that therminal::put whose third argument isS@GHAR * is nhowv useless
and should be remmed. Temporarily change the messages at the emgumie::play to single character
such asl” or’?" . Don't worry: we will regan the ability to print a string gfrintable s on p. 9B2.

(5) The return value of the member functiey will remainchar . CHARis only for screen char
acters, not &ystrokes.

(6) The arguments and returalwes of the C functions irerm.h will remain char . C does not
have emplates.

(7) As in the abee lines 11-23terminal::put will no longer explicitly callisprint . We
will now rely on the constructor for cla€HAR0 perform ag checking that needs to be done.
terminal.h no longer needs to includectype> .

(8) Every container in the C++ Standard Library has a public member naued type , which
is a typedef for the data type of each element held in the cont&oreexample,
vector<int>::value_type is a typedef foint :

46 #include <vector>
47 using namespace std;

48

49 vector<int> v(argument(s) for constructgr

50 if ('v.empty()) {

51 vector<int>::value_type x = v[0]; [/Ix is int
52 }

Other examples ofalue_type were in lines 6, 10, 16-17 stack2.h on pp. 153-154; lines 6 and 9
of node.h on p. 214, line 18 dfypename.C on p. 675; line 16 oftack.h on p. 685.

What isvalue_type good for? After all, isrt'it obvious that the ah@ vector<int> would
containint ’'s and thatx should therefore be a@nt ? We wsevalue_type when wedon’t know what
type of container we're dealing with:

53 #define CONTAINER vector<int> //suppose this #define was off in another file.
54
55 void f(const CONTAINER& c)

56 {

57 if (‘c.empty()) {

58 CONTAINER::const_iterator it = c.begin();
59 CONTAINER::value_type X = *it

60 }

61}

In contemporary C++, the opaque na@®NTAINERs more likely to be the template argument in lines
62-63 than the macro in the afeds3:

62 template <class CONTAINER>
63 void f(const CONTAINER& c)

64 {
65 if (‘c.empty()) {
66 typename CONTAINER::const_iterator it = c.begin();

PSS ao A hesenea ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data Ypes 743

67 typename CONTAINER::value_type x = *it;
68 }
69 }
So add the following public member to the template dkgsinal

70 typedef CHAR value_type;

(9) The following line compares twchar ’s in the original constructor for classrminal in line
9 of terminal.C on p. 160:

71 if (_background !=""){
The_background is nov aCHARbut the’ * remains ahar . Since we hge rot written an
operatorl= whose left and right operands &e&lARandchar , the abee line 71 will be torn between

two equally good alternates:

(a) itcan conert the from char to CHARand then perform @HARcomparison; or

(b) it can cowert the_background from CHARto char and then perform ehar com-

parison.
We will have 0 decide for it. Go with alternate @) by writing
72 if (_background != static_cast<CHAR>("")) {

We havenow finished modifying clasterminal

(10) If classeggame andwabbit were changed into template classesy theuld look as follas.
(Just look—do not makthis change.)

73 template <class CHAR> //The forward declaration is now a template declaration.
74 class wabbit;

75

76 template <class CHAR>

77 class game {

78 typedef terminal<CHAR> terminal_t;

79 const terminal_t term;

80

81 typedef list<wabbit<CHAR> *> master_t;
82 master_t master;

83

84 public:

85 game(CHAR initial_c ="."): term(initial_c) {}
86 /letc.

87}

88

89 template <class CHAR>
90 class wabbit {

91 game<CHAR> *const g;
92 /letc.
93
94 public:
95 wabbit(game<CHAR> *initial_g, //etc.
96 };
We muld nav haveseveral flavors of game in the same program:
97 game<char> gl;
98 game<printable> 02;

But let’'s rot go this &r. We don’t need the multiple flzors and the resulting code has too na@HAR>s.

PeSsao A hesenea ©2014 Mark Meretzky

744 Templates Chapter7

We will not change classegame andwabbit into template classes.

(11) Instead, simply write the typedef in line 106 and the protected typedef in lineChsge
evay terminal to terminal_t in classegyame, wabbit , and the classes dged from wabbit .
The first example is in line 107.

(12) Ewery char that represents a character on the screen (as opposedejstimie from the
keyboard) should be changed terminal_t::value_type in classesgame, wabbit , and the
classes deved fromwabbit . Examples are in lines 113, 116, 126 (which must come after 124), and 130.

The char ’s in manual::decide will remain char 's. They represent &ystrokes, not screen
characters. Thehar s in the arraya in game::game will remain char ’s. | just dont want to fool
around with arrays gfrintable objects yet.

The typedefterminal_t in line 106 is a member of clagame. It can be mentioned only in
game.h and the files that include this head&he typedeterminal_t in line 124 is a member of class
wabbit . It can be mentioned only wabbit.h and the files that include this head&herefore do not
changeterminal toterminal_t , andchar toterminal_t::value_type , ahywhere in the files
printable.h , printable.C ,terminal.h ,terminal.C ,term.h ,term.c

99 //Excerpt from game.h.
100 #include "printable.h"
101 #include "terminal.h"

102

103 class wabbit; /[forward declaration

104

105 class game {

106 typedef terminal<printable> terminal_t;

107 const terminal_t term;

108

109 typedef list<wabbit *> master _t;

110 master_t master;

111

112 public:

113 game(terminal_t::value_type initial_c =".")
114 : term(initial_c) Iletc.

115

116 master_t::size_type count(terminal_t::value_type c) const;

117 //[Excerpt from wabbit.h.
118 #include "game.h"

119
120 class wabbit {
121 game *const g;
122 unsigned X, V;
123 protected:
124 typedef game::terminal_t terminal_t;
125 private:
126 const terminal_t::value_type c;
127
128 public:
129 wabbit(game *initial_g, unsigned initial_x, unsigned initial_y,
130 terminal_t::value_type initial_c);
(13) Ingrandchild.h , do ot change
131 template <class MOTION, class RANK, char C> /llowercase char

to

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classeswuneric_limts,iterator_traits,ec. 745

132 template <class MOTION, class RANK, CHAR C> /luppercase char

A constant template argument cannot be an object.
A

7.2.9 Altruistic Template Classesnuneric _|limts,iterator_traits, €c.

An altruistic template class is one whose only purpose iswe g information about other data
types. Theclassnumeric_limits<double> , for example, will gie s information about the data
typedouble . There is neer any reason to construct gmbject of this class: all of its data members and
member functions are static. Furthermore, all the data members and all the aftesnof the member
functions are constant values.

On pp. 754-755 we will use an altruistic class in a template to get information about a tergplate ar
mentT. Our first example, hower, will use an altruistic class imain .

Numeric limits

A C program gets information about the numeric data types from macros in the C Standard Library
For example, theNT_MAX and DBL_MAXin the following lines 11 and 13 are the maximuaiue that
each data type can hold.

Of greater practical importance, unless you are an astronisnttee number of significant digits that
adouble can hold. Line 15 prints this numbdn the output of line 16, the digits that came out correctly
are underlined; there happens to be one more than expected.

Why can adouble hold 15 decimal significant digitsA 15-significant-digit number can holdyan
whole number in the range 0 to'26 1 inclusive. (Of course, it could also hold fractionsd) double on
my machine has a mantissa of 53 bits, so it can hgldvlanle number in the range 0 t8°2 1 inclusive.
(Of course, it could also hold fractions.) déduble can hold ap 15-significant-digit number because

10" - 1=999, 999, 999, 999, 9999, 007, 199, 254, 740, 9$12°% - 1
But not eery 16-significant-digit number will fit into double , because
2%3-1=19,007, 199, 254, 740, 9%19, 999, 999, 999, 999, 99910 - 1
—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/numeric/limits.c

1 #include <stdio.h> /* C example */

2 #include <stdlib.h>

3 #include <limits.h> /* for INT_MIN, INT_MAX */
4 #include <float.h> /* for DBL_MAX, DBL_DIG */

5
6 i nt main()
7q
8 double d = 123456789012345678.0;
9
10 printf("Minimum intis %d.\n", INT_MIN);
11 printf("Maximum intis %d.\n\n", INT_MAX);
12
13 printf("Maximum double is %g.\n", DBL_MAX);
14 printf("A double has a %d-bit mantissa.\n", DBL_MANT _DIG);
15 printf("A double can hold %d decimal significant digits.\n", DBL_DIG);
16 printf("%.*g\n", DBL_DIG + 3, d);
17
18 return EXIT_SUCCESS;
19}

PeSsao A hesenea ©2014 Mark Meretzky

746 Templates Chapter7

Without the.0 in the abee line 8, the computer would think that the literal is of angrakdata
type. W& would then get an error message if no integral type is big enough to hold this value.

Minimum int is -2147483648.
Maximum int is 2147483647.

Maximum double is 1.79769e+308.

A double has a 53-bit mantissa.

A double can hold 15 decimal significant digits.
1234567890123456 80

A C++ program would get information about data types from the template class
numeric_limits . Only built-in numeric data typesint , char , double , but not pointers, enumera-
tions or objects—can be plugged into #engle brackets of numeric_limits

The static member functiomsin andmax return the minimum and maximum possible values for a
data type.Classnumeric_limits<int> has themin function in the following line 9 that returns the
smallestint ; classnumeric_limits<double> has thenax function in 11 that returns the biggest
double . This class also has the public static data memlggis10 in line 15 corresponding to the C
macroDBL_DIG. Line 18 outputs three more than this number of digits; the sixteen that came-out cor
rectly are underlined.

The members ofiumeric_limits that give s a \alue of typeT are member functionanin,
max, etc). Themembers that ®lays give s an ntegral or enumeration value are data members
(digits10). Thisis because only inggal or enumeration data members can be initialized in a class dec-
laration; see p. 238.

—On the Web at

http://i5.nyu.edu/ Cmm64/book/src/numeric/limits.C

1 #include <iostream> //C++ example

2 #include <iomanip> /[for setprecision

3 #include <cstdlib>

4 #include <limits> /lfor numeric_limits

5 using namespace std;

6

7 i nt main()

8 {

9 cout << "Minimum int is " << numeric_limits<int>::min() << ".\n"
10 << "Maximum int is " << numeric_limits<int>::max() << ".\n\n"
11 << "Maximum double is " << numeric_limits<double>::max() << ".\n"
12 << "Adouble has a" << numeric_limits<double>::digits
13 << "-bit mantissa.\n";

14

15 int prec = humeric_limits<double>::digits10;
16 cout << "Adouble can hold " << prec

17 << " d ecimal significant digits.\n";

18

19 double d = 123456789012345678.0;

20 cout << setprecision(prec + 3) << d << "\n";
21

22 return EXIT_SUCCESS;

23}

The output may be different on your machine.

PSsao A hesenea ©2014 Mark Meretzky

NOoO o~ WNPE

Section 7.2.9 Altruistic Template Classeswuneric_limts,iterator_traits,ec. 747

Minimum int is -2147483648.
Maximum int is 2147483647.

Maximum double is 1.79769e+308.

A double has a 53-bit mantissa.

A double can hold 15 decimal significant digits.
1234567890123456 80

Oddly, the value of the macr@HAR_MAXvas of typeint (127 for a signed, 8-bithar). The

value returned bywumeric_limits<char>::max is of typechar , which makes more sense.
There are tw places wherenumeric_limits cannot be used, so domliscard your_MIN and
_MAXmacros yet. The C++ preprocessor does notvkamout numeric_limits , 0 #if directives

will still have © be written in terms of the macros. And the value for a constant template argument must be
a oonstant expression (p. 234), which does notaflonction calls. The INT_MIN and INT_MAX will
therefore hae remain inrank<INT_MIN, INT_MAX> . An example is in line 18 ofank.h on p.
694.

v Homework 7.2.9a: numeric limits
Thel.79769e+308 returned bynumeric_limits<double>::max() on my machine is
(1 _ 2—53) x 21024

My base is 2, my mantissa has 53 bits, and my maximgronent is 1024. These values available as

threeint data members of clasmimeric_limits<double> , or as hree macros in the C++ header
file <cfloat>
data membey o macros in
numeric_limits <cfloat>
2 || radix FLT RADIX
53 || digits DBL_MANT _DIG
1024 || max_exponent PBL_MAX_EXP

The 1- 273 s the sum of the folleing series of 53 terms. It represents a mantissa of all 1's, visible
as the numerators of the 53 fractions.

}+}+}+i+...+ 1 =1- 1

2 4 8 16 9,007,199, 254, 740, 992 9,007, 199, 254, 740, 992
A non-zero mantissaabys starts with a 1 bit, not stored in memay he mantissa occupies only 52 bits.
Together with the sign bit and the 11-bkpenent, this accounts for the 64 bits ofl@uble on my

machine.

Let’s verify that (1- 27°%) x 219%4js in fact equal td.79769e+308 . The standard library haswse
eral pow functions; to get the one we want, line 9 wats theradix fromint to double . Unfortu-
nately the pow in line 12 cannot raise 2 to the power 1024, becatfé&\@ould be infinitesimally bgond
the maximundouble vaue of (1- 27%%) x 21924 The workaround is to raise 2 to the power 1023 in line
12 and then double the result in line 14.

—On the Web at
http://i5.nyu.edu/ Omm64/book/src/numeric/max.C

#include <iostream>

#include <cstdlib>

#include <limits> /lfor numeric_limits
#include <cmath> [ffor pow

using namespace std;

i nt main()

PeSs a0 A hesenea ©2014 Mark Meretzky

748 Templates Chapter7

8 {

9
10
11
12
13
14
15
16
17
18
19
20
21}

const double radix = numeric_limits<double>::radix;

double m = (1.0 - pow(radix, -numeric_limits<double>::digits))
* pow(radix, numeric_limits<double>::max_exponent - 1);

m *= radix;
if (m == numeric_limits<double>::max()) {

cout << fixed << m<<"\n"; [ffixed prevents rounding

}

return EXIT_SUCCESS;

179769313486231570814527423731704356798070567525844996598917476803157260
780028538760589558632766878171540458953514382464234321326889464182768467
546703537516986049910576551282076245490090389328944075868508455133942304
583236903222948165808559332123348274797826204144723168738177180919299881
250404026184124858368.000000

What is the next-to-largest value that@uble can hold?

What is the smallest posig whole number that double cannot hold? (It would be 9 if the man-
tissa consisted of 3 bits, no mattemhiag the exponent could be.) If you try to put this number into a
double , which way will it round? See theund_style data member of class
numeric_limits<double> , whose walue is one of th#oat_round_style enumerations defined
in <limits>
A

v Homework 7.2.9b: ignote an input line

To oount the number of characters that we input or output, use the datirggorasize in line 10
of double.C on p. 355. This is also the data type of the first argument adnioee function in
input.C on p. 359. 1t ignores the specified number of characters,very¢hing up to and including a
delimiter such as a newline, whistee comes first.

To pace no ceiling on the number of characters ignored, let the fiysimant ofignore be the
maximum value of the data typtreamsize . With this special &lue,ignore will ignore everything
up to and including the delimiter.

A

An altruistic class with a data type member

The data types that hold characterscra andwchar_t . In C, the vital statistics for these types
come from macrosFor example,EOFandWEOFare the end-of-file value for each type, integers guaran-
teed to be different from srpossible character cod&Ve an storeEOFor ary char value into anint ;
we can stor&VEOFor ary wchar_t value into awint_t . The latter is a typedef for a machine-depen-
dent integral type (probablgt orlong), so the%odin the following line 12 is not portable.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/numeric/char_traits.c

1 #include <stdio.h> /* for EOF */

2 #include <stdlib.h>

3 #include <wchar.h> /* for wint_t, WEOF */
4

5 i nt main()

PSsao A hesenea ©2014 Mark Meretzky

1
2
3
4

0o ~NO O

Section 7.2.9 Altruistic Template Classeswuneric_limts,iterator_traits,ec. 749

{
i ntc =EOF;
printf("End-of-file integer for char is %d.\n", c);
wint_t wc = WEOF,;
/¥ not portable: may be %Id on other machines */
printf("End-of-file integer for wchar_t is %d.\n", wc);
return EXIT_SUCCESS;
End-of-file integer for char is -1.
End-of-file integer for wchar_t is -1.
In C++, the vital statistics fathar andwchar_t come from classeshar_traits<char> and
char_traits<wchar_t> . For example, theof static member function in the following line 8 returns

the end-of-file value for the type.

Theeof function gives us a mmber Theint_type in the following line 8 gies us a data type. It
is another name for the type of iger we could use to hold the end-of-fil@lwe:int , long , etc. The

next altruistic classjterator_traits on pp. 753-757, will hae mary members that are names of
data types.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/numeric/char_traits.C

#include <iostream>

#include <cstdlib>

#include <string> /ffor char_traits
using namespace std;

i nt main()
{
char_traits<char>::int_type c = char_traits<char>::eof();
cout << "End-of-file integer for char is " << ¢ << ".\n";
char_traits<wchar_t>::int_type wc = char_traits<wchar_t>::eof();
cout << "End-of-file integer for wchar_tis " << wc <<".\n";
return EXIT_SUCCESS;
End-of-file integer for char is -1.
End-of-file integer for wchar_t is -1.
A

v Homework 7.2.9c: use char_traits to templatize class printable

The data typechar was hardwired into clasgrintable on pp. 343-344 and pp. 735-738.
Paameterize the choice of character by turrpnigtable into the template class in line 8, renamed

basic_printable to agree with the cwention on pp. 688-689Define the class in a header file
namedprintable.h ; there will no longer be printable.C . Every explicit specialization defined in
printable.h must bestatic , or inline if it is short enough, so that the header file can be included

in more than oneC file of the same prograntfinally, reincarnate the data typeintable as the type-
def in line 35.

PSsao A hesenea ©2014 Mark Meretzky

750 Templates Chapter7

The template gumentCHARWill be eitherchar orwchar_t . These types, and the corresponding
int_type s, are fast enough to pass by value.

1 #include <string> /[for char_traits
2 #include "except.h" //for except, pp. 628-629
3 using namespace std;
4
5 / /ICHAR must be char or wchar _t.
6
7 t emplate <class CHAR>
8 class basic_printable {
9 CHAR c;
10
11 static bool isprint(CHAR c) throw ();
12 static bool isprint(typename char_traits<CHAR>::int_type i) throw ();
13
14 static typename char_traits<CHAR>::int_type code(CHAR c) throw ();
15
16 static typename char_traits<CHAR>::int_type code(
17 typename char_traits<CHAR>::int_type i) throw () {
18 return i;
19 }
20 public:
21 basic_printable& operator=(CHAR c) throw (except);
22
23 basic_printable& operator=(typename char_traits<CHAR>::int_type i)
24 throw (except);
25
26 basic_printable(CHAR c) throw (except) {*this = c;}
27
28 basic_printable(typename char_traits<CHAR>::int_type i) throw (except) {
29 *this =i;
30 }
31
32 operator CHAR() const throw () {return c;}
33}
34

35 typedef basic_printable<char> printable_t;

36 typedef basic_printable<wchar_t> wprintable_t;

37

38 //four explicit specializations of isprint

39 /two explicit specializations of code

40 //definitions for operator=, operator+=, operator++ (pre- & postfix), etc.

(1) For cowenience, let the follwing typedef be a prvate member obasic_printable at the

aborve line 10.
41 typedef typename char_traits<CHAR>::int_type int_type;

Then changdypenamechar_traits<CHAR>::int_type to int_type in the rest of the class
definition in the abee lines 11-33.

(2) Define four explicit specializations fbasic_printable::isprint at the abwe line 38.
They must hae ro template preambles, as in line 44nBpper.h on p. 704.

(&) Thebasic_printable<char>::isprint whose function argument ischar will cast

its function argument tansignedchar and pass it to the standard librasprint . You

PeSsao A hesenea ©2014 Mark Meretzky

42
43
44

45
46

Section 7.2.9 Altruistic Template Classesiuneric_limts,iterator_traits,ec. 751

will have 1o refer to this function astd::isprint

(b) Thebasic_printable<char>::isprint whose function argument is a
char_traits<char>:int_type will verify that its function argument is greater than or
equal to zero and less than or equahtineric_limits<unsigned char>::max()

If so, it will pass its function argument to the standard libispyint

(c) Thebasic_printable<wchar_t>::isprint whose function argument is a
wchar_t will pass its function argument to the standard librswyprint ; include the
headexcwctype> for this function.

(d) Thebasic_printable<wchar_t>::isprint whose function argument is a
char_traits<wchar_t>::int_type will verify that its function argument i3
numeric_limits<wchar_t>::min() and<
numeric_limits<wchar_t>::max() . If so, it will pass its function argument to the
standard libraryswprint

(3) Define twp explicit specializations fobasic_printable::code at the abwee line 39. They

must hae ro template preambles.

(8) Thebasic_printable<char>::code whose function argument ischar will convert
the function argument tonsignedchar and then to
char_traits<char>::int_type . The first comersion must be explicit; the second can

be implicit. Warning: the function argument dfasic_printable<char>::isprint
can be declared as an unadorimedtype |, but the return type of
basic_printable<char>::code must be declared as
basic_printable<char>::int_type

(b) Thebasic_printable<wchar_t>::code whose function argument is a
wchar_t will convert the function argument directly to
char_traits<wchar_t>::int_type

(4) In the clasgrintable on p. 736, an infinite loop would V& resulted ifoperator+= (line
49) andoperator+ (line 72) called each othe¥\Ve declaredoperator+= before we defined
operator+ to allowoperator+ to calloperator+= . We declaredoperator+ after we defined
operator+= to present operator+= from callingoperator+

But nov operator+= andoperator+ will be template functionsEach function can call the
other because the definition (instantiation) of each one can come after the declaration (template) for the
other To prevent an infinite loop, declare and defioygerator+= beforeoperator+ . Inthe body of
operator+= , change

//Would call operator+ before is declared!
[Ireturn p.operator=(p.operator+(i));
return p=p+i;

to

[Ireturn p.operator=(p.operator CHAR() + i);
return p = static_cast<CHAR>(p) +i;

For the only other place where something can be mentioned before it is declared, see p. 119.

(5) The standard libary contains a template similar to thewioitp Recallthat the data type of
cout isostream , which is a typedef fobasic_ostream<char> . Similarly, the data type ofvcout
is wostream , which is a typedef fobasic_ostream<wchar_t>

47 //[CHAR must be char or wchar _t.

48

49 template <class CHAR>
50 basic_ostream<CHAR>& operator<<(basic_ostream<CHAR>& ost, CHAR c);

By itself, the template will let us sencthar to anostream . But it will not let us send a
printable<char> there; see line 31 on p. 65Bor this reason, the library also has a function similar to

printed 4/8/14 All rights

8:58:39 AM reserved©2014 Mark MeretZky

752 Templates Chapter7

the following.

51 template <>
52 basic_ostream<char>& operator<<(basic_ostream<char>& ost, char c);

Similarly, the template in the alse line 50 will let us send wchar_t to awostream , but it will not let
us send rintable<wchar_t> there. Thdibrary has no template favchar_t corresponding to the
aborve line 52 so we must write our own:

53 inline wostream& operator<<(wostream& wost, basic_printable<wchar_t>& p) {
54 return wost << static_cast<wchar_t>(p);
55}

Testbasic_printable with the template clasgream and the template functidn

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/numeric/main.C

#include <iostream>
#include <cstdlib>
#include "printable.h"
using namespace std;

t emplate <class CHAR>
struct stream {
static basic_ostream<CHAR>& r;

©CoOo~NOOOUOTA,WNPE

b

10

11 template <>

12 basic_ostream<char>& stream<char>::r = cout;

13

14 template <>

15 basic_ostream<wchar_t>& stream<wchar_t>::r = wcout;

16

17 template <class CHAR>

18 void f()

19 {

20 try |

21 basic_printable<CHAR> p = static_cast<CHAR>('A’);
22 stream<CHAR>::r << ++p << static_cast<CHAR>(\n’);
23

24 p = static_cast<CHAR>(\0);
25 }

26

27 catch (const except& e) {

28 cerr << e.what() <<"\n";

29 }

30

31 stream<CHAR>::r << flush;

32}

33

34 int main()

35{

36 f<char>();

37 f<wchar_t>();

38 return EXIT_SUCCESS;

39}

PSsao A hesenea ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classeswuneric_limts,iterator_traits,ec. 753

We will have 0 define aroperator== for basic_printable on p. 983.
A

v Homework 7.2.9d:
Version 4.3 of the Rabbit Game: let the terminal contain printable_t objects

Run the game ontarminal<printable_t> , whereprintable_t is a typedef for the
basic_printable<char> in the previous honveork.
A

Iterator traits

Our final example of an altruistic template clasgésator_traits . It gives us nformation
about ag data type that is an iteratoncluding ary type of pointer exceptoid * andconstvoid *,
iterator_traits is intended for use only within a template, toyile information about a template
argumentl. For simplicity, howeve, our first example will use it imain .

The data type plugged into theangle brackts> of iterator_traits must be an iterator
Examples are theonstint * in line 14 and théist<double>::iterator in line 19.

Each container haswalue_type = member giving the data type of the values stored in the con-
tainer; our first example was in clasck on p. 423. The iterator_traits for each containes’
iterator has a member with the same name and almost the same purpogs.tieglata type of aaviable
that can hold a value stored and/or resiEby the iterator.

For example, thefitl in line 14 is aconstint . To hold this value, the1 in line 14 is arint
It is not necessary to mak& aconstint . We can remee the top-leel const (p. 644).

We muld simply hae declaredx1 to be anint . Another vay to male x1 anint is to declare it to
be aniterator_traits<int *>::value_type , which is another name (i.e., a typedef) for the
data type that can hold the result of applying*tteperator to &onstint *,

Let's e one morexample. Thateratorit2 in line 19 is avector<double>::iterator ;we

retrieve adouble when we apply the operatbrto it. To aeate a variable to hold thitouble , we could
simply have declaredx2 to be adouble . The

iterator_traits<vector<double>::iterator>::value_type in line 19 is a gloriously
barogue name fatouble .
Lines 14 and 19 did not ne@drator_traits at all, because we could see the data types of the

iterators. Butin line 22, the type of the iterator is written in a macket's sy that the definition of the
macro, and the initialalue ofit3 , were hidden in another file where we coutds®e them. What then

should the data type @B be? Thaterator_traits in line 24 answers this question very neatly.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iterator_traits/in_main.C

#include <iostream>

#include <cstdlib>

#include <iterator> //for class iterator_traits

#include <vector> /lincludes <iterator>, so previous line not needed here
using namespace std;

i nt main()

{
const int a] = {10, 20, 30, 40, 50},
size t n = sizeof a/ sizeof a[0];
cout << fixed;

const int *itl = a;

iterator_traits<const int *>::value_type x1 = *itl;
cout <<x1<<"\n% /Ix1is an int (not a const int)

PeSsao A hesenea ©2014 Mark Meretzky

16
17
18
19
20
21

754 Templates Chapter7

vector<double> v(a, a + n);

vector<double>::iterator it2 = v.begin();
iterator_traits<vector<double>::iterator>::value_type X2 = *it2;
cout << x2<<"\n% /Ix2 is a double.

22 #define ITERATOR vector<double>::iterator

23
24
25
26
27
28}

PO OWoOoO~NOOUODWNLPE

B

ITERATOR it3 = v.begin();
iterator_traits<ITERATOR>::value_type X3 = *it3;
cout << x3<<"\n% /Ix3 is a double.

return EXIT_SUCCESS;

10 lines 13-15
10.000000 lines 17-20
10.000000 lines 22-25

iterator_traits in a template

In contemporary C++, aifTERATORIs more lilely to be the template argument in the following line
7 than the macro in the ab®line 23. A realistic use of
iterator_trait<ITERATOR>::value_type is in line 10. The template functidncan nev create
a variable of the type retred by gplying the* to whateer type of iterator was passed to Kor the
typename , see p. 675.

Lines 13, 17, and 21 shwthree more data types provided ibgrator_traits . Use the first
two if you need a pointer or reference to the element to which the iterator réfeeasure that line 15
always prints the address of the elememéndf the element is ahar , we @ast the address tmnst
void *

Lines 21-27 measure the distance in elements between the elements to whichittwators refer
The data type o in line 21 is the appropriate one for holding this numpesitive a negdive. | wish we
could compute the distance with a subtraction:

cout << "The distance n elements is " << last - first << ".\n";

But some types of iterators permit only increment, not subtraction; an exampldiss théterator whose
infirmities first appeared on pp. 449-480k therefore resort to the pedestrian loop in lines 22-24.

We havenow seen whatiterator_traits gives to a emplate whose templategament is an
iterator: four data types that will probably be needed to manipulate the iterator and the element to which it
refers. Thenext example will hee a ffth one.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/iterator_traits/in_template.C

#include <iostream>
#include <cstdlib>
#include <iterator>
#include <vector>
using namespace std;

t emplate <class ITERATOR>
void fITERATOR first, ITERATOR last)

{
typename iterator_traits<ITERATOR>::value_type x = *first;

cout << x<<"is a copy of the value to which first refers.\n";

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classeswuneric_limts,iterator_traits,ec. 755

12
13 typename iterator_traits<ITERATOR>::pointer p = &*first;
14 cout << "first refers to the value " << *p << " at address "
15 << static_cast<const void *>(p) << ".\n";
16
17 typename iterator_traits<ITERATOR>::reference r = *first;
18 cout << "first refers to the value " <<r << " at address "
19 << static_cast<const void *>(&r) << ".\n";
20
21 typename iterator_traits<ITERATOR>::difference_type d = 0;
22 for (; first I= last; ++first) {
23 ++d;
24 }
25
26 cout << "The iterators refer to elements that are " << d
27 << " e lements apart.\n\n";
28}
29
30 int main()
31
32 int af] = {10, 20, 30, 40, 50};
33 const size_t n = sizeof a/ sizeof a[0];
34 cout << fixed;
35
36 int *itl = a;
37 int *t2=a+n-1;
38 f(itl, it2);
39
40 vector<double> v(a, a + n);
41 vector<double>::iterator it3 = v.begin();
42 f(it3, it3 + 3);
43
44 return EXIT_SUCCESS;
451}
If it is to your taste, you can create a local, one-word naalee_type , to gand fortypename
iterator_traits<ITERATOR>::value_type in the abee line 10. That line would then become
46 typedef typename iterator_traits<ITERATOR>::value_type value_type;
a7 value_type X = *it;

10 is a copy of the value to which first refers.

first refers to the value 10 at address 0xffbffO4c.

first refers to the value 10 at address 0xffbffO4c.

The iterators refer to elements that are 4 elements apart.

10.000000 is a copy of the value to which first refers.
first refers to the value 10.000000 at address 0x25878.
first refers to the value 10.000000 at address 0x25878.
The iterators refer to elements that are 3 elements apart.

PeSsao A hesenea ©2014 Mark Meretzky

756 Templates Chapter7

A dispatching function

The fifth data type provided bterator_traits is namedterator_category . The fol-
lowing lines 16-17 construct a variable nanovategory of this type, and pass it to one of tent
functions. Theunctionf that contains these lines is merelgadl-through, doing all its work by calling
some other functionf is also adispatding function,since the data type of tlie in line 15 determines
whichprint function is called in line 17.

iterator_category is alays a typedef for one of févpossible classes. These classesha
data members, their constructorseato arguments, and the resulting objectsvéan value. Butthe
objects do hee five pssible data types, which lets uydahe five functions with the same name in lines
7-11. Afunction argument whose value is unused—or nonexistent—should be declared without a name
(pp. 289-290). Needless to s#tyese arguments are small enough to pass by value.

We will use thisiterator_category when we talk about “iterator cageries’ on pp. 834-843.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iterator_traits/overload.C

#include <iostream>

1
2 #include <cstdlib>
3

#include <iterator>

4 #include <vector>

5 #include <list>

6 using namespace std,;

7

8 i nline void print(input_iterator_tag) {cout << "input\n";}

9 i nline void print(output_iterator_tag) {cout << "output\n";}
10 inline void print(forward_iterator_tag) {cout << "forward\n";}

11 inline void print(bidirectional_iterator_tag) {cout << "bidirectional\n";}
12 inline void print(random_access_iterator_tag) {cout << "random access\n";}

13

14 template <class ITERATOR>
15 void f(ITERATOR it)

16 {

17 typename iterator_traits<ITERATOR>::iterator_category category;
18 print(category);

19}

20

21 int main()

22 {

23 int af] ={10, 20, 30, 40, 50};

24 size t n = sizeof a/ sizeof a[0];

25

26 int *itl = a;

27 f(itl);

28

29 vector<int> v(a, a + n);

30 vector<int>::iterator it2 = v.begin();
31 f(it2);

32

33 list<int> li(a, a + n);

34 list<int>::iterator it3 = li.begin();
35 f(it3);

36

37 return EXIT_SUCCESS;

38}

PeSsao A hesenea ©2014 Mark Meretzky

39

Section 7.3.1.1 An Algorithm to Print Part of Container including an Array 757

If it is to your taste, theariablecategory in the abwee lines 17-18 can be an anonymous tempo-
rary. Replace these lines by the following.

print(typename iterator_traits<ITERATOR>::iterator_category());
random access Line 27: a pointer is a random access iterator.
random access Line 31: avector iterator is a random access iterator.
bidirectional Line 35: alist iterator is merely a bidirectional iterator.

7.3 Template Functions and Template Classes

Template functions and template classes can interact with each other in unexpadedierds a
quick summary of the differences between these kinds of templates. The most important ones are (2) and

(4).
(1) Only template functions & template argument deduction (p. 636). The template argument of a
template class must be written explicitly.

(2) Onlytemplate functions v@ rame werloading (p. 641).Every template class mustJ®a dfferent
name.

(3) Onlytemplate classes ¥ra default values for template arguments (p. 689).
(4) Onlytemplate classes ¥xa partial specialization (p. 702).

7.3.1 Rass a Pair of Iterators to an Algorithm

Ourprint function in line 13 otypename.C on p. 675 was capable of printingyagpe of stan-
dard library containewector , list , etc. Theelements of the container could be of &ype that vas
printable with<<.

But the function would accept only standard library containers, and was hardwired togyirele-
ment. W will now define a more flexible one that can accept an array as well as a comtaintiat can
print only some of the elements.

7.3.1.1 AnAlgorithm to Print Part of Container , including an Array

Theprint function in the folleving line 45 can print all or part of the array in line T¢he print
in 52 can print all or part of the vector in 33. In the next example, we will combine them with a template.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/print/print1.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <vector>

4 #include "date.h"

5 using namespace std;

6

7 void print(const int *first, const int *last);

8

9 void print(vector<date>::const_iterator first,
10 vector<date>::const_iterator last);
11
12 int main()
13 {
14 int af] ={1776, 1929, 1941, 1969, 2001};
15 const size_t n = sizeof a/ sizeof a[0];

PeSsao A hesenea ©2014 Mark Meretzky

758 Templates

Chapter7

16

17 print(a, a + n); all the elements.
18 cout <<"\n"

19

20 if (n>2){

21 print(a +1,a+n-1) all but 1st and last.
22 cout <<"\n";

23 }

24

25 const dated[] ={

26 date(date::july, 4,1776),
27 date(date::october, 29, 1929),
28 date(date::december, 7,1941),
29 date(date::july, 20, 1969),
30 date(date::september, 11, 2001)
31 3

32 const size_t dn = sizeof d / sizeof d[0];

33 vector<date> v(d, d + dn);

34

35 print(v.begin(), v.end()); all the elements.
36 cout <<"\n"

37

38 if (v.size() >2){

39 print(v.begin() + 1, v .end() - 1); //Print all but 1st and last.
40 }

41

42 return EXIT_SUCCESS;

43}

44

45 void print(const int *first, const int *last)

46 {

a7 for (; first = last; ++first) {

48 cout << *first <<"\n";

49 }

50}

51

52 void print(vector<date>::const_iterator first,

53 vector<date>::const_iterator last)
54 {

55 for (; first != last; ++first) {

56 cout << *first <<"\n";

57 }

58}

printed 4/8/14
8:58:39 AM

All rights
reserved

©2014 Mark Meretzky

Section 7.3.1.1 An Algorithm to Print Part of Container including an Array 759

1776 Line 17 prints all the elements &f
1929
1941
1969
2001

1929 Line 21 prints all but the first and last elements of
1941
1969

71411776 Line 35 prints all the elements of
10/29/1929

12/7/1941

7/20/1969

9/11/2001

10/29/1929 Line 39 prints all but the first and last elements of
12/7/1941
7/20/1969

Theprint in the following line 12 prints theange of zero or more consecué dements specified
by the pair of iterators passed as functiaquarents. Th&€++ corvention is to name these arguments
first andlast , and to pass them by value.

This print is our first oficial algorithm, a template function whose guments are a pair of itera-
tors that delimit a range.* The twiterators must be of the same data type, which is passed as a template
argument.

If first andlast have the same value, as in the fallimg line 23, the range is empty and an algo-
rithm processes no elements at all. Otherwise, the algorithm starts with the element tdirathich
refers, and process all the elements upuonot including the one to whichast refers. Analgorithm
never assumes thdast refers to an element; line 15vwee attempts to dereference an iterator whosleler
is equal tdast . The[) notation in line 8 means “includintfirst , but not including*last " .

The range delimited bfirst andlast must hae a fnite number of elements, possibly zefo.
other wordslast must bereachablefrom first . This means thdirst must already be equal to
last , or thatfirst will become equal téast if the algorithm increments it a finite number of times.
To be reachable fronfirst , last must be equal térst , or must refer to a later element in the same
containeror to the location after the last element in the container.

Theif in line 39 calls the algorithm only wheast is reachable fronfirst and the range is
non-empty If the comparison were=, the algorithm would still be called only whéast is reachable
fromfirst , but it would nav be alled for an empty range.

The range passed to gomint algorithm must be amput range: a sries of elements whosalv
ues can be read. This means that ttpresssior*first in line 15 must yield a value which can be used
as an rvaluefirst ~ cannot be a “pointer tgoid " or an dject whoseperator* function returns
void . We summarize these requirements by saying that the datdTHFATORmMusSt be an “input itera-
tor”. For the formal definition, see pp. 834-837.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/print/print2.C

#include <iostream>
#include <cstdlib>
#include <vector>
#include <list>

A WN PP

* The functionf in line 8 ofin_template.C on p. 754 was an unofficial algorithm.

PSsao A hesenea ©2014 Mark Meretzky

760 Templates Chapter7

5 #include "date.h"

6 using namespace std,;

7

8 / /Print all the elements in the range [first, last).

9 / /ITERATOR must be an input iterator; its * must yield a puttable value.
10
11 template <class ITERATOR>
12 void print(ITERATOR first, ITERATOR last)

13{
14 for (; first I= last; ++first) {
15 cout << *first <<"\n";
16 }
17}
18
19 int main()
20 {
21 const intaf] = {10, 20, 30};
22 const size_t n = sizeof a/ sizeof a[0];
23 print(a, a); /[Print no elements (an empty range).
24
25 list<int> li(a, a + n);
26 print(li.begin(), li.,end()); //Print all the elements.
27 cout <<"\n"
28
29 const date da] ={
30 date(date::july, 4,1776),
31 date(date::october, 29, 1929),
32 date(date::december, 7,1941),
33 date(date::july, 20, 1969),
34 date(date::september, 11, 2001)
35 3
36 const size_t dn = sizeof da / sizeof da[0];
37 vector<date> v(da, da + dn);
38
39 if (v.size() >2){
40 print(v.begin() + 1, v .end() - 1); //Print all but 1st and last.
41 }
42
43 return EXIT_SUCCESS;
44}
10 Line 26 prints all the elements lof .
20
30
10/29/1929 Line 40 prints all but the first and last elements of
12/7/1941
7/20/1969

7.3.1.2 AnAlgorithm that uses the Traits of its Iterators

Following the success of oprint algorithm on p. 760, we will wo attempt a more ambitious one.
The following function, containing code seen on pp. 47-48, sorts an arnaly & into ascending order

PeSsao A hesenea ©2014 Mark Meretzky

13
14
15
16
17

N

OCO~NOOOTLA,WNPEP
—~~

Section 7.3.1.2 An Algorithm that uses the Traits of its Iterators 761

The agumentdfirst andlast point to the first element and to the one immediately after the last to be

sorted. Thewumber of elements to be sortedgistfirst . The smallest value will end up in
first[O] ,ak.a.*first ;the largest, iast[-1] , ak.a.first[last - first - 1]

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/sorter/sorter.C

void sorter(int *first, int *last)

while (first < --last) {
f or (int *p = first; p < last; ++p) {
i f (p[ll<p[O]){ /ifp[0] and p[1] in wrong order,
const int temp = p[0]; /I[swap them

p[0] = p[1];
p[1] = temp;
}
}
}
For example,
int af]={1,9,6,8,5,5,2,0,0, 1}
const size_t n = sizeof a/ sizeof a[0];
sorter(a, a + n)j; /Imeans sorter(&a[0], &a[n]); sort the entire array
sorter(a, a + n / 2);/Imeans sorter(&a[0], &a[n/2]); sort only first half

The abee function is too good to be used only for sorting 's. It deseres to be turned into the
following algorithm. We rame itsorter because the C++ Standard Library already has an algorithm
namedsort , in the header filealgorithm>

Thesorter algorithm will still accept pointer guments. Buit will also accept ankind of itera-
tor that can be cgpconstructed, and to which we can apply the four operaters]] inlines 15-17.
Such an iterator will be called a “random access iterasarp. 841.

The data typdist<date>::iterator in line 40 of the follving main2.C is not a random
access iterator: the operaterand[] cannot be applied to it. (It is merely‘bidirectional” i terator pp.
840-841.) Thas why dasslist has been provided with tle®rt member function in line 41. See pp.
449-450.

The data type to which the iterators refer must bg copstructible and assignablé. must also be
“ strict weakly comparable”, an elaboration of the less-than comparable on pp. 63%64fe full story
see pp. 778-779.

The comparison in line 17 couldyealeen written with “greater than”.
i f (it[0] >it[1]) {

But the C++ cowention is to code a template so that the only inequality function the user has to define is
operator< . Another example is on p. 778.

When sorting a container @har* or constchar * we would probably want alphabetical
order But the< operator applied to tchar * ’s gives us gographical order: it tells us which string is
located first in memoryWe'll fix this problem with a third argument sorter (pp. 764-770).In the
meantime, do not pass a container of these types soiter algorithm.

Lines 18-19 construct aaxiabletemp of the data type which can hold thalwe of the rpression
itf0] . Ifitis to your taste, you can create a local, one-word naalae_type |, to gand for this type.
Lines 18-19 would then become the following.

t ypedef typename iterator_traits<ITERATOR>::value_type
value_type;

PeSsao A hesenea ©2014 Mark Meretzky

762 Templates Chapter7

4 const value_type temp = it[0];

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/sorter/sorter.h
1 #ifndef SORTERH
2 #define SORTERH
3 #include <iterator> [[for iterator_traits
4 using namespace std,;
5
6 /*
7 | TERATOR must be a random access iterator. The data type of the values to
8 which it refers, typename iterator_traits<ITERATOR>::value_type, must be copy
9 constructable, assignable, and strict weakly comparable.
10%
11

12 template <class ITERATOR>
13 void sorter(ITERATOR first, ITERATOR last)

14 {
15 while (first < --last) {
16 for (ITERATOR it = first; it < last; ++it) {
17 if (it[1] <it[0]) {
18 const typename iterator_traits<ITERATOR>::value_type
19 temp = it[0];
20 it[0] = it[1];
21 it[1] = temp;
22 }
23 }
24 }
25}
26 #endif
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sorter/main2.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <list>
5 #include "date.h"
6 #include "sorter.h"
7 using namespace std;
8
9 t emplate <class ITERATOR>
10 void print(ITERATOR first, ITERATOR last)
114
12 for (; first != last; ++first) {
13 cout << *first <<"\n";
14 }
15}
16
17 int main()
18{
19 int al[] ={10, 30, 20, 50, 40},
20 const size_tnl = sizeof al/ sizeof al[0];
21 sorter(al, al +nl);

PSsao A hesenea ©2014 Mark Meretzky

Section 7.3.1.2 An Algorithm that uses the Traits of its Iterators 763

22 print(al, al +nl);
23 cout <<"\n%
24
25 const date a?[] ={
26 date(date::october, 29, 1929),
27 date(date::july, 20, 1969),
28 date(date::july, 4,1776),
29 date(date::september, 11, 2001),
30 date(date::december, 7,1941)
31 3
32 const size_t n2 = sizeof a2 / sizeof a2[0];
33
34 vector<date> v(az, a2 + n2);
35 sorter(v.begin(), v.end());
36 print(v.begin(), v.end());
37 cout <<"\n"
38
39 list<date> li(a2, a2 + n2);
40 /Isorter(li.begin(), li.,end()); //won't compile
41 li.sort();
42 print(li.begin(), li.end());
43 return EXIT_SUCCESS;
44}

10 lines 19-23

20

30

40

50

71411776 lines 25-37

10/29/1929

12/7/1941

7/20/1969

9/11/2001

71411776 lines 39-42

10/29/1929

12/7/1941

7/20/1969

9/11/2001

If the abare line 40 is uncommented, tiite in line 17 pfsorter.h will be an object that has no
operator(] member function.
main2.C:40: instantiated from here
sorter.h:17: error: no match for 'operator[]’ in "it[1]’

v Homework 7.3.1.2a: let sorter call swap or iter_swap
Replace lines 18-21 gbrter.h on p. 762 with to a call to trewvap algorithm (pp. 648-649).

45 swap(it[0], it[1]);

sorter.h will now include<algorithm> for swap, not for iterator_traits

PeSsao A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA,WNPE

©CoOoO~NOOOUTA, WNPE

764 Templates Chapter7

Better yet, replace lines 18-21 with a call toitee swap algorithm in the standard library.

/ [Excerpt from <algorithm>

t emplate <class ITERATOR1, class ITERATOR2>
i nline void iter_swap(ITERATORL1 itl, ITERATOR?2 it2)

{
const typename iterator_traits<ITERATOR1>::value_type temp = *it1;
*itl = *it2;
*it2 = temp;

}

Sinceiter_swap dereferences the iterators for us, the call will be

iter_swap(it, it +1);

7.3.2 Rass a Predicate to an Algorithm

Sort into any order, not just increasing

Thesorter algorithm on p. 762 sorts a range of values into ascending ofter operator that
does this is hardwired into line 17 sfrter.h on p. 762.

Could the order and direction of the sort somvebe mssed tsorter as an argument?

i ntaf] ={20, 30, 10},
const size_t n = sizeof a / sizeof a[0];

/ 1Just a dream--won’t compile

sorter(a, a + n, <); /lascending order

sorter(a, a + n, >); /l[descending order

sorter(a, a + n, in order of increasing absolute valye

sorter(a, a + n, in order of how close the numiseaare to 16);

sorter(a, a + n, in order of how many distinct prime facsogach number haj

This dream is realized in the language Perl, wisase function takes a block of code {rcurly
brace$ indicating which of tw values,$a or $b, should come first. The namé&s and$b are built into
the language, so theneed not be declared. The binary operater yields -1, 0, or 1 depending on
whether its left operand is numerically less than, equal to, or greater than the right operand.

http://i5.nyu.edu/ Cmm64/book/src/sorter/sort.pl

#l/bin/perl
@v = (20, 30, 10); #Create a list named @v containing 3 integers.

@v = sort {$a <=> $b} @v; #ascending numeric order
print "@wv\n";

@v = sort {$b <=> $a} @v; #descending numeric order

@v = sort {abs($a - 16) <=> abs($b - 16)} @v; #how close to 16

exit 0;

PeSsao A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUOTA, WNPE

Section 7.3.2 Pass a Predicate to an Algorithm 765

1020 30 result ofsort {$a <=> $b}

The language Ruby has a similar block of code. This time, the ramedb are not built into the
language. Thehaveto be declared by being surrounded by vertical bars.

http://i5.nyu.edu/ Cmm64/book/src/sorter/sort.rb
#l/opt/sfw/bin/ruby
v = [20, 30, 10]
v = v.sort{la, bja<=>b} #ascending numeric order
puts v
exit 0

Now back to reality The bare< operator in the alwe G++ line 5 will not compile.Now how oould
the< be passed to theorter function? Whaivould be the minimal argument that could carry ¢hend
nothing else?

A binary predicate

To design this argument, lstpose a question about syntax. What couldxhee in the folleving
statement? Whatind of expressiont would accept an argument list of twd ’s and give ws back a
bool or a value covertible thereto?

bool b = x(10, 20);
There are three possibilities. Thecould be
(1) afunction, like thef in the following line 17;
(2) apointer to a function, lig thep in line 22; or
(3) anobject with aroperator() member function, lig theg in line 26.

Thep declared in line 20 is a pointer to a function. Thpression(*p)(i, j) in line 21 calls
the function to whictp points. Theexpression first applies the dereferencing operatto p. Then it
applies the function call operatf)r to the epressior¥p . The parentheses around #pe are not an oper
ator They merely force the dereferencing operator to be applied before the function call opSestqr.
248.

The* in line 21 is optional; line 22 does the same thing withoufrid nav that the* is gone, we
can dispense with the surrounding parentheses.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/sorter/apply.C

#include <iostream>
#include <cstdlib>
using namespace std;

class function_object {
public:
bool operator()(int a, int b) const {return a < b;}

}s

10 inline bool f(int a, int b) {return a < b;}

11

12 int main()

PeSsao A hesenea ©2014 Mark Meretzky

766 Templates

Chapter7

13{
14 int i=10;
15 int j=20;
16
17 bool b = f(,]); /[f is a function.
18 cout << boolalpha << b << "\n";
19
20 bool (*p)(int, int) = f; /Ip is a pointer to a function.
21 b = (*p)(,)); //lLines 21-22 are two ways to call the ...
22 b = p(,j)); /l... function to which p points.
23 cout <<b<<"\n“
24
25 function_object g;
26 b = g(,j); /b = g.operator()(i, j);
27 cout <<b<<"\n“
28
29 return EXIT_SUCCESS;
30}
true lines 17-18
true lines 19-23
true lines 25-27

An expression that can tkne or more arguments ands/gius back a value of typgool (or con-
vertible thereto) is called predicate. The xamplesf , p, and g arebinary predicatesbecause thetake
two aguments. Therare alsainary pedicates,taking one argument.

Pass a predicate to an algorithm

The order and direction of a sort can be passed to an algorithm as a binary pr&iicaeample is
thecomp in the following line 17.

Like an terator a predicate is alays passed byalue. comp must be a binary predicate because line
21 applies tw arguments to it and ges the result to thedyword if . comp could be a pointer to a func-
tion, such as the passed tsorter in line 36 ofmain3.C on p. 768.* Or the predicate could be a func-
tion object, such as thgg constructed in line 39 ghain3.C and passed teorter in line 40.

The class ofji (greater_int , lines 12-15 omain3.C) is merely stereotyped boilerplate that
holds the> comparison. Similarlyclassprintable on p. 735 vas merely a holder for thisprint
error checking.In each case, the rest of the class is just comeeidsue. Thecomparison and the error
checking are packaged as classes because a class is the smallest chunk of syntax that can be passed as a
template argument.

—On the Web at
http://i5.nyu.edu/

#ifndef SORTERH
#define SORTERH
#include <iterator>
using namespace std;

Ommo64/book/src/sorter/sorter2.h

[[for iterator_traits

/ *
| TERATOR must be random access.

O~NO O WNPE

* Thisf plays the same r6le as the pointer to a function that will be passed to the C Standardjkdstaryn line 12
of gsort.c onp. 775.

printed 4/8/14
8:58:39 AM

hesenea ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 767

9 t ypename iterator_traits<ITERATOR>::value_type must be copy constructable
10 and assignable.
11
12 COMPARE must be a binary predicate accepting arguments of type
13 typename iterator_traits<ITERATOR>::value_type.
14+
15
16 template <class ITERATOR, class COMPARE>
17 void sorter(ITERATOR first, ITERATOR last, COMPARE comp)

18 {
19 while (first < --last) {
20 for (ITERATOR it = first; it < last; ++it) {
21 if (comp(it[1], it[0])) {
22 const typename iterator_traits<ITERATOR>::value_type
23 temp = it[0];
24 it[0] = i t[1];
25 it[1] = temp;
26 }
27 }
28 }
29}
30 #endif
If the comp in the abee line 21 is an object, then the line bedsas if we lad said

31 if (comp.operator()(it[1], it[O])) {

If the comp is a pointer to a function, it beves as if we fad said
32 it ((*comp)(it[1], it[0])) {

As on p. 764, the ale lines 22-25 may be replaced by a call toitke swap algorithm.

When the following line 40 passegs to sorter , the abwee line 21 will call theoperator()
member function ofji . Sincegi is used only once, in line 40 balowe could hare made it an anopr
mous temporary li& the one in 43. It has no construgtout 43 can pretend that it has a constructor with
no arguments.

The following line 56 constructs an anonymous temporary of ¢jesster date . The abee
line 21 will call itsoperator() member function, which comparesawate ’'s. To dlow this member
function to apply the> operator to a pair alate s (line 19), we must define aperator> function for
classdate .

Why are we fooling around with temporary objects when the non-member furfictioline 36 of
main3.C does the job more simply¥ve will see two reasons: an object canveadata members (pp.
770-772), and a member function can be called faster than a non-member function (pp. 772-776).

The member functionperator() in line 14 ofmain3.C uses no members of the object to which
it belongs. We would therefore lik to make it a datic member function forxéra speed. But the syntax of

the language says thaperator() must alvays be non-static; see p. 287. After all, what would the syn-

tax look like for a call to a statioperator() ?

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sorter/main3.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <vector>

4 #include <list>

5

6 #include "date.h"

PeSsao A hesenea ©2014 Mark Meretzky

768 Templates Chapter7

7 #include "sorter2.h"
8 using namespace std;
9
10 inline bool f(int a, int b) {return a > b;}
11
12 class greater_int {
13 public:
14 bool operator()(int a, int b) const {return a > b;}
15}
16
17 class greater_date {
18 public:
19 bool operator()(const date& a, const date& b) const {return a > b;}
20}
21
22 template <class ITERATOR>
23 void print(ITERATOR first, ITERATOR last, char c)

24 {

25 for (; first I= last; ++first) {

26 cout << *first <<¢;

27 }

28 cout <<"\n"

29}

30

31 int main()

32

33 int al[] ={10, 30, 20, 50, 40},

34 const size_tnl = sizeof al / sizeof al[0];

35

36 sorter(al, al +ni,f);

37 print(al, al+nl, "),

38

39 greater_int oi;

40 sorter(al, al +nl, gi);

41 print(al, al+nl, "),

42

43 sorter(al, al + nl, greater_int()); //construct an anonymous object
44 print(al, al+nl, "),

45

46 const date a?[] ={

a7 date(date::october, 29, 1929),
48 date(date::july, 20, 1969),
49 date(date::july, 4,1776),
50 date(date::september, 11, 2001),
51 date(date::december, 7,1941)
52 3

53 const size_t n2 = sizeof a2 / sizeof a2[0];

54 vector<date> v(az, a2 + n2);

55

56 sorter(v.begin(), v.end(), greater_date());
57 print(v.begin(), v.end(), \n’);

58

59 return EXIT_SUCCESS;

60 }

PSsao A hesenea ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 769

5040 30 20 10 lines 36—-37
5040 30 20 10 lines 39-41
5040 30 20 10 lines 43-44
9/11/2001 lines 56-57
7/20/1969

12/7/1941

10/29/1929

71411776

Class greater in the C++ Standard Library

Classesgreater_int and greater_date , in lines 12 and 17 of the ab®main3.C , are
almost identical except for the data typesa@ndb. They havetherefore been written once and for all as
the following template class in the standard librakyC++ struct is the same as a class, except that its
members are public by deflt. Inparticular a C++ struct can hae member functions.

1 / /Provisional excerpt from the header file <functional>

2 | Version 1 of struct greater. T rnust be greater-than comparable.
3

4 t emplate <class T>

5 struct greater {

6 bool operator()(const T& a, const T& b) const {return a > b;}

7},

To use the standard librangreater in the abwe main3.C , include the header file
<functional> . Changegreater_int to greater<int> in lines 39 and 43 and remmdass
greater_int ; changegreater_date to greater<date> in line 56 and remee dass
greater_date . The output should remain unchanged.

The standard librargreater library actually has three additional members not showrveabo
These are the typedefs in the following lines 13-15, providing information about the member function in
line 17. Although the first argument in line 17 isanst T& , the typedef in line 13 is an unadorngd
This is because the intent of the typedef is tawsthe data type of the value passed to or from the
operator() , not the mechanism by which thalue is passed. The reason for this will appear when the
typedefs are used on p. 863.

8 / /Provisional excerpt from <functional>

9 / /Version 2 of struct greater. T rnust be greater-than comparable.
10
11 template <class T>
12 struct greater {

13 typedef T first_argument_type;
14 typedef T second_argument_type;
15 typedef bool result_type;
16
17 bool operator()(const T& a, const T& b) const {return a > b;}
18}
The same three typedefs are present inynsamilar classes, including the following six relational
classes.
equal less greater
not_equal_to greater_equal less_equal

For convenience, the typedefs are defined once and for all in the basbidass function

19 //Excerpt from <functional>

PeSsao A hesenea ©2014 Mark Meretzky

770 Templates Chapter7

20
21 template <class T1, class T2, class T3>
22 struct binary_function {

23 typedef T1 first_argument_type;
24 typedef T2 second_argument_type;
25 typedef T3 result_type;
26},

For example, clasinary_function<int,int,oool> has the public member
27 typedef int first_argument_type;

and clas®inary_function<double double,bool> has the public member
28 typedef double first_argument_type;

Classgreater<int> was then dened from classbinary_function<int, int, bool>

As abwe, the first function ajument in line 35 is aonst T& , but the first template argument in Ilne 34
is an unadorned.

29 /[Excerpt from <functional>

30 //Version 3 (the final one) of struct greater.

31 T must be greater-than comparable.

32

33 template <class T>

34 struct greater: public binary_function<T, T, bool> {

35 bool operator()(const T& a, const T& b) const {return a > b;}
36}

For another base class that contains nothing but typedefs to be inheritedved desses, see class
iterator on pp. 813-815For another class similar tgreater , see classnultiplies in line 57 on
p. 810. This time, theesult_type member and theperator() return type are both. The product
must be returned byalue, no matter whaf is, since the anonymous temporary that halds b is auto-
matically allocated.

A predicate containing a data member

On p. 767 we asked wta predicate should be written as a function object rather than as a function.

Consider the predicates in the following lines 11 and 13, will tell whighraent is closer to the number
1955. Théfunction in line 11 is simplebut the number is hardwired in. The class in line 13 is moxe fle
ble: the number is passed to a constructor and stored in a data maitibeugh the class is morerbose
than the function, the extra code is generic boilerplate.

Our predicate in this example hasanst data membeibut a noneonst is also possible.

We @an do &en better Instead of hardwiring the data type into lines 14 and 21, we can write it as the

template agumentT in line 32. Note that the predicate, including Thaside it, is still passed to the algo-
rithm by value. Itis unimportant if we maktis one cop of the T. Overwhelmingly more important is

that ary T argument of the predicagdperator() be passed by reference, since the algorithm will prob-
ably calloperator() mary times.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sorter/main4.C

#include <iostream>

#include <cstdlib> //for the abs that takes and returns an int
#include <vector>

#include <list>

#include <functional>

NOoO o~ WNPRE

#include "date.h"

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 771

8 #include "sorter2.h"
9 using namespace std;
10
11 inline bool f(int a, int b) {return abs(a - 1955) < abs(b - 1955);}
12
13 class closer_int {

14 const inti;

15 public:

16 closer_int(int initial_i): i(initial_i) {}

17 bool operator()(int a, int b) const {return abs(a - i) < abs(b - i);}
18}

19

20 class closer_date {

21 const date d;

22 public:

23 closer_date(const date& initial_d): d(initial_d) {}
24

25 bool operator()(const date& a, const date& b) const {
26 return abs(a - d) < abs(b - d);

27 }

28}

29

30 template <class T> //T must be copy constructable and have binary -
31 class closer {

32 const T t;

33 public:

34 closer(const T& initial_t): t(initial_t) {}

35

36 bool operator()(const T& a, const T& b) const {
37 return abs(a - t) < abs(b - t);

38 }

39}

40

41 template <class ITERATOR>
42 void print(ITERATOR first, ITERATOR last, char c)

43 {

44 for (; first = last; ++first) {

45 cout << *first <<gc;

46 }

47 cout <<"\n"

48}

49

50 int main()

51 {

52 int al[] ={1929, 1969, 1776, 2001, 1941},
53 const size_tnl = sizeof al / sizeof a1[0];
54

55 sorter(al, al +ni,f);

56 print(al, al+nl, "),

57

58 closer_int Ci(1955);

59 sorter(al, al +nl, ci);

60 print(al, al+nl, "),

61

printed 4/8/14
8:58:39 AM

All rights
reserved

©2014 Mark Meretzky

772 Templates Chapter7

62 sorter(al, al + nl, closer_int(1955)); //construct an anonymous object

63 print(al, al+nl, "),

64

65 sorter(al, al + nl, closer<int>(1955));

66 print(al, al+nl, "),

67

68 const date a?[] ={

69 date(date::october, 29, 1929),

70 date(date::july, 20, 1969),

71 date(date::july, 4,1776),

72 date(date::september, 11, 2001),

73 date(date::december, 7,1941)

74 b

75 const size_t n2 = sizeof a2 / sizeof a2[0];

76 vector<date> v(az, a2 + n2);

77

78 sorter(v.begin(), v.end(), closer_date(date(date::july, 12, 1955)));

79 print(v.begin(), v.end(), \n");

80

81 sorter(v.begin(), v.end(), closer<date>(date(date::july, 12, 1955)));

82 print(v.begin(), v.end(), \n");

83

84 return EXIT_SUCCESS;

85}
1969 1941 1929 2001 1776 lines 55-56:sorter callsf in line 11
1969 1941 1929 2001 1776 lines 58-60:sorter calls operator() of closer_int object
1969 1941 1929 2001 1776 lines 62—-63:sorter calls operator() of closer_int object
1969 1941 1929 2001 1776 lines 65-66:sorter calls operator() of closer<int> object
12/7/1941 lines 78-79:sorter calls operator() of closer_date object
7/20/1969
10/29/1929
9/11/2001
71411776
12/7/1941 lines 81-82:sorter calls operator() of closer<date> object
7/20/1969
10/29/1929
9/11/2001
71411776

Three ways of calling a function

Another reason to write a predicate as a function object rather than as a function ie toenaddyo-
rithm run faster Let's review the three ways of calling a function in C++.

(1) thenormal wayin the following line 11;
(2) thefaster way making the call inline in line 12;
(3) theslower way calling the function via the pointgrin lines 15 and 16.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sort/three.C

1 #include <iostream>

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 773

#include <cstdlib>
using namespace std;

2
3
4
5 void normal();
6
7 i nline void faster() {cout << "faster\n";}
8

9 i nt main()

10{
11 normal(); /[call line 21
12 faster(); /[call line 7
13
14 void (*p)() = normal, /lp is a pointer to a function
15 *p)0; /[call line 21, slower than normal
16 pQ); /I[simpler way to write line 15
17
18 return EXIT_SUCCESS;
19}
20
21 void normal()
22 {
23 cout << "normal\n®;
24}
normal line 11
faster line 12
normal line 15
normal line 16

Mathematicians hee goved that when sortingn items, we must performlog, n comparisons in the
worst case.*To rt a million items we might ha © perform almost 20 million comparisons, and
sorter will call its predicate almost 20 million timedt is to be hoped that each of these calls will be as
fast as possible.

n nlog, n
10 10x 3.32
100 100x 6.64
1,000 1,00 9.97
10,000 10,00 13.3
100,000 100,008 16.6
1,000,000, 1,000,00019.9

Whensorter is called in line 55 ofmain4.C on p. 771, theomp in line 17 ofsorter2.h on
p. 767 is a pointer to the functién sorter is forced to call it in the sleest possible @y, unable to tak
adwantage of the fact thétis inline. But whersorter is called in line 65 ofmain4.C , thecomp is an
object of clasgloser<int> . Although the object &s passed tsorter as an argument, the call to its
member functioroperator() can still be inline.

* log, n is the pever to which 2 must be raised to produce the desired numbé&or example, logl6=4 and
log,32="5.

printed 4/8/14 All rights

8:58:39 AM reserved©2014 Mark MeretZky

774 Templates Chapter7

The C++ sort algorithm vs. the C gsort function

The C++ Standard Library hasdvsort algorithms, both of them much faster than sarter
The following line 22 calls the two-argument version, whicle tlr two-argumensorter in line 13 of
sorter.h on p. 762, is hardwired to apply the operatdo each pair of values that it compares. Line 36
calls the three-argument version, which lets us supply a prediCiagepredicate that you want can often be
found in the standard library.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sort/sort.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>

4 #include <algorithm> //for 2- and 3-argument sort
5 #include <functional> //for greater
6 #include "date.h"
7 using namespace std,;
8
9 t emplate <class ITERATOR>
10 void print(ITERATOR first, ITERATOR last)
114
12 for (; first = last; ++first) {
13 cout << *first <<"\n";
14 }
15}
16
17 int main()
18{
19 int af] = {1969, 2001, 1941, 1929, 1776};
20 const size_t n = sizeof a/ sizeof a[0];
21
22 sort(a, a + n);
23 print(a, a + n);
24 cout <<"\n%
25
26 const date da] ={
27 date(date::july, 20, 1969),
28 date(date::september, 11, 2001),
29 date(date::december, 7,1941),
30 date(date::october, 29, 1929),
31 date(date::july, 4,1776)
32 3
33 const size_t dn = sizeof da / sizeof da[0];
34 vector<date> v(da, da + dn);
35
36 sort(v.begin(), v.end(), greater<date>());
37 print(v.begin(), v.end());
38 return EXIT_SUCCESS;
39}

PeSsao A hesenea ©2014 Mark Meretzky

1
2

©CoOoO~NOOOUTA,WNPE

10

12
13

Section 7.3.2 Pass a Predicate to an Algorithm 775

1776 lines 22-24
1929
1941
1969
2001

9/11/2001 lines 36—-37
7/20/1969

12/7/1941

10/29/1929

71411776

gsort in the C Standard Library

Let's dance back at the C Standard Library functimort , called in the following line 12. It must
always be passed the address of a comparison function (lines 21-33), a@aingto call this function
in the slowest possible way.

gsort is also more dangerouslhe arguments in line 21 v& be constvoid * because
gsort is declared as

void gsort(void *base, size_t n, size_t width,
i nt (*p)(const void *, const void *));

The cowersions in 23 and 24 ke o way to check thapl andp2 actually point to intgers. Thg might
point to anything.

In C++, the two-argumentsort algorithm performs its comparisons with tkeoperator For
objects, the< calls anoperator< function which we can makinline. For the built-in types and pointers,
the < is huilt into the language and calls no comparison function atFall.enumerations, we could write
anoperator< (inline, of course) but probably ddmieed to. The predicate passed to the three-argument
sort algorithm can be a function object whageerator() is inline.

The out-of-control coversions are not needed by thert algorithm. Whersorting a range of ele-
ments of typel, we provide anoperator< or a predicate whose arguments are of fyp&here are no
corversions at all.

Of course, this type safety comes at a priegée all a different instantiation of the twvargument
sort for each type of TERATORthat we pass to itWe all a different instantiation of the threegament
sort for each combination diTERATORandCOMPARHat we pass to itFurthermore, the predicate for
the three-ajumentsort will probably be an object of a template class, or a pointer to a template function.
A separate instantiation of the predicate will be created for each typeefpass to it. All of these instan-
tiations will male the executable program largeBut the extra speed and safety are worth it.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sort/qsort.c

#include <stdio.h>
#include <stdlib.h> /* for gsort */

i nt comp(const void *p1, const void *p2);

i nt main()

{
inta]={1,3,0, 2,5}
const size_t n = sizeof a / sizeof a[0];
const int*p;

gsort(a, n, sizeof a[0], comp); [* last arg is pointer to function */

PeSsao A hesenea ©2014 Mark Meretzky

776 Templates Chapter7

14 for (p=a;p<a+n;++p){
15 printf("%d\n", *n);
16 }

17

18 return EXIT_SUCCESS;
19}

20

21 int comp(const void *p1, const void *p2) /* sort in increasing numeric order */
22 {

23 const inti=*(constint *)p1; [* can’'t dereference void * */
24 const intj=*(constint *)p2;
25

26 if (i<){

27 return -1;

28 }

29

30 if (i>){

31 return 1,

32 }

33

34 return 0;

35}

The abee lines 26—-34 may be combined to the following, with some loss of clarity.

36 return i<j?-1:i>] :

7.3.3 Conceptsaand Models

Our sorter algorithm has auy. Thebug is ot in the code, last seen sorter2.h on pp.
766-767. Théug is Dmething missing from the commerBut this is not merely a sermon on the impor
tance of comments. The outputsafrter could be wrong.

To getsorter to work, and indeed to get our origimain template on pp. 637-638 to work, we
will have 0 give a better definition of the concept dfess-than comparable’ For sorter , we will also
have o define the concept of “strict weakly comparable”.

Less-than comparable

For a data type to qualify as less-than comparable<tbperator must yield a result of typeol or
convertible thereto. If it does not, the following lines 3 and 7 will not compile.

1 |/ IExcerpt from the min template function.

2 / IThe left operand of ?: must be bool or convertible thereto.

3 returnb<a?b:a;

4}

5 |/ IExcerpt from sorter algorithm.

6 / IThe expression in parentheses must be bool or convertible thereto.

7 i (p[d]<p[0]){
The< must also hee the following two properties.
(1) If the left and right operands are references to the same value, either in the same variable
a<a

or in two equal expressions

PeSsao A hesenea ©2014 Mark Meretzky

Section 7.3.3 Concepts and Models 777

six < half_dozen

the inequality must beafse. Thigproperty is calledrreflexivity.
(2) If both of the following are true,

T o
N N
O T

then it must also be true that
a<c

This property is calletransitivity. For an uinfortunateoperator< that did not hee these properties, see
p. 442.

Application of less-than comparability to min
What shouldnin return if its two aagumentsa andb are equal?

a ==

min is under no obligation to check for equalityn fact, min is not een dlowed to check for it.An
expression such ag == b in min would be within its rights if it failed to compilemin is obliged to
compile for data types that are less-than comparable. But it is under no obligation to compile for data types
that areequality compaable, unless thg happen also to be less-than comparable.

What shouldnin return if both of the following are true?

a<b
b < a

min is under no obligation to avk correctly in this case, oven to check for it. If both of the abe
inequalities were trud; would not be less-than comparable. The proof is simple. If both inequalities were
true, and i< were transitre, then it would also be true that

a<a
But this would mean that is not irreflive, and hence that is not less-than comparablmin is required
to work only wher is less-than comparable. This simplifies the designiof.
What shouldnin return if both of the following arfalse?

a<b
b < a

This is something thahin does hae © handle. Itcertainly happens whea andb have the same alue,
for example when theare equal intgers. Lets dso look at an example where it happens waeandb
have dfferent values.

The standard library has aperator< that compares twset<int> objects,a andb, returning
true if a comes beford in “lexicographic order”; see p. 952 et’'s imagine anotheoperator< that
would return true ifa is aproper subsebf b. This means thatvery element ofa is an element ob, but
at least one element bfis not an element @f. (We will write this function on p. 861.)

The folloving a andb male both inequalities false ven though thg are different alues.a < b is
false, becausa contains 10 bub does not.b < a is false, becaude contains 30 bua does not.

PSsao A hesenea ©2014 Mark Meretzky

~NOo o~ WN PP

778 Templates Chapter7

If both inequalities are false, the standard libnauiypn function returns a reference to its firsgar
ment. FOr compatibility our min behaes the same way: it returns a reference to its first argument when
neither argument is less than the othBnat’s why we had to write the body as

returnb<a?b:a; //Return aif neither one is less than the other.
rather than

returna<b ?a:b; //Return b if neither one is less than the other.

We oould also hee written the body as follows.
return!(a>b)?a:b;

It's maladroit but it does return the correct answHne cowention in C++, havever, is to mde a template
so that< is the only inequality applied fb. A previous example was on p. 761.

Strict weakly comparable

TheT passed tgorter must be cop constructible, assignable, and less-than comparable. Is there
ary other concept of whiclh must be a model?

Consider once again classt<int> , equipped with aroperator< that checks for proper subset.
We'll make three of these objects, b, andc, and store them in an array.

g

a

#include <set> /[for the template class set
#include "sorter.h" //for our sorter algorithm
using namespace std;

set<int> arr[] ={a, b, c};
const size_t n = sizeof arr / sizeof arr[0];
sorter(arr, arr + n);

b < a is false, becausk contains 40 bt a does not.sorter will therefore leae arr[0] and
arr[l] unmoved. ¢ < b is also false, becausecontains 20 bub does not.sorter will leave
arr[1l] andarr[2] unmoved. Butit is wrong for all three elements to be left unvesh ¢ should hae
been mweed in front ofa, because < a.

The sorter algorithm filed because there is one more concept of whiohust be a modelT
must bestrict weakly compable, a nore demanding concept than mere less-than comparalitigt
weak comparability is defined in termsexfuivalenceWe sy that tvo values are equélent if neither one
is less than the othé&rin the abee example,a andb were equialent, ancb andc were equiadent.

For a data type to be strict weakly comparable, ggance must be transig. In other words, ifa
andb are equialent, andb andc are equiaent, thena andc must also be equélent. Ourset<int>
data type, with th@perator< that checks for proper subset-hoodswnot a model of this concep.
andb were equiaent, andb andc were equialent, buta andc were not equiaent.

* The author finds it helpful to paraphrageeithera nor b is less than the othéds “a andb are about the same
size”.

PSsao A hesenea ©2014 Mark Meretzky

Section 7.3.4 Call a Function by Instantiating a Class 779

The sorter algorithm will work only whenT is copy constructible, assignable, and strict weakly
comparable. Merkess-than comparability was adequatenfdn , but not forsorter

7.3.4 Calla Function by Instantiating a Class

In 87.3.4, template classes will come to the aid of template functions. In §7.3.5, template functions
will reciprocate by coming to the aid of template classes.

A template class can V@ partial and explicit specializationsSomevhat arbitrarily a emplate func-
tion can hae aly explicit specializations. Furthermore, wevsavo problems with the latter:

(1) We annot hae a emplate function that tale T by reference, with an explicit specialization that
takes a specific type byle. Seg. 664.

(2) Anexplicit specialization is a specialization of one specific template function, and must be written
belov it. Seepp. 667-668.

Both of these limitations arev@ided by theprint function in the following line 55. It is merely a
dispatching function (p. 756), doing its work by calling some other function selected by its tengplate ar
ment T. This other function will be therint static member function of some clasprint<T>
selected from the partial anggicit specializations of the template clagzint . With this simple tech-
nigue, partial specialization can be extended to template functions.

The print member function tads T by reference in the primary template in line 12, ancdak
char by value in the explicit specialization in line 1This is the combination we were unable to aghie
on p. 664.Thechar * in line 22 no longer has to be beltheconstT * in line 27; this is a freedom
we did not hae o pp. 667-668.

To mention the non-member functigmint in lines 31 and 47, we must first declare it in linerd.
male the nameprint in 31 and 47 refer to this non-member function, we must adorn it with the unary
scope operatar . Without this operatgdine 31 would try to call another instantiation of line 27.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/specialize_class/print.h

1 #ifndef PRINTH

2 #define PRINTH

3 #include <iostream>
#include <vector>
using namespace std;

N

5
6
7 t emplate <class T>
8 i nline void print(const T& t); //declaration for non-member print in line 55
9
10 template <class T>
11 struct _print {
12 static void print(const T& t) {cout << t;}
13}
14
15 template <>
16 struct _print<char> {
17 static void print(char c) {cout << "™ << ¢ << ™"}
18}
19
20 template <>
21 struct _print<const char *> {
22 static void print(const char *p) {cout << "\"" << p << "\"";}
23}
24
25 template <class T>

PSsao A hesenea ©2014 Mark Meretzky

780 Templates Chapter7

26 struct _print<const T *> {

27 static void print(const T *p) {

28 cout <<p;

29 if (p!=0)({

30 cout <<"->"

31 print(*p); /[call the non-member print (line 55)
32

33 }

34}

35

36 template <class T>

37 struct _print<vector<T> > {

38 static void print(const vector<T>& v) {

39 cout <<"(";

40

41 for (typename vector<T>::const_iterator it = v.begin();
42 it I=v.end(); ++it) {

43

44 if (it !=v.begin()) {

45 cout <<""™

46 }

a7 print(*it); /[call the non-member print (line 55)
48 }

49

50 cout <<")%

51 }

52}

53

54 template <class T>

55 inline void print(const T& t) {_print<T>::print(t);} //dispatching function
56 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/specialize_class/main.C

#include <iostream>
#include <cstdlib>
#include <vector>
#include "print.h"
using namespace std;

i nt main()
{
i nti=10;

10 print(i);
11 cout <<"\n";

©CoOo~NOOOUTA, WNPE

13 print(CA");
14 cout <<"\n";

16 const int*p = &i;
17 print(p);
18 cout <<"\n"

20 const char *a[] = {"moe",

larry”, "curly"};

PeSsao A hesenea ©2014 Mark Meretzky

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36}

©CoOoO~NOOOUTPA,WNPE

Section 7.3.5 Construct an Object by Calling a Helper Function 781

const size_t n = sizeof a/ sizeof a[0];
vector<const char *> v(a, a + n);
print(v);

cout <<"\n%

vector<vector<int> > wi(2); //2nd func arg defaults to vector<int>()
wi[0].push_back(10);

wi[0].push_back(20);

wvi[1].push_back(30);

wvi[1].push_back(40);

wvi[1].push_back(50);

print(vvi);

cout <<"\n%

return EXIT_SUCCESS;

10 L. 10 ofmain.C calls I. 59 ofprint.h , which calls I. 12 ofprint.h
0xffbff158 -> 10 L. 17 ofmain.C calls I. 59 ofprint.h , which calls I. 27 ofprint.h

"moe", "larry", "curly") L. 23 ofmain.C calls I. 59 ofprint.h , which calls I. 38 ofprint.h
((10, 20), (30, 40, 50)) L. 32 ofmain.C calls I. 59 ofprint.h , which calls I. 38 ofprint.h

7.3.5 Constructan Object by Calling a Helper Function

An explicit template aument is usually unnecessary when instantiating a template fundien.
following line 10 instantiateprint<double> and calls it; line 12 instantiat@sint<char> without
calling it.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/helper/function.C

#include <iostream>
#include <cstdlib>
using namespace std;

t emplate <class T>
i nline void print(const T& t) {cout <<t << "\n";}

i nt main()
{
print(3.14);

void (*p)(const char&) = print; //p is a pointer to function
p(AY; /I(*p)(A"); would do the same thing

return EXIT_SUCCESS;

3.14

But an explicit template argument isvays necessary when instantiating a template class. The fol-
lowing line 18 instantiatesrapper<int> without constructing anaobject thereof; line 20 instantiates
wrapper<double> and constructs a named object thereof; line 23 instantatgspper<char> and

PeSsao A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

10
11}
12

782 Templates Chapter7

constructs an anonymous object thereof.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/helper/class.C

#include <iostream>
#include <cstdlib>

using namespace std;

t emplate <class T>
class wrapper {
constTt;
public:
wrapper(const T& initial_t): t(initial_t) {}
void print() const {cout <<t << "\n";}

13 template <class T>
14 inline void f(const wrapper<T>& w) {w.print();}

15
16 int main()
174
18 cout << sizeof (wrapper<int>) << "\n";
19
20 wrapper<double> w(3.14);
21 f(w);
22
23 f(wrapper<char>('A’));
24
25 return EXIT_SUCCESS;
26}
4 size may be different on other machines
3.14
A

O©CoOoO~NOOOUTA, WNPE

Even though th&.14 in the abee line 20 is obviously double , we had to write the explicit tem-
plate argumentdouble> anyway | wish we didnt haveto.

We @an aoid the<double> , at least if the object is angmous. Themake_wrapper in the fol-
lowing line 15 is called &elper function.It constructs and returns an agorous object of the class indi-
cated by its function gumentt . The call tomake_wrapper(3.14) in line 12 ofmain.C constructs
and returns avrapper<double> ; themake_wrapper(’A’) in line 13 constructs and returns a
wrapper<char>

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/helper/wrapper.h

#ifndef WRAPPERH
#define WRAPPERH
#include <iostream>
using namespace std;

t emplate <class T>

class wrapper { /lprimary template
constTt;

public:

PeSs a0 A hesenea ©2014 Mark Meretzky

Section 7.3.5 Construct an Object by Calling a Helper Function 783

10 wrapper(const T& initial_t): t(initial_t) {}
11 void print() const {cout << t;}

12}

13

14 template <class T>
15 inline wrapper<T> make_wrapper(const T& t) {return wrapper<T>(t);}
16 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/helper/main.C

#include <iostream>
#include <cstdlib>
#include <vector>
#include "wrapper.h"
using namespace std;

t emplate <class T>
i nline void f(const wrapper<T>& w) {w.print(); cout << "\n";}

O©CoOoO~NOOOUTA, WNPE

10 int main()

11 {

12 f(make_wrapper(3.14));
13 f(make_wrapper('A’));

14
15 return EXIT_SUCCESS;
16}

3.14

A

There are no helper functions for constructingeator or list . Helper functions are pwided
only for classes whose objects are constructedyamomsly passed to functions, and vee seen agin.
Chapter 8 will present the six groups of helper functions in the C++ Standard Libtefirst group is
readily accessible; the last four are extremely abstract.

(1) Thefunctionmake_pair constructs gair object (pp. 786-787).

(2) Thefunctionsinserter , front_inserter , and back_inserter construct an
insert_iterator , front_insert_iterator , and back_insert_iterator respec-
tively (pp. 848-849).

(3) Thefunctionsbindlst andbind2nd construct inderlst andbinder2nd respectiely (pp.

861-864).
(4) Thefunctionsptr_fun , mem_fun_ref , andmem_fun construct a
pointer_to_unary_function or pointer_to_binary function , mem_fun_ref t

ormem_funl_ref t ,andmem_fun_t ormem_funl_t respectiely (pp. 869-875).

(5) Thefunctionsnotl andnot2 construct aunary_negate andbinary negate respectiely
(pp. 876 and 942-943).

(6) Thefunctionscomposel andcompose2 construct ainary_compose and
binary_compose respectrely (pp. 871 and 864-867). These are extensions to the ljtmairy
part of the standard.

PeSsao A hesenea ©2014 Mark Meretzky

