OO, WN B

Inheritance

Inheritance: base and denved classes

Without inheritance, each class had to be created from sckithin the{ curly brace}, we had to
declare each andie&ry member of the e class:

class newclass {
declaration for member 1;
declaration for member 2;
declaration for member 3;
/ letc.

b

With inheritance, we can create avngass with a head starThe nev class will automatically hae
all the members of an existing class, plus wyextedditional members wd'like to ald. It will therefore
have dl the functionality (i.e., the “look and feel”) of the existing class, plus more.

The existing class is called thase classihe nev one is called thelerived class(Java alls them
the superclassand subclassrespectrely. But thats confusing, because the subclass has more members
than the superclass.) In a diagram, the base clasgagsadlrawn abee its derved dass(es).

Pages 163-179 presented four reasons to package a chunk of code or functionality asfafidtass.
reason is because a class is the unit of syntax from whichvadidess can inherit functionality.

A tall, narrow tree

One use of inheritance is taitd up a big class in layers, gradually adding more and more members.
Consider the fossil halls on the fourth floor of the American Museum of Natural Hiatarytheir two
movies narrated by Meryl Streep. The animals in each box in the diagrsrdhaf the features of the
ones in the boxes ab® it, plus more.For example, a synapsid animal has a synapsid opening in its skull.
But it also inherits an amnion, at least isifemale, and is therefore also an amniote animal. This is the
celebrated “is-d'relationship between a base class and itvetbdass: &ery synapsid is an amniote.

ety hesenea ©2014 Mark Meretzky

474 Inheritance

base clasg

amniote

derived class

synapsid

grandchild derived clags mammal

great-grandchild derived class placental

A wide, busty tree

Chapter 5

has amnion

has amnion and synapsid opening

has amnion, synapsid opetaing) middle ear bones

has amnion, synapsid openjmgddle ear bones, and placenta

Another use of inheritance is to neafpecialized versions of an existing clagsdrawing program
might hare a tass for each kind of shape that can be displayed; a personnel program méghtehéor

each kind of employee.

base clasg

shape

derived
rectangle
classes

triangle

has height and width

has 3 vertices

base clasg

employee

derived
temporary
classes

programmer

has hourly salary

5.1

has annual evaluation

Inheritancewithout Virtual Functions

has color and location of center point

circle
has radius

has name and social security number

manager
has golden parachute

The following class will be our base clads.could hae any mme—it doesn’haveto be named

base .

—On the Web at
http://i5.nyu.edu/

1 #ifndef BASEH

2 #define BASEH

3 #include <iostream>
4 #include "obj.h"

5 using nhamespace std;

COmm64/book/src/base/base.h

6

7 class base {

8 obj o1;

9 obj 02;

10 public:

11 base() {

12 cout << "default construct base ";
13 print();

14 cout <<"\n";

15 }

printed 4/8/14

8:51:31 AM

hesenea ©2014 Mark Meretzky

Section 5.1 Inheritance without Virtual Functions 475

16

17 base(int initial_o1, int initial_o02): o1(initial_o1), o2(initial_o02) {
18 cout << "construct base ";
19 print();

20 cout <<"\n";

21 }

22

23 “base() {

24 cout <<"destruct base ";
25 print();

26 cout <<"\n";

27 }

28

29 void f() const {}

30

31 void print() const {

32 ol.print();

33 cout <<" "

34 02.print();

35 }

36}

37 #endif

©CoOoO~NOOOUOTA~,WNPE

10

12
13
14
15

The header file for a desd dass must alays #include the header file for its base class (line 3).
It then#include 's the header files for the classes of iiadata members (line 4). Our prograrauld
still happen to compileven without line 4, because fortunately tbéj.h in line 4 has already been
included bybase.h inline 3. But we include line 4 because a professionadrmelies on luck.

The lkeyword public in line 6 announces that we are dojmgplic inheritance In public inheri-
tance, the public members of the base class become public members ofvibek diess. Vith private
inheritance, the public members of the base class becowatepmembers of the dedad dass (p. 581).
For the time being, we’'ll stick with public inheritance.

Theprint member function of clagzase has therefore become a public member function of class
derived . But this function, while adequate to prinbase , will print only 50% of the data in a
derived object. For this reason we must provide clalesived with a bigger and bettqrint func-
tion of its own, in line 15. And this is where all our trouble will begin.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/derived/derived.h

#ifndef DERIVEDH
#define DERIVEDH
#include "base.h"
#include "obj.h"

class derived: public base {
obj 03;
obj 04,
public:
derived();
derived(int initial_o1, int initial_o2, int initial_o03, int initial_o4);
“derived();

void g() const {}
void print() const;

16 };

ety hesenea ©2014 Mark Meretzky

476 Inheritance Chapter 5

17 #endif

Some of the member functions of claksived are not inline (lines 10-12 and 15 of the abo
header filederived.h), so we also need the followinlgrived.C implementation file

The constructor for the dedad dass alvays beayins by calling the constructor for the base cldss.
the latter requires arguments, ttaee passed with the colon in line 13. If the constructor for the base class
requires no arguments, it can be called implicitly in line 5%.

The derived::print in lines 28-37 is commented out because it will not compilee 01 and
02 members of cladsase are prvate, so thg can be mentioned only in the member functions and friends
of that class. Our arkaround is the definition in lines 40—47, which begins by cabiagp::print to
do half of its vork. Itis no sin for a member function of a deed dass to call upon a member function of
the base class, if we're happith the member function of the base class as far as it goes. In fact, there is
no other way foderived::print to printol ando2.

Without thebase:: , line 42 would callderived::print and wedl go into an infinite loop.
More about this shortlyAn operator<< function for classlerived will also come later.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/derived/derived.C
1 #include <iostream>
2 #include "derived.h"
3 using namespace std;
4
5 derived::derived()
6 {
7 cout << "default construct derived ";
8 print();
9 cout << "\n";
10}
11
12 derived::derived(int initial_o1, int initial_o02, int initial_o3, int initial_o4)
13 base(initial_o1, initial_02), o3(initial_03), o4(initial_o4)
14 {
15 cout << "construct derived ";
16 print();
17 cout <<"\n"
18}
19
20 derived::"derived()
21{
22 cout << "destruct derived ";
23 print();
24 cout <<"\n"
25}
26
27 I*
28 void derived::print() const
29 {
30 ol.print(); /lwon’t compile, because o1 is private member of class base
31 cout <<""
32 02.print();
33 cout <<""
34 03.print();
35 cout <<""
36 o4.print();

ety hesenea ©2014 Mark Meretzky

Section 5.1 Inheritance without Virtual Functions 477

37}

38 *

39

40 void derived::print() const
41 {

42 base::print(); /Iwill compile, because print is a public member of class base
43 cout <<""

44 03.print();

45 cout <<""

46 o4.print();

47}

A movie of a derived abject being constructed

When we construct derived object, the bodies of six constructors axecated. Onceagnin, we
make a ®ries of detours beforexecuting the body of the constructor for the dedi object. Firstwe call
the constructor for the base object (steps 1 to 3), which makedetaurs of its own (steps 1 and Jjhen
we call the constructors for the additional data members introduced in thiedd#aiss (steps 4 and 5).
Finally we eecute the body of the constructor for the dediobject (step 6).As with aggrgdion, the out-
ermost object is alays constructed last.

03 and o4 are constructed in the order in which ythare declared in lines 7-8 of the afeo
derived.h . The order in whiclo3 ando4 are listed after the colon in line 13 of the ebderived.C
is irrelevant. Noteone peculiarity of that linebase is the name of alass, while 03 ando4 are the names
of data membes.

1) 2) 3) 4) ©) (6)
oml Lol!
L2

L03! L03! L03!

Lo4 !

Lderived -

A movie of a derived object being destructed

Six destructors are called, in exactly theerse orderwhen we destruct derived object. The
outermost object is destructed first:

et hesenea ©2014 Mark Meretzky

478 Inheritance Chapter 5

@) &) 3 4 ®) (6)
Lol! Lol! Lol! oml
Lo2 Lo2 Lo2
base base
L03 L03 L03
Lo4 ! Lo4 !
Lderived -
The output of lines 8 and 26 verifies theabdagrams:
—On the Web at
http://i5.nyu.edu/ Cmme64/book/src/derived/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "derived.h"
4 using namespace std;
5
6 i nt main()
7
8 derived d(10, 20, 30, 40);
9 cout << "\n";
10
11 d.g(); /ICan use any public member of class derived.
12 d.f(); /[Can also use any public member of class base.
13
14 d.print(); /[Call the print member function of class derived.
15 cout <<"\n";
16 d.base::print(); /[Call the print member function of class base.
17 cout << "\n\n";
18
19 const derived *const p = &d; //same examples, but with p-> instead of d.
20
21 p->print(); /[Call the print member function of class derived.
22 cout <<"\n";
23 p->base::print(); /[Call the print member function of class base.
24 cout <<"\n\n";
25
26 return EXIT_SUCCESS;
27}

ety hesenea ©2014 Mark Meretzky

Section 5.2 Scoping Rules for a Dened Class 479

construct 10 Line 8 constructd (six lines of output).
construct 20

construct base 10, 20

construct 30

construct 40

construct derived 10, 20, 30, 40

10, 20, 30, 40 Line 14 callsderived::print

10, 20 Line 16 callshase::print

10, 20, 30, 40 Line 21 callsderived::print

10, 20 Line 23 callshase::print

destruct derived 10, 20, 30, 40 Line 26 destructd (six lines of output).
destruct 40

destruct 30

destruct base 10, 20
destruct 20
destruct 10

Two groups of names in scope after the dot or aow

If the name of aariable, function, enumeration, or typedef can be mentioned at a certain point in the
program, we say that the namdrisscopeat that point. After thel. 's in lines 11, 12, 14 and 16 of the
abore main.C , and after thep-> s in lines 21 and 23, the following bagroups of names are in scope:

(1) Themembers of the desed dass.
(2) themembers of the base class.

When identifying a name after a dot or avrdhe computer considers the members of thevebri
class before the members of the base class. This is significant when the basevandldsses hae a
member with the same namEor example,d has the olgrint inherited from the base class, and it also
has the ne print in the denved dass. Sincahe members of the deed dass are considered before
those of the base class, thént member of the dered dass will hide theprint member of the base
class in the abe lines 14 and 21.

To prevent the hiding, we use the scope resolution operatoin the abee lines 16 and 23. It has
higher precedence than theotweighboring operators, dot afdunction cal) , so it reed no parentheses of
its own.

d|. ||base [:: |print 0

Since both groups of hames are in scope afted.tfge we sy that the objedl is of classbase as
well as of classlerived : it belongs to tw different data types simultaneousI@f these two types,
derived has eerything thatbase has, plus moreWe therefore say thaterived is themost derived
(i.e., biggest and best) type af

5.2 ScopingRules for a Derved Class

Four groups of variables in scope in a member function of a deréd class

In pp. 122-124, we sathat two groups of names are in scope in the body of a non-member function,
and three groups are in scope in the body of a member function. In the body of a member function of a
derived dass, four groups of names are in scope:

ety hesenea ©2014 Mark Meretzky

480

1)
(2)
3)
(4)

Inheritance Chapter 5

Thelocal variables, typedefs, enumeraions, etc.

Themembers of the deséd dass.

Themembers of the base class.

Thevariables that are neither local nor members of thevetkor base classes, i.e., the globals.
When identifying a variables in the body of a member function of aededass, the computer first

considers the locals, then the members of the@kdass, then the members of the base class, and finally
the globals. If tw things hae the same name, the local will therefore hide the member of theedielass

(line 20), the member of the dezdl dass will hide the member of the base class (line 23), and the member
of the base class will hide the global (line 28Ye would need the scope operator to access the member

of the denved dass (line 21), the member of the base class (line 24), or the global (line 27).

1 intk=10;
2
3 class base {
4 public:
5 i ntj;
6 i ntk;
7},
8
9 class derived: public base {
10 int i
11 int
12 public:
13 void f() const;
14 %
15
16 void derived::f() const
17 {
18 int i =20;
19
20 cout <<i<<"\n" /lthe local i in line 18
21 << derived::i <<"\n"; /lthe i member of class derived in line 10
22
23 cout <<j<<"\n" [/lthe j member of class derived in line 11
24 << base:j<<"\n" /lthe member of class base in line 5
25
26 cout <<k<<"\n" /lthe k member of class base in line 6
27 << k<<"\n" /lthe global k in line 1
28}

In the body of a member function of‘grandchild’ derived dass, five goups of variables would be

in scope. Et cetera.

ey hesenea ©2014 Mark Meretzky

CQOwo~NOOOUOID WNPE

1

Section 5.2 Scoping Rules for a Dened Class 481

A simple example of inheritance

A cricket will tell us the temperature if we countvhéast it chirps. We will then build a series of
bigger and better crickets.

cricket base class
metric_cricket derived class
kelvin_cricket grandchild derived class

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/cricket/cricket.h

#ifndef CRICKETH
#define CRICKETH
class cricket {
unsigned chirps; /lper 15 seconds
public:
cricket(unsigned initial_chirps): chirps(initial_chirps) {}
double fahrenheit() const {return chirps + 39;}
b
#endif
We row derive a dass that can doverything thatcricket can do, plus more: it will ge results in
Celsius as well asdhrenheit. Becauseis derived with public inheritance, the public member
fahrenheit of classcricket is also a public member of clasetric_cricket
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/cricket/metric_cricket.h
#ifndef METRIC_CRICKETH
#define METRIC_CRICKETH
#include "cricket.h"
class metric_cricket: public cricket {
public:
metric_cricket(unsigned initial_chirps): cricket(initial_chirps) {}
double celsius() const {return (fahrenheit() - 32) * 5/ 9;}
b
#endif

The abwoe line 8 multiplies by5/9 because a Celsius degree is wider than a Fahrenlge#tede D
span the distance from freezing to boilingesk 80 Fahrenheit degrees (th&f2 — 32), but only 100 Cel-
sius dgrees. Butloesnt line 8 hae a lug? Won't the integer divisio®/9 truncate to zero?

No. Infact, there is no integer division in line 8he fahrenheit function returns aouble
causing the subtraction to yielddauble result. Themultiplication comes next (since multiplication and
division hare left-to-right associativity in C and C++), yieldingdauble product. The therefore per
formsdouble division, which does not truncate.

The box diagram shows that there is no5/9 subepression of
(fahrenheit() -32) *5/9

ety hesenea ©2014 Mark Meretzky

482 Inheritance

fahrenheit () - 132) * | 5|/

Had5/9 been a subexpression, it wouldsédeen boxed:

5] [o]

Finally, we cerive a gandchild class:

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/cricket/kelvin_cricket.h

1 #ifndef KELVIN_CRICKETH

2 #define KELVIN_CRICKETH

3 #include "metric_cricket.h"

4

5 class kelvin_cricket: public metric_cricket {

6 public:

7 kelvin_cricket(unsigned initial_chirps)

8 metric_cricket(initial_chirps) {}

9
10 double kelvin() const {return celsius() + 273.15;}
11}
12 #endif

—On the Web at
http://i5.nyu.edu/ Cmme64/book/src/cricket/mainl.C

1 #include <iostream>

2 #include <cstdlib>

3 #include "kelvin_cricket.h"

4 using namespace std;

5

6 i nt main()

7

8 cricket buddy(33);

9 cout << "Fahrenheit == " << buddy.fahrenheit() << "\n\n";
10
11 metric_cricket mc(33);
12 cout << "Fahrenheit == " << mc.fahrenheit() << "\n"
13 << "Celsius ==" << mc.celsius() << "\n\n";
14
15 kelvin_cricket kc(33);
16 cout << "Fahrenheit == " << kc.fahrenheit() << "\n"
17 << "Celsius ==" << kc.celsius() << "\n"
18 << "Kelvin ==" << kc.kelvin() << "\n";
19
20 return EXIT_SUCCESS;
21}

printed 4/8/14
8:51:31 AM

All rights
reserved

Chapter 5

©2014 Mark Meretzky

©CoOoO~NOOOUTA,WNPE

Section 5.2 Scoping Rules for a Dened Class 483

Fahrenheit == 72 line 9

Fahrenheit == 72 line 12

Celsius == 22.2222 line 13; defaults to six significant digits
Fahrenheit == 72 line 16

Celsius == 22.2222 line 17

Kelvin == 295.372 line 18; still six significant digits

Add an extra data member to the denved class

In the aboe example, each denéd dass got an additional member function. In thatrene, each
derived dass will get an additional data memb#ve saw the diagram on pp. 473-474.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/amniote/amniote.h

#ifndef AMNIOTEH
#define AMNIOTEH

t ypedef int amnion_t;

class amniote {
amnion_t amnion;
public:
amniote(const amnion_t& initial_amnion): amnion(initial_amnion) {}

10}
11 #endif

©CoOo~NOOOUTA, WNPE

10
11

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/amniote/synapsid.h

#ifndef SYNAPSIDH
#define SYNAPSIDH
#include "amniote.h"

t ypedef int opening_t; /[synapsid opening

class synapsid: public amniote {
opening_t opening;
public:
synapsid(const amnion_t& initial_amnion, const opening_t& initial_opening)
amniote(initial_amnion), opening(initial_opening) {}

12}
13 #endif

O~NO O WNPE

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/amniote/mammal.h

#ifndef MAMMALH

#define MAMMALH

#include "synapsid.h"

t ypedef int bones _t; /Imiddle ear bones: incus, malleus, stapes

class mammal: public synapsid {
bones_t bones;

et hesenea ©2014 Mark Meretzky

484 Inheritance Chapter 5

9 public:

10 mammal(const amnion_t& initial_amnion,

11 const opening_t& initial_opening,

12 const bones_t& initial_bones)

13 : synapsid(initial_amnion, initial_opening), bones(initial_bones) {}
14}

15 #endif

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/amniote/placental.h

1 #ifndef PLACENTALH
2 #define PLACENTALH
3 #include "mammal.h"
4
5 t ypedef int placenta_t;
6
7 class placental: public mammal {
8 placenta_t placenta;
9 public:
10 placental(const amnion_t& initial_amnion,
11 const opening_t& initial_opening,
12 const bones_t& initial_bones,
13 const placenta_t& initial_placenta)
14
15 : mammal(initial_amnion, initial_opening, initial_bones),
16 placenta(initial_placenta) {
17}
18 #endif
A manipulator for output and input
On pp. 361-362, we gathat classesstream andistream have the member functions in lines 4
and 12.
1 class ostream {
2 / letc.
3 public:
4 ostream& operator<<(ostream& (*p)(ostream&)) {return p(*this);}
5 ostream& operator<<(ios_base& (*p)(ios_base&)) {p(*this); return *this;}
6 / letc.
7}
8
9 class istream {
10 /letc.
11 public:
12 istreamé& operator>>(istream& (*p)(istream&)) {return p(*this);}
13 istreamé& operator>>(ios_base& (*p)(ios_base&)) {p(*this); return *this;}
14 /letc.
15}

The argumenp in the abee line 4 could point to a function such as the following.

16 ostream& hex(ostreamé& ost)

174
18 ost.setf(ios_base::hex, ios_base::basefield);
19 return ost;

ety hesenea ©2014 Mark Meretzky

Section 5.2 Scoping Rules for a Dened Class 485

20}
The address dfex can be passed to tbperator<< in line 4 by writing

21 cout << hex; /[cout.operator<<(hex);

Similarly, thep in line 12 could point to anothéex function.

22 istream& hex(istreamé& ist)

23{

24 ist.setf(ios_base::hex, ios_base::basefield);
25 return ist;

26}

The address of thisex can be passed to theerator>> in line 12 by writing

27 cin >> hex; /[cin.operator>>(hex);

But there is no need to write thedvaex functions in lines 16 and 22Classesostream and
istream are denved from classos_base , as we aw in our first inheritance diagram on pp. 383—-385.
We @an therefore define a sindiex function that accepts both types of stream.

28 ios_base& hex(ios_base& io)

29{

30 io.setf(ios_base::hex, ios_base::basefield);
31 return io;

32}

The address of thieex function can be passed to tbperator<< andoperator>> in the
aborve lines 5 and 13.

33 cout << hex; /[cout.operator<<(hex); the operator<<in line 5
34 cin >>hex; /[cin.operator>>(hex); the operator>> in line 13

Note that theoperator<< in line 5 and theperator>> in line 13 ignore the return value of thex
in line 28. Thishex returns an object of the base class base , but theoperator<< and
operator>> must return an object of the dexil dass. Thg therefore returrithis , the object thg
belong to.

v Homework 5.2a: input a point object in either codrdinate system

Our polar andcartesian i/o manipulators in pp. 362-366 can beutput” to an ostream .
Let them be “input'to anistream as well.

35 point A;
36 cin >> polar >> A >> cartesian;
37 cout << polar << A << cartesian << "\n";

Each object of classtream has the same expandable array that we had in atissam . In
fact, the array and its attendant functiolaloc andiword are actually members of clags_base
and inherited by classesstream andistream . To acknowledge its origin, and tovaid favaitism,
change the@stream::xalloc toios_base::xalloc in line 6 of thepoint.C in p. 364.

Our originalpolar andcartesian friend functions took and returned astream , just like aur
original hex in the abwe line 16. The gpressioncou<polar therefore called theperator<< in
the abee line 4. But nav, polar andcartesian should accept either astream or anostream .
Change the argument and retuaiue ofpolar andcartesian toios_base ,the common ancestor of
ostream andistream , as we d@d for thehex in the abwee line 28. The rpressioncouk<polar
will now call theoperator<< in the abeoe line 5, anccin>>polar will call the operator<< in the
above line 13.

eh o hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA,WNPE

10
11
12

486 Inheritance Chapter 5

Our operator>> friend of classpoint will call the iword member function of thestream
object, just as ouoperator<< called theiword member function of thestream object. D dore
polar input into the, y data members of th@oint , theoperator>> friend of clasgoint should use
these coversions:

X =rcosé

y=rsing

5.3 Mrtual Functions

Example 1: we knav in advance which object is pointed to.

Thed in line 1 is both alerived and abase . Thus the gpression&d in line 5 is both a pointer to
aderived and a pointer to hase . And since it is a pointer tokmse , it can be stored intp.

In this simple example, it @uld be more natural to declgpeto be a pointer to derived . After
all, we knav in advance that it points to thderived objectd. (“In adwvance’ means when we write and
compile the program.But in a more realistic example, we might not wnantil runtime which object is
pointed to by a pointerln fact, we may notwen know until runtime which class of object is pointed to.
Our application might create one kind of object in response to a mou&e another kind of object in
response to adystroke. We can't predict what the user will do at runtime, so ¢gmédict which classes of
object we'll have 1 deal with.

p is declared to be a pointer tabase to allow it to point to ary object of clasdase, or of any
class derxied from base . Had p been declared to be a pointer taexived , it could not point to an
object that was merelylzase .

Will line 6 callbase::print or derived::print ? Does the namprint in line 6 represent
base::print or derived::print ? When a name represents a function, we say that the name is
boundto the function.To which function will the namerint in line 6 be bound?

A case could be made for either bindinghep in line 6 is a“pointer tdbase ", suggesting that the
nameprint in 6 should be bound tease::print . But the pointed-to object in line 6 is a
derived , suggesting that thprint in 6 should be bound werived::print

Unfortunately the definition of the language says that the binding of the maime in line 6 is
determined by the data type pf not the data type ad. The nameprint is bound tobase::print)
and line 6 calls this function. This is bad news, siv&se::print prints only half of the data id.

In this dismal scenario, the binding—the decision as to which function is represented by the name
print —is performed when the program is compiled. It is therefore calieg or static binding Line 6
is held hostage to the data typepefand the data type af is ignored. Is there gnway to bind the name
based on the data typed?

derived d(10, 20, 30, 40);

d.print(); /ICalls derived::print.

cout << "\n";

base *p = &d;

p->print(); //Calls base::print, but derived::print would be better.
cout << "\n";

|/ IExactly the same example, but with a reference instead of a pointer.
base& r =d;

r.print(); /[Calls base::print, but derived::print would be better.
cout <<"\n%

ety hesenea ©2014 Mark Meretzky

31

15

Section 5.3 Virtual Functions 487

Virtual vs. non-virtual member functions

To make the abee line 6 callderived::print , we must prefix the &yword virtual to the
declaration obase::print in line 31 ofbase.h on p. 475:
virtual void print() const {

(We will also need the é&yword virtual on the destructor at line 23 base.h ; see pp. 493-494.This
will cause the binding of the nanpeint in line 6 to be determined by the data type of the pointed-to
objectd, not the data type qf. In addition, the binding will be performed at runtime, as line &eeted.
This is calledlate or dynamic binding If line 6 is executed more than once, the decision will be made
afresh each time, based on the data type of wératbjectp is pointing to during eachxecution. We will
see this repeateceeution in examples 3 and 4 belo

We ould also prefix avirtual to the declaration ofderived::print in line 15 of
derived.h
virtual void print() const;

but don't—it’s mot necessary and nobody does it. Since tleeftwctions hae the same name,guments,
and return type, the second function is automaticéityal too.

Example 2: we don’t know in advance which object is pointed to.
From nav on, we will assume that the declaration iase::print has the kyword virtual

Almost every function call in C is statically bound: we can predict inaaghe which function will be
called.

printf("hello\n");

But the function call in line 9 is dynamically bound: we tanédict which function it will call. The deci-

sion has been deferred until runtime. In C this situationlevbe exotic, requiring a “pointer to a func-
tion”. In C++, havever, it is gandard operating procedurBe patient a moment and you'll see what it’
for.

#include <cstdlib> /ffor rand
using namespace std;

base b(10, 20);
derived d(30, 40, 50, 60);

base*p=rand() % 2==07? &b : &d;
p->print(); /[Could call base::print or derived::print.
cout <<"\n"

/[Exactly the same example, but with a reference instead of a pointer.
base& r =r and()%2==0?b:d;

r.print(); /ICould call base::print or derived::print.

cout <<"\n"

Example 3:
we don’t know in advance which object is pointed to, and the statement is executed radhan once.

Lines 9-12 construct objects of different data typé&'d like to gore these objects in a container:
an arrayvector , orlist . We an't quite do that, hwever, because all the items in a container must be
of the same data type.

But we can do the next best thing: lines 14-19 creatmtainer of pointes to the objects All the
pointers can be of the same data type, because &s y&t seen, a pointer tobase can hold the address
of either abase or aderived . (By the way, we an hae an aray of pointers but not an array of refer
ences. Sep. 80.)

ety hesenea ©2014 Mark Meretzky

1
2
3
4
5

488 Inheritance Chapter 5

The loop in lines 22-25 prints all the objects. Each time line 28=uted, it selects the appropriate
print function for the object thai[i] points to. It will callbase::print during the first tw itera-
tions, andderived::print during the next two.

When we write line 23, we may V& ro idea what object, orven what class of object, will be
pointed to byali] . But—and this is the big idea—we donkeed to knw. We can rely on the'Virtual”

machinery to select the corrgmint function for us. (See p. 1012 for another use of this same scenario.)

Some people think of a virtual function as ‘olymorphic” function: one which automatically
changes its shape (i.e., the contents of its body) based on the class of the pointed-t8uaibatourse
there is no such thingA virtual function is actually a set of functions* that share the same naguenant
types, return type, etdase::print andderived::print . Because of this agreementgey func-
tion in the imily can be called by writing the samepeession:a][i]->print() . When we write this
expression, we dob’need to knwr which function will be called at runtimeOne member of theafmily
will be selected for us automaticaltjetermined by the data type of the object #fgt points to at run-
time.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/polymorphic/polymorphic3.C

#include <iostream>
#include <cstdlib>
#include "base.h"
#include "derived.h"
using namespace std;

base b1(10, 20);

base b2(30, 40);

derived d1(50, 60, 70, 80);
derived d2(90, 100, 110, 120);

base *consta[]={ //base is the "greatest common denominator"
&b1,
&b2,
&d1,
&d2
h

const size_t n = sizeof a/ sizeof a[0];

for (size_ti=0;i<n; ++i){
a[i]->print();
cout <<"\n%

}

cout <<"\n";

/[The same loop, but with a pointer p instead of a size_ti.
for (const base *const*p =a; p <a+ n; ++p) {
(*p)->print();
cout <<"\n%

* A template function will also be defined as a set of functions. See pp. 664-665.

ety hesenea ©2014 Mark Meretzky

35
36}

37
38
39
40
41
42
43
44
45
46
47
48
49

©CoOo~NOOOUTA,WNPE

Section 5.3 Virtual Functions 489

return EXIT_SUCCESS;

10, 20 not bothering to show output of construstend destructors
30, 40

50, 60, 70, 80

90, 100, 110, 120

10, 20

30, 40

50, 60, 70, 80
90, 100, 110, 120

Without virtual functions, wel haveto write the following chain oélse-if s in place of line 23
(and line 31):

if (ali] points to an object that is merely of class base) {
/lcall the base::print that belongs to that object
a[i]->print();

}

else if (a[i] points to an object of class derived) {
/lcall the derived::print that belongs to that object
reinterpret_cast<const derived *>(a[i])->print();

}

else {
output a runtime error message;

}

and youd haveto insert anotheelseif evay time you dened another class from clagmse .

We an't always anticipate which member functions should be declamdal ; more on this
later So why not be on the safe side and reakery member functiorvirtual , as in &va? (Since
they'reall virtual in Jaa, theres no lkeyword for “virtual’’ in that language.)Well, as the abee list of
else-if ’'s shows, a call to a virtual function does more work than a call to a non-virtual one. It is said
that a call to a virtual function takes 1.6 times as long as a normal\Weee programming in C++
because we want speed.

Example 4: same moral as example 3.

Will line 28 (and 34) calbase::print or derived::print ? And when will the decision be
made, i.e., when will the nanpeint in line 28 (and 34) be bound?

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/polymorphic/polymorphic4.C

#include <iostream>
#include <cstdlib>
#include "base.h"
#include "derived.h"
using namespace std;

void f(const base *p);
void g(const base& r);

10 int main()
11

et hesenea ©2014 Mark Meretzky

490 Inheritance Chapter 5

12 base b(10, 20);

13 derived d(30, 40, 50, 60);

14

15 f(&b);

16 f(&d);

17

18 cout <<"\n"

19

20 g(b);

21 9(d);

22

23 return EXIT_SUCCESS;

241}

25

26 void f(const base *p)

274

28 p->print();

29 cout <<"\n"

30}

31

32 void g(const base& r) //[same function, but with a reference argument

33{

34 r.print();

35 cout <<"\n"

36}
10, 20 line 15 (not bothering to show output of construstard destructors)
30, 40, 50, 60 line 16
10, 20 line 20
30, 40, 50, 60 line 21

©CoOo~NOOOUTPA~,WNPE

Warning: use pass-by-reference towaid slicing

The functionf in line 22 will accept &ase or aderived via pass-by-alue. Butwhen line 14
gives it thederived objectd, f will be avare only of thebase that forms the core af. The rest ofd
will be sliced of. d itself will be undamaged, but the dexd part ofd will be agnored by . To remedy
this, use the pass-by-reference in lines 28 and 34.

This kind of slicing is bad. Therea btally different kind of slicing that is good. See pp. 901-902.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/polymorphic/slice.C

#include <iostream>
#include <cstdlib>
#include "derived.h"
using namespace std;

void f(base b);
void g(const base *b);
void h(const base& b);

10 int main()

11
12

derived d(10, 20, 30, 40);

ety hesenea ©2014 Mark Meretzky

13
14
15
16
17
18
19
20}
21

Section 5.3 Virtual Functions 491

f(d);
cout <<"\n";

g(&d);
h(d);

return EXIT_SUCCESS;

22 void f(base b)

23 {
24
25
26}
27

b.print();
cout <<"\n";

28 void g(const base *p)

29 {
30
31
32}
33

p->print();
cout <<"\n";

34 void h(const base& r) //same function; this time, argument is a reference

35 {
36
37
38}

r.print();
cout <<"\n";

We ddn’t bother to sher the output of the constructor in line 12 and the destructor in lin&\Ed
shaw the output of the cgpconstructor and the destructor for theese object in line 22.

copy construct 10 Line 14 didnt print all of d: it called base::print
copy construct 20

10, 20

destruct base 10, 20

destruct 20

destruct 10

10, 20, 30, 40 Line 16 printed all ofi: it called derived::print
10, 20, 30, 40 Line 17 printed all ofi: it called derived::print

Object-oriented programming
Object-oriented programming will help you when

(1) You are working with objects of mamlifferent classes, and expect to add rkasses in the
future.

(2) When you write the program, you ciptedict the exact (i.e.;most derved”) class that each
object will belong to.

(3) You are accessing the objects via pointers or references, rather than by name, as inxamfour e
ples. Infact, maty objects hae o name. Onlyobjects created by declarationsvbaames; ones created
by new (the C++ equialent ofmalloc) havenone.

If all of these classes are dead from a common base class nantede , you can declare a pointer
that can point to an object belonging ty afithem:

base *p;

ety hesenea ©2014 Mark Meretzky

O©CoOo~NOOOUTA, WNPE

492 Inheritance Chapter 5

Then you can sag->print() and the correct function will be selected and called.

Object-oriented pygramming is the use of late binding to let line 23 on p. 488 do the work of the
list of if statements in lines 37-49. Line 23 will decide as it runs which function tdaa#::print ,
derived::print , &c. It could call a different function each time it iseeuted. Andif additional
classes are demd from the same base class, each with theirjgrint member function, line 23 will call
these n& functions gen without recompilation.

Late binding in C++ is performed with inheritance and virtual functidhgou use objects without
inheritance and virtual functions, your programming is meodlject-based,not object-oriented.Don’t
feel guilty: object-orientation is notvadys necessarySee the three conditions alen

Why not use aggregation instead of inheritance?

Thanks to inheritance, themession in the celebrated line 23 @bowrks for objects of either class
base or of classlerived . But suppose we had built cladsrived from classase using aggrgdion
instead of inheritance:

| /Alternative version of derived.h.
#ifndef DERIVED
#define DERIVED

#include <iostream>
#include "base.h"
#include "obj.h"

using namespace std;

10 class derived {
11 public:

12

base b; lla data member instead of a base class, public for simplicity

13 private:

14
15

obj 03;
obj 04

16 public:

17
18
19

derived(int initial_o1, int initial_o2, int initial_o03, int initial_o4);
void g() const {}
void print() const;

20},
21 #endif

22
23
24
25
26
27
28
29
30
31
32
33
34
35

To call theg member function of each object (line 18 of theadoase.h), we'd haveto write the tvo
different expressions in lines 37 and 39 helde would therefore need the chainibf’s in lines 36-42
instead of the single expression in thewabime 23.

base b1(10, 20);

base b2(30, 40);

derived d1(50, 60, 70, 80);
derived d2(90, 100, 110, 120);

void *consta]] ={ //the greatest common denominator is now merely void *
&b1,
&b2,
&d1,
&d2
¥

const size_t n = sizeof a/ sizeof a[0];

for (size_ti=0;i<n; ++i){

ety hesenea ©2014 Mark Meretzky

36
37
38
39
40
41
42
43
44
45

1

Section 5.3 Virtual Functions 493

if (a[i] points to an object of class base) {

afil->f(); IIsimplified pseudo-code
} elseif (a[i] points to an object of class derived) {

afil->b.f(); /Isimplified pseudo-code
} else{

output a r untime error message,;

cout <<"\n";

A family of functions

A virtual function is not a function. It is a family of functions, sharing the same namenant
types, return type, etcOne of these functions, marked with thenkord virtual , belongs to a base
class; the others belong to classesvedriherefrom.

If base::print is not adequate to print a desdl object, we can provide a bigger and better
print function in the devied dass. Thast what the following diagram does for cledsrived . But if
theres a cerived dass for whichbase::print is adequate, you dartiaveto write aprint function for
that derved dass. Inthe diagram, classemother_derived and another_grandchild rely on
the originalbase::print function.

base

virtual print

derived] another_derived
print

grandchild] another_grandchild one_more_grandchild
print

Five requirements for a virtual function
(1) All the functions that constitute a virtual function mustehtae same name.

(2) All the functions that constitute a virtual function mustehthe same argument types, although
not necessarily the same default values for the arguments.

(3) All the functions that constitute a virtual function must either alldyest or all be noneonst .
In other words, themust agree in the data type of their implicit argument, as well as their expdjait ar
ments.

(4) All the functions that constitute a virtual function mustehtae same return type (with theoep-
tion on p. 523). If a base class hagirdual function and a dered dass has a function with the same
name, same argument types, but different return value type, you get an error message at compile time.

The functions that constitute a virtual function do natehia agree on their heel of publicity. On p.
497 we will see an example where the function in thevettrilass is pwate, while the one in the base
class is not pvite.

(5) A base class with a virtual function musvéa \rtual destructor if objects of the base class or of
derived dasses will be allocated dynamicallWill they be so #ocated? Naone knows yet.To be on he
safe side, we prefix theelword virtual to line 23 ofbase.h on p. 475. (There is no need for the
keyword virtual on the destructor for claskerived .) If the base class has no destruyoi@ write an
empty one just to carry thesyword virtual

virtual "base() {}

ey hesenea ©2014 Mark Meretzky

print

©CoOo~NOOOUTPA,WN

©CoOo~NOOOUTA, WNPE

494 Inheritance Chapter 5

If classbase has a virtual destructathedelete in line 9 will call the correct destructaither the
one forbase or the one foderived . If classbase does not hee a vrtual destructarthe delete in
line 9 would alvays call the destructor for clagsse , neve the one for clasderived . We would be
held hostage to the data type of the expregsionline 9.

base *const p =rand() % 2 ==
? new base(10, 20)
new derived(30, 40, 50, 60);

p->print();
cout << "\n";

delete p;

See pp. 501-503 for another situation in which the destructor for a base class must be virtual.

What happens if you don't fulfill the above requirement (2)

If a base class hasvatual function and a deved dass has a function with the same name, same
return type, but different argument types, you get no error mes3dge function in the dered dass
merely hides the function in the base class because of the scoping rules.

Heres an @ample. Thebase class has a functibrthat accepts amt . The user wants to g the
derived dass another functioh that will accept ahar . A worthy goal, but line 19 ends up calling line
12. Linel2 has eclipsed line 7.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/polymorphic/hide.C

#include <iostream>
#include <cstdlib>
using namespace std;

class base {
public:
virtual void f(int i) const {cout << i << "\n";} /[Print in decimal.

}s

10 class derived: public base {
11 public:

12
13}
14

void f(char c) const {cout << ™" << ¢ << ™" << "\n";} //Print a character.

15 int main()

16 {
17
18
19
20
21
22}

derived d;
d.fCA"); /[Calls derived::f.
d.f(66); /Nl wish it called base::f, but it calls derived::f.

return EXIT_SUCCESS;

‘A’ line 18
B’ line 19

ety hesenea ©2014 Mark Meretzky

Section 5.3 Virtual Functions 495

How to fix it

This is the one case where ywouldn't write the keyword virtual in front of the first of a pair of
member functions with the same names, arguments, and return values, such as the ones in lines 7 and 12.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/polymorphic/supplement.C

#include <iostream>
#include <cstdlib>
using namespace std;

class base {
public:
void f(int i) const {cout << i << "\n";} /[Print in decimal.

b

O©CoOoO~NOOOUOTA, WNPE

10 class derived: public base {

11 public:

12 void f(int i) const {base::f(i);} /[call-through
13 void f(char c) const {cout << "" << ¢ << """ << "\n";} //Print a character.
14}

15

16 int main()

174

18 derived d;

19 d.fCA"); /[Calls the derived::f in line 13.

20 d.f(66); /[Calls the derived::f in line 12, which calls base::f.

21 return EXIT_SUCCESS;

22}

‘A’ line 19
66 line 20

See the more ajent solution on pp. 1025-1026.

Protected members

We dready knav that a member of a class can be public orgei It can also bgrotected: men-
tionable only by the member functions or friends of the class to which it belongs, andotdsandered
therefrom, including grandchildren, great-grandchildren, etc. In public inheritance, the protected members
of the base class become protected members of thvedldass.

A non-const data member should ver be grotected, for then its value could be changed by indefi-
nitely mary functions throughout the progranThe only protected members should be things that are
intrinsically unchangeable: a member function, enumeratiomst data membeior typedef or other data
type.

There is one subtlety in the definition of a protected memberobject of a deried dass can usu-
ally mention a protected member of its base class (line\i&)an &en do his when the member belongs
to a different object of the same ded dass (line 18).But we cannot do this when the member belongs to
an object that isot of the same dered dass. Line21 and 23 try to mention tHethat belongs to objects
of classeslerivedl andbase, but thesd 's are unmentionable in a member function of class
derived2 . (Line 24 fails for the same reason as line &3 ironic, because 24 is only doing the same
thing we did in 16.) This restriction will come back to haunt us on p. 579.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/polymorphic/protected.C

et hesenea ©2014 Mark Meretzky

496 Inheritance Chapter 5

1 #include <iostream>

2 #include <cstdlib>

3 using namespace std;

4

5 class base {

6 protected:

7 void f() const {cout << "base::f\n";}

8 };

9
10 class derivedl: public base {
11}
12
13 class derived2: public base {
14 public:
15 void g() const {
16 f(); /Iwill compile
17 derived2 dz;
18 d2.f(); /Iwill compile
19
20 derivedl d1;
21 /1d1.1(); /lwon’t compile
22 base b;
23 1Ib.1(); /lwon’t compile
24 /[static_cast<const base *>(this)->f(); /lwon’t compile
25 }
26},
27
28 int main()
29 {
30 derived2 dz;
31 d2.9();
32 return EXIT_SUCCESS;
33}

base::f
base::f

There ae no virtual friends.

We row provide the long werdue operator<< friend for classedase andderived . No one
wants to hae o call a member function nameulint

Each of the following classes has different data members, so each requifeseatdiperator<<
function. Itsounds lile they should be a family of virtual functions. But thesed poblem. Onlya mem-
ber function can be virtual, and aperator<< is not a member function of the class that it outplits.
the operator<< needs to mention the pate members of the class, it must get that access by being a
friend, not a membenof that class.* (If theoperator<< does not need to mention thevate members,
it should be neither a member function nor a friend.)

The workaround is to write one non-virtugderator<< (lines 13-16) that will call a virtual mem-
ber function to do all its work (thprint in line 10). The dened dass can thenwerride the virtual

* Remember wi? If an operator<< (or ary other operator function) were a member function, the language
would require it to be a member function of its left operaBdt the object that we want to output isays the right oper
and of the<<.

ety hesenea ©2014 Mark Meretzky

Section 5.3 Virtual Functions 497

function (line 21) but it wort’haveto override theoperator<<

Thebase argument of theoperator<< in line 13 must be passed by referenééere it passed by
value, it would be sliced (pp. 490-491) and line 14 wouwldag$ call thebase::print in line 10, nger
thederived::print in line 21.

base::print must be public or protected because it is mentioned in line 21, a point outside the
member functions and friends of cldssse . But derived::print can be puate esen though it may
be called from line 14, a point outside the member functions and friends ofletassd . Line 14 does
not actually mentiowlerived::print

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/polymorphic/virtualfriend.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 class base {
6 i nti;
7 protected:
8 virtual void print(ostream& ost) const {ost << i;}
9 public:
10 base(int initial_i): i(initial_i) {}
11 virtual “base() {}
12
13 friend ostream& operator<<(ostream& ost, const base& b) {
14 b.print(ost);
15 return ost;
16 }
17}
18
19 class derived: public base {
20 int
21 void print(ostream& ost) const {base::print(ost); ost << ", " << j;}
22 public:
23 derived(int initial_i, int initial_j): base(initial_i), j(initial_j) {}
24},
25
26 int main()
27 {
28 base b(10);
29 const base *p = &b;
30 cout <<*p<<"\n% [loperator<<(cout, *p) << "\n";
31

32 derived d(20, 30);
33 p = &d;

34 cout <<*p<<"\n% [loperator<<(cout, *p) << "\n";
35
36 return EXIT_SUCCESS;
37}
10 lines 28-30
20, 30 lines 32-34

ety hesenea ©2014 Mark Meretzky

PO OWoOoO~NOOUODWNLPE

B

498 Inheritance Chapter 5

v Homework 5.3a: allocate an array of denved objects

Even if thebase class has a virtual destructerhy must the pointep in lines 10-11 be declared as
a pointer to aderived , not a pointer to &ase ? Assume that derived object is larger than base
object.

base *p = new base(10); /la base object

delete p; /lokay

p = new base[3]; /lan array of base objects

delete][] p; /lokay

p = new derived(20, 30); //a derived object

delete p; /lokay

p = new derived[3]; /lan array of derived objects

delete(] p; //blows up

If we had written aroperator new|] and operator delete[] member function for class
base, lines 4 and 5 would ka alled them.We ddn'’t, so these lines called the global
operator new(] andoperator delete[] in the C++ Standard Library.

A

5.4 HiddenPainters I: the Virtual Function Table (vtbl)

Back on p. 488 we gathe celebratee> operator in line 23 opolymorphic3.C . How can the
expressionali]->print() call two different member functionsMow does it interrogate the et
object and decide whigbrint function to call?

My platform has a typical implementatioiEvery class that has virtual functions (including classes
derived from those héng virtual functions) has a table in memory calledvintial table or vtbl, for that
class. Theclassbase in line 5 has a vtbl because it has virtual functions; the dassed in line 29
has a vtbl because it has virtual functions inherited from blass .

There is exactly one vtbl for each class that has virtual functions, and the vtbl for the class is shared
by all the objects of the clas&or example, all the object of clagmse share one vtbl, and all the objects
of classderived share another vtbl.

Every object that has virtual functions begins with a pointer to the vtbl for the mostddeass of
that object. For example, the objedb in line 41 is merely dase ; it begns with a pointer to the vtbl for
classbase . The objecd in line 45 is both dase and aderived ; it begns with a pointer to the vtbl for
classderived . See the following diagrams &f andd, and the value of theizeof ’sinlines 42 and 46.

At first glance, the vtbl looks lé&kan aray of pointers. But the pointers may be ofetiént types, so
the vtbl actually has to be a structure whose fields are poiritergach virtual function in the class, there
is a field containing a pointer to the function that is most appropriate for the Etmssxample, in the vtbls
for classbase and eery class dexied therefrom, the third field points to functions that belong to the vir
tual functionf . The third field of the vtbl for cladzase points tobase::f , and the third field in the vtbl
for classderived points toderived::f . The fourth field in both vtbls points tmase::g , since this
function was neer overridden in classlerived ; see the spline in the diagram.

Now we can trace he the celebratee> operator did its work in thefi]->print() in line 23 of
polymorphic3.C ~ on p. 488.We will use the simplerxamplep->f() in line 54. The first time this
expression isxecuted,p points to thébase objectb. See the following diagram.

The-> performs three dereferences. First we dereferenceg,tiviich gets us to the objebt(or to
d, the second time thisxpression is xecuted). Therwe dereference the pointer in the object, which gets
us to the vtbl for the most deed dass of the objectFinally, we dereference the pointer in the third field
of the vtbl, the field for the virtual functidn which gets us to eithdrase::f or derived::f

et hesenea ©2014 Mark Meretzky

Section 5.4 Hidden Pointers I: the Virtual Function Table (vtbl) 499

p b vtbl for classbase functions in memory
— = base:"base

i —————» base:"base for dynamics

— 1 = base:f

» base:g

_— base::h

d vtbl for classderived | functions in memory
_— derived::"derived

i —_ derived::"derived for dynamics

i —_ derived::f

— | = derived:h

C++ is sufficiently lav-level to let us read an objestitbl and manually call the functions to which
the vtbl points. The structure in line 16 gi®the layout of the vtbl for clasgmse on my platform. We
can use the same layout foryaterived dass that has no additional virtual functiordlassderived , for
example, has no virtual functions other thanfthg, h, and destructor that it inherits from cldszse .

The structure in line 16 describes the vtbls for clabasse andderived . It will be seen that the
first (or only) argument in lines 17-21 is declared to be a pointeage. In a all to a function in the
base vtbl , this argument will point to base object. Ina all to a function in thelerived vtbl , this
argument will point to @erived object. Noexplicit casting is necessary to neakis work.

The four virtual functions are of different types, so the corresponding fields lmythe structure
had to be pointers to functions offdifent types.For example, thebase::f in line 11 andderived::f
in 33 tale a ead/write pointer to dase and returnvoid , and theptr_to f in line 19 is a pointer to
this type of function. On the other hand, theese::g in line 12 takes a read-only pointer to a base and
returnsvoid , and theptr_to_g in line 20 is a pointer to this type of function. On my platform, a vtbl
begins with pointers to tw different implementations of the destructor: one for objects that are not dynami-
cally allocated, and one for objects that are.

The structure in line 24 stus the layout of &ase object in memory on my platform. Its first field
is a pointer to the vtbl for class base; its second field is the data miember

Thep in line 52 is a pointer to base object (which might also bederived object). The*p in
line 59 is the base object itselfo gve us a clean notation for accessing the fields of the object, line 59 lets
line 60 pretend that there idayout structure namethy in memory exactly where the object iday
is merely a referenceHadlay been an actual structure, wewld hase incurred the expense of gopg
the imagined structure intay .)

To gve us a clean notation for accessing the fields of the vtbl, line 60 lets lines 63-65 pretend that
there is avtbl structure named in memory exactly where the vtbl is. Lines 63-65 call the functions
whose addresses are in the vtbhey do the same thing as lines 54-56, in the sense that touching an elec-
trode to the lg of a dssected frog mas the muscles do the same thing as wheweafrhg jumps. To
male it easy to tally the three dereferences, we wrote them with explicit asterisks in lines 59, 60 and 63.
The last asterisk can be implicit, as in the comment in lineT®&-> operator in line 54 performs these
three dereferences.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vtbl/vibl.C

ety hesenea ©2014 Mark Meretzky

500 Inheritance Chapter 5

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 class base {
6 i nti;
7 public:
8 base(int initial_i): i(initial_i) {}
9 virtual “base() {}
10
11 virtual void f() {cout << "base::f\n";}
12 virtual void g() const {cout << "base::g\n";}
13 virtual int h(int n) const {cout << "base::h\n"; return i + n;}
14}
15
16 struct vtbl { /lof a base object
17 void (*ptr_to_destructor)(base *);
18 void (*ptr_to_dynamic_destructor)(base *);
19 void (*ptr_to_f)(base *); /Iptr_to_fis a pointer to a function
20 void (*ptr_to_g)(const base *);
21 int (*ptr_to_h)(const base *, int);
22},
23
24 struct layout { //of a base object
25 const vtbl *ptr_to_vtbl;
26 int i
27},
28
29 class derived: public base {
30 int
31 public:
32 derived(int initial_i, int initial_j): base(initial_i), j(initial_j) {}
33 void f() {cout << "derived::fin";}
34 int h(int n) const {cout << "derived::h\n"; return j + n;}
35}
36
37 void print(base *p);
38
39 int main()
40{
41 base b(10);
42 cout << "sizeof b ==" << sizeof b << "\n";
43 print(&b);
44
45 derived d(20, 30);
46 cout << "sizeof d ==" << sizeof d << "\n";
a7 print(&d);
48
49 return EXIT_SUCCESS;
50}
51
52 void print(base *p)
53{
54 p->f();

ety hesenea ©2014 Mark Meretzky

Section 5.5 Dynamic Allocation of Base and Daréd Objects 501

55 pP->9();
56 cout << p->h(40) << "\n";
57
58 /Unofficial; not portable.
59 const layout& lay = reinterpret_cast<const layout &>(*p);
60 const vtbl& v = *lay.ptr_to_vtbl;
61
62 /[This is what the calls in lines 54-56 actually do.
63 (*v.ptr_to_f)(p); IIv.ptr_to_f(p);
64 (*v.ptr_to_g)(p); /Iv.ptr_to_g(p);
65 cout << (*v.ptr_to_h)(p, 40) << "\n\n"; [Iv.ptr_to_h(p, 40)
66 }
sizeof b == sizeof (vtbl *) + sizeof (int)
base::f Line 43 passes lase object toprint
base::g
base::h
50
base::f
base::g
base::h
50
sizeofd ==12 sizeof (vtbl *) + sizeof (int) + sizeof (int)
derived::f Line 47 passesderived object toprint
base::g
derived::h
70
derived::f
base::g
derived::h
70

Of course, the computer does natails need to use the vtbliWhen an object is mentioned by name,
rather than accessed through a pojnter an see at compile time whi¢dhwe are calling. There is no
need at runtime to look up the address of the approfprist¢he objecs wvibl.

base b(10);
b f();

derived d(20, 30);
d.f();

abhwNRE

5.5 DynamicAllocation of Base and Denved Objects

In pp. 415-419 we wrote aoperator new and operator delete function for allocating
objects of one specific clas§Ve row provide the same functions for clasase , in lines 18 and 240ur
functions produce tracing output, butytdefer the actual allocation and deallocation to the global
operator new and operator delete . To call these global functions, we need the unary scope
operator: in lines 19 and 26Without it, our functions would call themselves and go into an infinite loop
(p. 476).

An operator delete for a base class canvgaan extra argument that we didrtiavebefore, the
size_tn in line 24. Like thesize_tn in line 18, it gves the size of the object being allocated and

ety hesenea ©2014 Mark Meretzky

502 Inheritance Chapter 5

deallocated. Buhow these arguments\g the total size of the object, including the size ofyatterived

object in which it is embeddedio ensure that the correct sizes are passed to these functions, the base class
must hae a vrtual destructar The output shows that on my platformhase is eight bytes (the four-byte

i plus four bytes of werhead) and derived is 12 { andj , plus the @erhead).

Our simple operator new and operator delete merely print these numbersA more
sophisticated pair of functions, ékhe ones in pp. 415-419, could use them to perform their own alloca-
tion.

—On the Web at

http://i5.nyu.edu/ Omm64/book/src/polymorphic/new.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 using namespace std,;
5
6 const char *progname;
7 void my_new_handler();
8
9 class base {
10 int i
11 public:
12 base(int initial_i = 0): i(initial_i) {
13 cout <<"construct base " <<i<<"\n";
14 }
15
16 virtual “base() {cout << "destruct base " <<i << "\n";}
17
18 void *operator new(size_t n) {
19 void *const p = ::operator new(n);
20 cout << "base:operator new(" << n << ") returns " << p << "\n";
21 return p;
22 }
23
24 void operator delete(void *p, size_t n) {
25 cout << "base:operator delete(" << p << ", " << n << ")\n";
26 ::operator delete(p);
27 }
28}
29
30 class derived: public base {
31 int
32 public:
33 derived(int initial_i = 0, int initial_j = 0)
34 base(initial_i), j(initial_j) {
35 cout << "construct derived " << initial_i <<"" <<j<<"\n";
36 }
37
38 “derived() {cout << "destruct derived " << j << "\n";}
39}
40
41 int main(int argc, char **argv)
42 {
43 progname = argv[0];
44 set_new_handler(my_new_handler);

ety hesenea ©2014 Mark Meretzky

45
46
47
48
49
50
51
52
53
54
55}
56

Section 5.5 Dynamic Allocation of Base and Daréd Objects 503

base *p =new base(10);
delete p;

cout <<"\n";

p = new derived(10, 20);
delete p;

return EXIT_SUCCESS;

57 void my_new_handler()

58 {
59
60
61}

1

cerr << progname << ": out of store\n";
exit(EXIT_FAILURE);

base::operator new(8) returns 0x22280 line 46 allocates &@ase object
construct base 10
destruct base 10 line 47 deallocates thiease object

base::operator delete(0x22280, 8)

base::operator new(12) returns 0x23a98 line 51 allocates aerived object
construct base 10

construct derived 10 20

destruct derived 20 line 52 deallocates theéerived object
destruct base 10

base::operator delete(0x23a98, 12)

v Homework 5.5a: does the base class destructorveto be \irtual?

Let the destructor for the ab® dassbase in line 16 be non-virtual.Will line 52 still call the
destructor for clasderived ? Are the correch arguments still passed to
base::operator delete ?
A

A simple example of inheritance with virtual functions

stack base class
stackt stacke derived classes
tracing error checking

Here’s a lare-bones version of the stack wevgm . 149-154 and 172-17AM€|| use inheritance
to build classes with additional features: tracing for debugging, and error chef@lkaamncede that in real
life, no one would write the base class stack without error checking.)

For the data typsize_t inlines 7 and 9, see p. 660r the initialization of the static data member
max_size inline 7, see p. 238.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/stackt/stack.h

#ifndef STACKH

et hesenea ©2014 Mark Meretzky

504 Inheritance

Chapter 5

2 #define STACKH
3 #include <cstddef> [[for size_t
4 using namespace std,;
5
6 class stack {
7 static const size_t max_size = 100;
8 i nt a[max_size];
9 size_tn; /Istack pointer: subscript of next free element
10 public:
11 stack(): n(0) {}
12 virtual “stack() {}
13
14 virtual void push(int i) {a[n++] = i;}
15 virtual int pop() {return a[--n];}
16
17 size t size() const {return n;}
18 static size_t capacity() {return max_size;}
19}
20 #endif
—On the Web at
http://i5.nyu.edu/ Omme64/book/src/stackt/mainl.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4 #include "stack.h"
5
6 i nt main()
7
8 cout << "To hire a person, type their social security number.\n"
9 " To fire the most recently hired person, type a zero.\n"
10 "To quit, type a negative number.\n";
11
12 ;istack s; /ICall the constructor for s with no arguments.
13
14 for () {
15 int ss; /luninitialized variable
16 cin >>ss;
17 if (ss<0){ /[quit
18 break;
19 }
20
21 if (ss>0){ /Ihire
22 s.push(ss);
23 } else{ [ffire
24 cout << "Firing number " << s.pop() << ".\n";
25 }
26 }
27
28 return EXIT_SUCCESS; //Call the destructor for s.
29}

printed 4/8/14
8:51:31 AM

hesenea ©2014 Mark Meretzky

Section 5.5 Dynamic Allocation of Base and Daréd Objects 505

To hire a person, type their social security number.
To fire the most recently hired person, type a zero.
To quit, type a negative number.

10 Yau type the numberin italics.
20

30

0

Firing number 30.

0

Firing number 20.

40

0

Firing number 40.

0

Firing number 10.

-1

With classesstackt andstacke we can add functionality to classack without having to
change or duplicate the code in that claBer example, the author aftackt has no need to agonize
again wer whether ther+ should be prefix or postfiXiVe @an let this sleeping dog lie in the base class
stack .

In line 10, the constructor fatackt begins by calling the constructor fetack and passing it no
arguments. Thisvould still happeneen if we didn’t write thestack(), , so @oss it out.

stackt::push begins by callingstack::push . As we laveseen, there is no stigma attached
to having a member function of the deedl dass call a member function of the base class to do part of its
work, if we're haply with the member function of the base classaasa$ it gpesRememberthe member

functions in lines 13 and 14 would go into an infinite loop if we forget $itack:: (p. 476.)
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stackt/stackt.h
1 #ifndef STACKTH
2 #define STACKTH
3 #include <iostream>
4 #include "stack.h"
5 using namespace std;
6
7 class stackt: public ::stack { //stack with tracing output
8 ostreamé& ost;
9 public:
10 stackt(ostreamé& initial_ost): stack(), ost(initial_ost) {ost << "stackt()\n";}
11 “stackt() {ost << ""stackt()\n";}
12
13 void push(int i) {::stack::push(i); ost << "push(" << i << ")\n";}
14 int pop() {constint i = ::stack::pop(); ost << "pop(" << i << "\n"; return i;}
15}
16 #endif
We @an remee the following line 7 entirely Even without it, classstacke would still hare a ©n-
structor that takes no arguments, which would call the constructor foistdaks with no arguments.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stackt/stacke.h
1 #ifndef STACKEH
2 #define STACKEH
3 #include "stack.h"

ety hesenea ©2014 Mark Meretzky

506 Inheritance Chapter 5

class stacke: public ::stack { //stack with error checking
public:

stacke(): stack() {}

~ stacke();

©O© oo~NO OA~

10 void push(int i);
11 int pop();
12}

13 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stackt/stacke.C

#include <iostream>
#include <cstdlib>
#include "stacke.h"
using namespace std;

stacke::"stacke()
{
i f (size()!=0){
cerr << "Warning: stack still contains " << size()
10 << " v alues.\n";

©CoOo~NOOOUTA, WNPE

13

14 void stacke::push(int i)

15 {

16 if (size() >= capacity()) {

17 cerr << "Can't push when size " << size() <<" >= capacity
18 << capacity() <<".\n";
19 exit(EXIT_FAILURE);

20 }

21

22 ::stack::push(i);

23}

24

25 int stacke::pop()

26 {

27 if (size() ==0){

28 cerr << "Can't pop when size " << size() << " == 0.\n";
29 exit(EXIT_FAILURE);

30 }

31

32 return ::stack::pop();

33}

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/stackt/main2.C

#include <iostream>
#include <cstdlib>

#include "stackt.h"
#include "stacke.h"

abhwNRE

e hesenea ©2014 Mark Meretzky

Section 5.5

6 using namespace std;
7

8 void f(::stack *p);

9 void g(::stack& r);

Dynamic Allocation of Base and Daréd Objects 507

10

11 int main()

12 {

13 .:stack S;

14 stackt st(cout);

15 stacke se;

16

17 f(&s);

18 f(&st);

19 f(&se);

20

21 cout <<"\n";

22

23 g(s);

24 g(st);

25 o(se);

26

27 return EXIT_SUCCESS;

28}

29

30 void f(::stack *p)

31

32 p->push(10);

33 cout << p->pop() << "\n";

34}

35

36 void g(::stack& r) //[Exactly the same function, but with a reference argument.

37 {

38 r.push(20);

39 cout <<r.pop() <<"\n";

40}
stackt() line 14
10 line 17
push(10) line 18
pop(10) line 18
10 line 18
10 line 19
20 line 23
push(20) line 24
pop(20) line 24
20 line 24
20 line 25
“stackt() line 27

printed 4/8/14
8:51:31 AM

hesenea ©2014 Mark Meretzky

=
CQOWoOoO~NOOOUODN»WNLPE

11
12
13
14

508 Inheritance Chapter 5

A preview of multiple inheritance

I'd like to aeate the grandchild clasgackte , which would inherit debugging from clastackt
and error checking from clastacke . Having two or nore parents is callethultiple inheritanceas
opposed tagingle inheritanceJava has only single inheritance.

To ensure that the grandchitdackte will inherit only a single copof its grandparergtack , we
will have b letstackt andstacke bevirtual base classesSee pp. 554-557.

stack base class
stackt stacke derived classes
stackte grandchild class

5.6 Partition the Code into Member Functions

Which member functions need to be marked as virtual?

rocket base class

relativistic_rocket derived class

It would seem that the biggest difficulty with object-oriented programming is to decide which mem-
ber functions must be ma#t as virtual.We cannot alvays identify the member functions which are ade-
guate to service the classyHeelong to, but which may be inadequate to service aadkdass that no one
has dreamt of yet.

The following classocket illustrates this problemlt was written on theve d Einsteins Secial
Theory of Relatiity. No one suspected that thength member function in line 13 euld become obso-
lete in a deried dass, so hw could they haveknown to mark it as virtual?

A class cart’havea data member and a member function with the same naimt’'s why the names
of the data members¥®@wnderscores.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/relative/rocket.h

#ifndef ROCKETH
#define ROCKETH

class rocket {
double _length; /lin meters
double _v; /Ivelocity in meters per second
public:
r ocket(double initial_length, double initial_v)
_length(initial_length), _v(initial_v) {}

virtual “rocket() {}

virtual double length() const {return _length;}
double v() const {return _v;}

ety hesenea ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 509

15}
16 #endif

O©CoOoO~NOOOTA,WNPE

16

To complete the example, we sh@ dass dewned dter the publication of relativity theoryThe
speed of light is represented by the lettdcelerity); it is a member function in line 12, rather than a data
membey because | wanted it to be public. Nothing cawedréaster than light, and the constructor checks
for this.

An object becomes shorter as it approaches the speed of light. The square roletnigtithe func-

b 2
tion, -\/ 1- é has the value 1 when the ratkis stationary (== 0), and shrinks tward zero as the
rocket speeds u @pproaches).

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/relative/relativistic_rocket.h

#ifndef RELATIVISTIC_ROCKETH

#define RELATIVISTIC_ROCKETH
#include <cmath> [ffor sqrt
#include "rocket.h"

using namespace std;

class relativistic_rocket: public rocket {
public:
r elativistic_rocket(double initial_length, double initial_v);

/Ispeed of light in vacuum (meters per second)
static double c() {return 2.99792458e8;}

double length() const {
return rocket::length() * sqrt(1 - v() * v() / (c() * c()));
}

17}
18 #endif

O©CoOoO~NOOOUTA, WNPE

10

12
13
14

—On the Web at
http://i5.nyu.edu/ COmme64/book/src/relative/relativistic_rocket.C

#include <iostream> //for cerr and <<
#include <cstdlib> /ffor EXIT_FAILURE
#include <cmath> [[for abs

#include "relativistic_rocket.h”

using namespace std;

r elativistic_rocket::relativistic_rocket(double initial_length, double initial_v)
rocket(initial_length, initial_v)
{
it (abs(v()) >=c() {
cerr << "Velocity " << v() << " can’t be >= the speed of light "
<< ¢() <<"\n"
exit(EXIT_FAILURE);

15}

V3 . . . - V15
At > of the speed of light, a roek shrinks to half of its original lengthAt =z of the speed of

V63
light, it shrinks to one fourth; a% to one eighth.

ety hesenea ©2014 Mark Meretzky

510 Inheritance Chapter 5

The C++ Standard Library has thregrt functions, taking arguments of tyfkeat , double ,
andlongdouble . The computer would not i@ known which one to call had we written an argument of
typeint inlines 12-14.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/relative/main.C
1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 #include <cmath>
5 #include "relativistic_rocket.h"
6 using namespace std,;
7
8 i nt main()
9 {
10 const double a[] ={ //fraction of the speed of light
11 0,
12 sqrt(3.0)/ 2,
13 sqrt(15.0) /4,
14 sqrt(63.0) /8,
15 1
16 3
17 const size_t n = sizeof a / sizeof a[0];
18
19 for (constdouble *p =a; p<a+n; ++p) {
20 const relativistic_rocket r(1, *p * relativistic_rocket::c());
21
22 cout << "velocity ==" << scientific << r.v()
23 << resetiosflags(ios_base::floatfield) //turn off scientific
24 << " length ==" << r.length() << "\n";
25 }
26
27 return EXIT_SUCCESS;
28}

velocity == 0.000000e+00, length ==

velocity == 2.596279e+08, length == 0.5

velocity == 2.902728e+08, length == 0.25

velocity == 2.974411e+08, length == 0.125

Velocity 2.99792e+08 can’t be >= the speed of light 2.99792e+08.

Divide the code of a class into member functions

As shown abee, there may be no way to tell in aahce which member functions should be redrk
as virtual. But the real difficulty is muchonse. Therenay be no way to tell in adnce hw the code in a
class should be divided up into member functions. The correct partitioning becormssaimly when it
is too late, after the incorrect design has been gegjia granite.

It will take a nulti-part exkample to illustrate a problem as complicated as th¥s. will build up a
date class that knows which years are leap years and which are not. In real life, we would write this as a
single class. But to illustrate Wwao create software in layers, we will write it as a base class and ateri
class.

The clasgdate that we will start with does not kmowhich years are leapt assumes theall are.
But it is intended to be a base class for a smarter class that deesvkith are leap. (It wuld seem to
make more sense for the base class to assume lyldéhat all years are non-leap/el| see wly it has to

ety hesenea ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 511

assume thaht all years are leap on p. 518, when we see treel diass.)

There are tw constructors, with three gmments in line 30 and no arguments in line 34. Their com-
mon code has been factored out into a separate member functimstalie in line 13.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/virtuall/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 #include <ctime> [[for time and localtime
5 using namespace std;
6
7 class date {
8 i ntyear; /IMust construct data members in this order.
9 i nt month; /[date::january to date::december inclusive
10 int day; n to length[month] inclusive
11
12 static const int length[];
13 virtual void install(int m, int d, int y);
14 public:
15 enum month_t{ //indices into the length array
16 january =1,
17 february,
18 march,
19 april,
20 may,
21 june,
22 july,
23 august,
24 september,
25 october,
26 november,
27 december
28 3
29
30 date(int initial_month, int initial_day, int initial_year) {
31 install(initial_month, initial_day, initial_year);
32 }
33
34 date();
35 virtual “date() {}
36
37 int get_month() const {return month;}
38 int get _day() const {return day;}
39 int get year() const {return year;}
40
41 virtual date& operator++();
42 virtual date& operator--();
43
44 friend ostream& operator<<(ostream& o, const date& d) {
45 return 0 << d.month <<"/" << d.day << "/" << d.year;
46 }
47},
48 #endif

ety hesenea ©2014 Mark Meretzky

512 Inheritance Chapter 5

The biggest member functions ametall and the prefixoperator++operator--
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/virtuall/date.C

1 #include <iostream>

2 #include <cstdlib>

3 #include "date.h"

4 using namespace std,;

5

6 constint date::length[] = {

7 0, [/dummy

8 31, [/ljanuary

9 29, [/lfebruary
10 31, /Imarch
11 30, [lapril
12 31, /Imay
13 30, /ljune
14 31, [july
15 31, /laugust
16 30, /Iseptember
17 31, /loctober
18 30, /Inovember
19 31 /ldecember
20 };
21
22 void date:install(iint m, int d, inty) //called by each constructor
23
24 year =Yy,
25
26 if (m <january || m > december) {
27 cerr <<"bad month " <<m <<"/"<<d<<"/" <<y <<"\n";
28 exit(EXIT_FAILURE);
29 }
30 month = m
31
32 if (d<1]||d>length[month]) {
33 cerr <<"pbadday"<<m<<"M"<<d<<"M"<<y<<"\nY
34 exit(EXIT_FAILURE);
35 }
36 day = d;
37}
38
39 date::date() /lInitialize to the current date.
40 {
41 const time_tt=time(0);
42
43 if (t==static_cast<time_t>(-1)) {
44 cerr << "time failed\n";
45 exit(EXIT_FAILURE);
46 }
47
48 const tm *const s = localtime(&t);
49 install(s->tm_mon + 1, s ->tm_mday, s->tm_year + 1900);
50}
51

et hesenea ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 513

52 date& date::operator++()

53 {
54 if (++day > length[month]) {
55 day = 1;
56 if (++month > december) {
57 month = j anuary;
58 ++year,;
59 }
60 }
61
62 return *this;
63}
64
65 date& date::operator--()
66 {
67 if (-day<1){
68 if (--month < january) {
69 month = december;
70 --year;
71 }
72 day = | ength[month];
73 }
74
75 return *this;
76}
The abwe dassdate thinks every year is a leap year.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/virtuall/main.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "date.h"

4 using namespace std,;
5

6

7

8

i nt main()

date d(date::february, 28, 2014);

9 cout << ++d << "\n";
10
11 return EXIT_SUCCESS;
12}

The abee line 9 behwaes as if we fad written
13 cout << d.operator++() << "\n";
which behses as if we lad written
14 operator<<(cout, d.operator++()) << "\n";
which behses as if we lad written
15 operator<<(operator<<(cout, d.operator++()), "\n");

As we hae dready seen, operatorv@loading gves us a Ice, linear notation for deeply nested function
calls.

ety hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTPA,WNPE

10
11
12

514 Inheritance Chapter 5

2/29/2014

Reuse moe of the base class

Some of the member functions of the eddass are good enough to be inherited by avderilass
that is responsible for knowing about leap years. An example is the default constructor in lines 39-50 of
the aboe date.C : nothing in it would become obsolete when weé® handle leap years. But all three
of the biggest member functions would/ea be ewritten to handle leap year3hat's why they were vir
tual:

(1) install
(2) prefixoperator++
(3) prefixoperator--

We oould easily mark these functions as virtual, anetride them in the dered dass with ones that
know about leap years. But these were the three biggest functions of the base class. Andomean
would hare had to be virtual had we bothered to write theqperator+= |, operator- , etc. Theintent
of inheritance is to let uguse the base class in the dexdl dass, not force us tewite the base class in
the deved dass. Apparentlyve hare rot yet achieed this goal.

Were we too hasty in resigning oursetvto rewriting the three big member functions in their entirety

down in the dewred dass? Carary part of them be sahged? Irfact, almost eery line can be. The only
thing wrong with the prefioperator++ in lines 52-63 of the alve date.C is the expression

length[month] in line 54. No other part of this functionowld become obsolete in a dexd dass
responsible for knowing about leap yea&milarly, only one small wuld become obsolete—onceaay
thelength[month] —in the prefixoperator-- andinstall

To avoid rewriting the three big member functions, we simplgige the diseased tissue—thpmes-
sionlengthimonth] —and package it as a separate member functiéa.can reuse more of the base
class code if we create amenember function to hold each piece of code that will become obsolete in the
derived dass. Thefollowing version of the base class still thinks thetrg year is a leap yeabut nov
only one small member function (not counting the destructor) has to be virtual (link @d).be the only
part of the base class that wilMeato be ewritten in the deried dass.

To minimize the code that has to be rewritten in thevedrélasses, &ep the job of the virtual func-
tion as simple as possibl@urlength function merely returns a value; thie’s that use this value are in
the non-virtual member functions of the base class. Other examples will be on pp. 519 and 534.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/virtual2/date.h

#ifndef DATEH
#define DATEH
#include <iostream>
#include <ctime>
using namespace std;

class date {
i ntyear; /IMust construct data members in this order.
i nt month; /[date::january to date::december inclusive
int day; n to length[month] inclusive

void install(int m, int d, int y);

13 public:

14
15
16
17
18

enum month_t{ //indices into the length array
january =1,
february,
march,
april,

ety hesenea ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions
19 may,
20 june,
21 july,
22 august,
23 september,
24 october,
25 november,
26 december
27 3
28
29 date(int initial_month, int initial_day, int initial_year) {
30 install(initial_month, initial_day, initial_year);
31 }
32
33 date();
34 virtual “date() {}
35
36 int get_month() const {return month;}
37 int get _day() const {return day;}
38 int get year() const {return year;}
39 virtual int length() const;
40
41 date& operator++();
42 date& operator--();
43
44 friend ostream& operator<<(ostream& o, const date& d) {
45 return 0 << d.month <<"/" << d.day << "/" << d.year;
46 }
47},
48 #endif

©CoOo~NOOOUTA, WNPE

515

—On the Web at
http://i5.nyu.edu/

Omm64/book/src/virtual2/date.C

#include <iostream>

#include <cstdlib>
#include "date.h"

using namespace std;

i
{

nt date::length() const

static const int a[] = {

0, [/dummy
31, /ljanuary
29, /lfebruary
31, //march
30, Iapril
31, /Imay
30, /ljune
31, july
31, /laugust
30, /Iseptember
31, /loctober
30, //november
31 //december

ety hesenea ©2014 Mark Meretzky

516

22
23
24
25}
26

Inheritance

h

return a[month];

27 void date::install(iint m, int d, int y)

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42}
43
44 date::
45 {
46
47
48
49
50
51
52
53
54
55}
56

year = y;

if (m <january || m > december) {
cerr <<"bad month " <<m <<"/"<<d <<"/" <<y <<"\n";
exit(EXIT_FAILURE);

}
month = m

if (d<1]|ld>length()) {
cerr <<"bad day"<<m<<"/"<<d<<"["<<y<<"\n%
exit(EXIT_FAILURE);

}

day = d;

date() //Initialize to the current date.
const time_tt=time(0);

if (t==static_cast<time_t>(-1)) {

cerr << "time failed\n";
exit(EXIT_FAILURE);

}

const tm *const s = localtime(&t);

install(s->tm_mon + 1, s ->tm_mday, s->tm_year + 1900);

57 date& date::operator++()

58 {
59
60
61
62
63
64
65
66
67
68}
69

if (++day > length()) {

day = 1;

if (++month > december) {
month = j anuary;
++year;

}

}

return *this;

70 date& date::operator--()

71{
72
73
74
75

if (-day<1){
if (--month < january) {
month = december;
--year;

printed 4/8/14
8:51:31 AM

All rights
reserved

Chapter 5

©2014 Mark Meretzky

76
77
78
79
80

81}

=
CQOwoo~NOOUODWNLPE

Section 5.6 Partition the Code into Member Functions 517

}
day = | ength();

}

return *this;

Now we can derve a tass that knows about leap years, without having woitee most of the base
class.

In line 8, the constructor fdeapdate begins by calling the constructor fdate and passing it no
arguments. Thisvould still happen een if we don’t write the: d ate() , so dn't bother to write the it.
We dill have o keep theleapdate() {} in line 8, havever. The computer will not supply a defit
constructor for us if we lve written another constructor with arguments (line 7).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/virtual2/leapdate.h

#ifndef LEAPDATEH
#define LEAPDATEH
#include "date.h"

class leapdate: public date {

public:
| eapdate(int initial_month, int initial_day, int initial_year);
| eapdate(): date() {}

int length() const;

11}
12 #endif

©CoOoO~NOOOUOTA~,WNPE

13

As we hae dready seen, it is no sin for a member function of avéérilass to call upon a member
function of the base class (line 31).

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/virtual2/leapdate.C

#include <iostream>
#include <cstdlib>
#include "leapdate.h”
using namespace std;

| eapdate::leapdate(int initial_month, int initial_day, int initial_year)
date(initial_month, initial_day, initial_year)
{
i f (initial_day > length()) {
cerr << "bad day " << initial_month <<"/" << initial_day <<"/"
<< initial_year << "\n";
exit(EXIT_FAILURE);

14}

15

16 int leapdate::length() const
17 {

18
19
20
21

const inty=get year();

bool is_leap; /luninitialized; true if this is a leap year

ehy o hesenea ©2014 Mark Meretzky

518 Inheritance Chapter 5

22 if (y% 400 ==0){ /12000 and 2400 are leap years
23 is_leap = true;

24 } elseif(y% 100==0){ //1700, 1800, 1900, and 2100 are not leap years
25 is_leap = f alse;

26 } elseif(y% 4==0){

27 is_leap = true;

28 } else{

29 is_leap = f alse;

30 }

31

32 return lis_leap && get_month() == february ? 28 : date::length();
33}

To make the \ariableis_leap aconst , and male the code run faster by putting the most common
case first, condense the abdines 20-30 to

34 const boolis leap=y % 4==0&& (y % 100 !=0 || y % 400 == 0);

We row get correct output from the amain.C , if we change the object tolaapdate

3/1/2014

Why does the base cladate think that @ery year is a leap year®/ouldn't it havebeen more natu-
ral for the base class to assume tlatyeyear is non-leapVell, suppose we declare

35 leapdate Id(date::february, 29, 2004);

The constructor foteapdate begins by passing these three arguments to the constructor for the base
classdate in the abwoe line 7. The constructor fatate must therefore be able to accept February 29th.

Why does the constructor for the desdl dass hae © compareinitial_day to the length of the
month in the abee line 9? Wasn't this check already performed by the constructor for the base class when
it calledinstall ~ ? Well, we hae b do it agan becausenstall was alling date::length . The
constructor foteapdate will call leapdate::length

Superhuman foresight and godlile amniscience

When we write a class that may later be used as a base for other classes, can we awntigipate e
expression and statement that mayeh® be oerridden in the devied dasses, cut them out, and isolate
them in one or more virtual member functionBf?is is a much, much harder problem than merely deciding
which member functions need to be marked as virtual.

To *e hov hard this is, can you seeyadgatements still in the non-virtual member functions of the
abore dassdate that might need to be isolated in virtual member functions because o¥edd#ass that
no one has dreamt of yet? Please do not read farther until yeuried this.

Let's all the last classlate the “base clas§’ The base class belies there was a Year Zero
between BB.c. and 1A.D.. Suppose we had to dee a tass that was smart enough to krihat there \as
no Year Zero. Théstall member function of the base classwis obsolete because of line 29 of
date.C : it has to do more to thgear data member than just thear=y; . The prefixoperator++
member function of the base class is obsolete because of line 50t jusablindly add 1 tyear . Smi-
larly, the prefixoperator-- member function is obsolete because of line 62.

With the benefit of hindsight, we shouldveajven the base class the following virtual member func-
tion. Itcan be prate since it will be called only by the member functions of the base class.

1 virtual bool is_legal_year() const {return true;}

It always returns true since the base class bedi¢hat ary number is a valid year numbelt believes that
there was a Year Zero.

ety hesenea ©2014 Mark Meretzky

OO, WN

O © oo~

12
13
14

15

Section 5.6 Partition the Code into Member Functions 519

In theinstall member function of the base class, line 29 should been

year =y;
i f (lis_legal_year()) {
cerr<<"bad year " << m << "/" << d << "/" << year << "\n";
exit(EXIT_FAILURE);

}
In the prefixoperator++ member function of the base class, line 50 showle baen
++year;
i f (lis_legal_year()) {
++year;
}
In the prefixoperator-- member function of the base class, line 62 should baen
--year;
if (lis_legal_year()) {
--year;
}
Finally, the derved dass should hae a snarter \ersion of theis_legal_year virtual member
function. Itcan, and therefore should, bevate, because it is called only when the member functions of
the base class call the virtual functien legal_year . In general, hwever, a vrtual function in a

derived dass does not necessarilywhd havethe same Ml of privacy as the function in the base class.

bool is_legal_year() const {return get_year() != 0;}

Once again, we wa smplified the job of the virtual function in order to minimize the code that has
to be rewritten in the deséd dasses. Theirtual function merely returns true or false; ifie’s that use
these values are in the non-virtual member functions of the base class. See p. 514.

As a test of your perspicujtgre there ayp more statements still in the non-virtual member functions
of the base class that might need to be isolated in virtual member functions?e®etaught them all?

v Homework 5.6a: the Julian to Gregorian switch-oer

The English-speaking avld switched from the Julian to the Gregorian calendar in Septe .
Eleven days were remeed from that month to synchronize thenwnealendar with the seasons. It was the
Y2K problem of the Eighteenth Century.

September 1752
S MTu WTh F S
1 2 141516
17 18192021 22 23
24 2526 27 28 29 30

Suppose we va © derive a dite class that is smart enough towrabout this. theinstall mem-
ber function of the base class ismnobsolete because of line 41 @dite.C : not every day is lgd. The
prefix operator++ member function is obsolete because of line 46: ittddmdly add 1, because the
day after September 2, 1752 was September ithilarly, the prefixoperator-- member function is
obsolete because of line 59.

With the benefit of hindsight, toshall we fix this? Was the is_legal_year virtual member
function a good idea?
A

ety hesenea ©2014 Mark Meretzky

N -

1
2
3
4
5

520 Inheritance Chapter 5

v Homework 5.6b: have we isolated all the potentially obsolete bits of code yet?

Are there ap other statements still in the non-virtual member functions of the base class that might
need to be isolated in virtual member functions?
A

5.7 AbstractBase Classes and PerVirtual Functions

A base class for tw implementations of class date

No birds were flying werhead—
There were no birds to fly.

—Lewis Carroll, Through the Looking-Glas€hapter IV

To illustrate pure virtual functions and abstract base classesgtetack to a simpler clasgate
that knavs nothing of leap years, Julian vs. Gregorian, or the absence of a ya&r \Won't even bother
with anoperator-- or ary other function to mee thedate backwards.

The original classlate had three data members:

i ntyear; /IMust construct the data members in this order.
i nt month; /[date::january to date::december inclusive
i nt day; /11 to length[month] inclusive

We @an s&e pace by changing them to one data member:

i nt day; /Inumber of days before or after January 1, 0 A.D.

Unfortunately the classlate with one data member is sler. Its constructor has more work to do:
it must combine its three integer arguments into one bigent&€orversely, its operator<< friend also
has more work: it must render its integer data member back into three separate imielger$. (

Let's rame the tw implementations after their virtues: cldastdate (with three data members)
and classmalldate (with one data member)We will derive them from a common base cladste |,
containing the members needed by bothvedrdasses. Buhone of these members will be data members:
the two derived dasses heae o data members in common. It will be our first class with no data members.

Classdate is intended only as building block for thedwlerived dasses. Nane will ever con-
struct an object whose most ded dass isdate , i.e., an object that is merelydate and nothing else.
Such an object would be hollow—it wouldvearo data members.

no data members
date

fastdate smalldate
3 data members 1 data member

Theprint member function on p. 497, line 10wftualfriend.C had to be public because it
was alled by a function that was neither a member nor a friend of its class. Barirthe member func-
tion in line 7 of the followinglate.h can be priate because it is called only by a friend of its class.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/pure/date.h

#ifndef DATEH
#define DATEH
#include <iostream>
using namespace std;

ety hesenea ©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and RuYirtual Functions 521

6 class date {
7 virtual void print(ostream& ost) const;
8 public:
9 enum month_t {
10 january =1,
11 february,
12 march,
13 april,
14 may,
15 june,
16 july,
17 august,
18 september,
19 october,
20 november,
21 december
22 3
23
24 static const int length[]; /Ino non-static data members
25
26 date(int initial_month, int initial_day, int initial_year);
27 virtual “date() {}
28
29 virtual date& operator++();
30 virtual date& operator+=(int count);
31
32 friend ostream& operator<<(ostreamé& ost, const date& d) {
33 d.print(ost);
34 return ost;
35 }
36}
37 #endif

The constructor for clagtate in lines 21-34 performs the error checking for all thevédrdasses.
But it does not initialize gndata members: this class has no data members to initialize.

It would be premature to attempt to increment or print an object with no data members, so the bodies
of theoperator++ andprint in lines 45-55 contain only an error message andian Gomecompil-
ers would warn you that tiadail to return a value.) Mostof the other member functions would be the
same vay, s0 | didn’t bother to define them. Oddly enough, though, there is one member function that we
can define wen though we hee ro data members yet: theperator+= in lines 36-43. (It's virtual
because there will be better [i.e., faster] ones in theraiedasses.) W ae able to define it because it
defers most of its ark to anoperator++ function in line 39. To which operator++ ? We haven't
written ary working operator++ yet, but we will. The bestperator++ for the object at hand will be
selected, sinceperator++ s virtual.

But let's go tack to the ‘premature” member function®perator++ andprint . Why dd we
even declare them in clagtate ? Rimarily because we had to provide a place to hangei&dcd
virtual . Without writing the lkeyword in this class, theperator++ andprint member functions in
the denved dasses would not be virtual.

We dso had to declare amperator++ in classdate because it is called by one of the member
functions of this clasoperator+=). Andwe had to declare@rint in classdate because it is called
by one of the friends of this classperator<<). Without these declarations, ooperator+= and
operator<< would not compile.

et hesenea ©2014 Mark Meretzky

522 Inheritance

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/pure/date.C
1 #include <cstdlib>
2 #include "date.h"
3 using namespace std;
4
5 constint date::length[] = {
6 0, [/dummy entry so that january will have subscript 1
7 31, [/ljanuary
8 28, [lfebruary
9 31, /Imarch
10 30, [lapril
11 31, /Imay
12 30, /fjune
13 31, Ijuly
14 31, /laugust
15 30, /Iseptember
16 31, /loctober
17 30, /Inovember
18 31 /ldecember
19}
20
21 date::date(int initial_month, int initial_day, int initial_year)
224
23 if (initial_month < january || initial_month > december) {
24 cerr << "bad month " << initial_month << "/" << initial_day
25 << "' <<initial_year << "\n";
26 exit(EXIT_FAILURE);
27 }
28
29 if (initial_day < 1 || initial_day > length[initial_month]) {
30 cerr << "bad day " << initial_month << "/" << initial_day
31 << "' <<initial_year << "\n";
32 exit(EXIT_FAILURE);
33 }
34}
35
36 date& date::operator+=(int count)
374
38 while (--count >=0) {
39 ++*this; //(*this).operator++();
40 }
41
42 return *this;
43}
44
45 date& date::operator++()
46 {
a7 cerr << "can't call date::operator++\n";
48 exit(EXIT_FAILURE);
491}
50
51 void date::print(ostream& ost) const
52{

printed 4/8/14
8:51:31 AM

All rights
reserved

Chapter 5

©2014 Mark Meretzky

53
54

55}

'—\
QO o~NOOUOM~rWNLE
—~~

Section 5.7 Abstract Base Classes and RuYirtual Functions 523

cerr << "can't call date::print\n";
exit(EXIT_FAILURE);

The only thing we can do withdate is to pass a zero to itpperator+= member function.Any
other argument, or gnother member function, will g s an eror message at runtimale an't even
print it.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/pure/mainl.C

#include <cstdlib>
#include "date.h"
using namespace std;
i nt main()

date d(date::january, 1, 2014);
d +=0; /ld.operator+=(0);

return EXIT_SUCCESS;

11}

The derived classes

The virtual functions in lines 19-20 can returfaatdate& even though the corresponding func-
tions in the base class returnedade& : a virtual function in a devied dass can ha a eturn type that is
derived from the return type of the function in the base class. This is the exception in p. 493Jff(4).
tunately Microsoft Visual C++ does not handle theeption. Seé Bug C2555: On Virtual Functions with
Covariant Return Typesat
http://support.microsoft.com/support/kb/articles/Q240/8/
62.ASP?LN=EN-US&SD=gn&FR=0&qry=0240862&
rnk=1&src=DHCS_MSPSS_gn_SRCH&SPR=VCC

The base clasdate had a verking operator+= , but we can write faster ones in the dedi
classes.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pure/fastdate.h
1 #ifndef FASTDATEH
2 #define FASTDATEH
3 #include "date.h"
4
5 class fastdate: public date {
6 i ntyear;
7 i nt month; /[date::january to date::december inclusive
8 i nt day; /11 to length[month] inclusive
9
10 void print(ostream& ost) const {
11 ost << month << "/" << day << "/" << year;
12 }
13
14 public:
15 fastdate(int initial_month, int initial_day, int initial_year)
16 date(initial_month, initial_day, initial_year),
17 year(initial_year), month(initial_month), day(initial_day) {}
18

ehy o hesenea ©2014 Mark Meretzky

524 Inheritance

19 fastdate& operator++();
20 fastdate& operator+=(int count);
21}
22 #endif
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pure/fastdate.C
1 #include <cstdlib> //for div
2 #include "fastdate.h"
3 using namespace std;
4
5 f astdate& fastdate::operator++()
6 {
7 i f (++day > length[month]) {
8 day =1;
9 i f (++month > december) {
10 month = j anuary;
11 ++year,;
12 }
13 }
14
15 return *this;
16}
17
18 fastdate& fastdate::operator+=(int count)
19{
20 div_t d = div(count, 365);
21 if (drem<0){ //Make sure remainder is non-negative.
22 d.rem += 365;
23 --d.quot;
24 }
25
26 year +=d.quot;
27
28 for (day += d.rem; day > length[month];) {
29 day -=length[month];
30 if (++month > december) {
31 month = j anuary;
32 ++year,;
33 }
34 }
35
36 return *this;
37}
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pure/smalldate.h
1 #ifndef SMALLDATEH
2 #define SMALLDATEH
3 #include "date.h"
4
5 class smalldate: public date {
6 static const int pre[];
7 i ntday; //number of days before or after January 1, 0 A.D.

printed 4/8/14
8:51:31 AM

All rights
reserved

Chapter 5

©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and RuYirtual Functions 525

8 void print(ostream& ost) const;

9 public:
10 smalldate(int initial_month, int initial_day, int initial_year)
11 . date(initial_month, initial_day, initial_year),
12 day(365 * i nitial_year + pre[initial_month] + initial_day - 1)
13 {
14
15 smalldate& operator++() {++day; return *this;}
16 smalldate& operator+=(int count) {day += count; return *this;}
17}
18 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pure/smalldate.C

1 #include <cstdlib>

2 #include "smalldate.h"

3 using namespace std;

4

5 const int smalldate::pre[] = {

6 0, / /dummy element to give january subscript O

7 0, / ljanuary

8 pre[1] + length[1], /ffebruary

9 pre[2] + length[2], /Imarch
10 pre[3]+ length[3], Iapril
11 pre[4] + length[4], /Imay
12 pre[5]+ length[5], /ljune

13 pre[6] + length[6], july
14 pre[7]+ length[7], /laugust

15 pre[8]+ length[8], //september

16 pre[9]+ length[9], /loctober

17 pre[10] + | ength[10], //november

18 pre[11] + | ength[11] //december

19}

20

21 void smalldate::print(ostream& ost) const

22{

23 div_t d = div(day, 365);

24 if (drem<0){ //Make sure remainder is non-negative.
25 d.rem += 365;

26 --d.quot;

27 }

28

29 int julian = d.rem + 1; //Julian date is in range 1 to 365, not O to 364.
30 int month; /luninitialized variable
31

32 for (month = 1; julian > length[month]; ++month) {

33 julian -= length[month];

34 }

35

36 ost << month <<"/" << julian << "/" << d.quot;

37}

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pure/main2.C

et hesenea ©2014 Mark Meretzky

NRPRRRRRERRRRE
QOO ~NODUDWNROOO~N®UAWNEPR

NN
N

NN
AW

25}

526 Inheritance Chapter 5

#include <iostream>
#include <cstdlib>
#include "date.h"
#include "fastdate.h"
#include "smalldate.h
using namespace std;

i nt main()

{
fastdate fd(date::january, 1, 2014);
cout << fd<<"\n"
fd +=280; //fd.operator+=(280);
cout << fd<<"\n\n";

smalldate sd(date::january, 1, 2014);
cout <<sd<<"\n"

sd +=280;

cout << sd<<"\n\n";

cout << "sizeof (date) ==" << sizeof (date) << "\n"
<< "sizeof (fastdate) == " << sizeof (fastdate) << "\n"
<< "sizeof (smalldate) == " << sizeof (smalldate) << "\n";

return EXIT_SUCCESS;

The abwe program consists of sen source code files:
(1) date.C andterm.h
(2) fastdate.h andfastdate.C
(3) smalldate.h andsmalldate.C
(4) main2.C

On my machine, date object contains four bytes ofrerhead gen though it has no data members.
A fastdate has threént data members of four bytes each, plus the four bytegedi@ad. A
smalldate has onant data membeiplus the four bytes ofwerhead. Ineach case, theverhead is the
pointer to the virtual table (p. 498).

1/1/2014
10/8/2014

1/1/2014
10/8/2014

sizeof (date) ==
sizeof (fastdate) == 16
sizeof (smalldate) ==

Abstract base class and pue virtual functions

In the base clasdate , most of the other member functions would beeldperator++ and
print :just an error message andexit . They must all be declared in claslste , howeve, because
they must carry the &word virtual . Fortunately we havea motation to see ws the trouble of defining a
body for each one. Reme te definitions obperator++ andprint in lines 45-55 of the alve
date.C , and change their declarations in lines 7 and 28até.h to

ety hesenea ©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and RuYirtual Functions 527

1 virtual void print(ostreamé& ost) const = 0O;
2 virtual date& operator++() = 0;
The= 0’s announce that clastate is an incomplete class with amissing pieces namagtint and
operator++ . Anincomplete class is called abstract class, and the missing pieces are cgtlee vir-
tual functions.
Were mot allowed to construct an object whose mostvedridass is an abstract class. There are
three ways of constructing an object, and all three will not compile:
3 date d(date::january, 1, 2014); /ldeclared
4 date *const p = new date(date::january, 1, 2014); //dynamically allocated
5 cout << date(date::january, 1, 2014) << "\n"; /lanonymous temporary
Objects of an abstract class can still exist, but only when embedded ineal dbject. (Inthe same
way, a quark can exist only in a larger particle such as a proton). Even though we can no longer declare a
date anywhere in a program, thean still xist. Afunction can therefore still reas adate * or a
date & as an argument
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pure/main3.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "fastdate.h"
4 #include "smalldate.h"
5 using namespace std;
6
7 void f(date *p);
8 void g(date& r);
9
10 int main()
114
12 fastdate fd(date::january, 1, 2014);
13 f(&fd);
14 g(fd);
15
16 smalldate sd(date::january, 1, 2014);
17 f(&sd);
18 g(sd);
19
20 date *p = &fd; /Iperfectly okay to have a date *
21 return EXIT_SUCCESS;
22}
23
24 void f(date *p)
25
26 cout <<*p<<"\n% [loperator<<(cout, *p) << "\n";
27 *p +=280; //(*p).operator+=(280);
28 cout << *p<<"\n\n“;
29}
30
31 void g(date& r) //same function, but with the reference notation
32
33 cout <<r<<"\n" /loperator<<(cout, r) << "\n";
34 r +=280; /Ir.operator+=(280);
35 cout <<r<<"\n\n"
36}

et hesenea ©2014 Mark Meretzky

528 Inheritance

Lines 26 and 33 call operator<< , which

smalldate::print . Lines 27 and 34 can cddistdate::operator+=

smalldate::operator+=

1$ g++ main.C date.C fastdate.C smalldate.C

can

Chapter 5

call fastdate::print or

or

1/1/2014
10/8/2014

10/8/2014
7/15/2015

1/1/2014
10/8/2014

10/8/2014
7/15/2015

How long does a class stay abstract?

base

derived

grandchild

great_grandchild

Classbase is an abstract class because it has three pure virtual functions. desged and
grandchild are also abstract, becauseytadl have wo virtual functions. Only class

great_grandchild is not abstract.
1 class base {
2 public:
3 virtual void f() const = 0;
4 virtual void g() const = 0;
5 virtual void h() const = 0;
6 };
7
8 class derived: public base {
9 public:
10 void f() const {}
11}
12
13 class grandchild: public derived {
14 public:
15}
16

17 class great_grandchild: public grandchild {
18 public:

printed 4/8/14
8:51:31 AM

All rights
reserved

©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and RuYirtual Functions 529

19 void g() const {}
20 void h() const {}

21}

22

23 int main()

244

25 /Ibase b; /lwon’t compile: base has nof, g, orh

26 /[derived d; /lwon’t compile: derived has no g or h

27 /I[grandchild g; /lwon’t compile: grandchild has no g or h

28 great_grandchild gg; Iiwill compile: all present and accounted for
29}

The influence travels in both directions

The behsior of a derved dass is influenced by the behavior of its base class: theedetass inher
its the code in the member functions of its base class. But theibbkebfia base class may also be influ-
enced by the behior of its derved dasses. Ha could this be? The base class inherits nothing from the
derived dass.

We mnstruct tvo objects of clas®ase : theb in line 24 and the angmousbase object inside the
d in line 27. When line 25 calls thgmember function of the firdlase object,g calls thebase::f in
line 10 and outputs a message. But when line 28 cally thember function of the secobdse object,g
will call the derived::f in line 19, outputting a different messagehe behavior of the second base
object has therefore been influenced by the code in line 19 of thedddass. ‘Insanity is hereditary: you
get it from your childrefi. (Erma Bombeck)

Warning: base::f is not averridden until we begin to construct a ded object around the base
object. Andthe overriding ceases when we finish destructing thevedrobject. Lines7 and 8 therefore
always callbase::f , notderived::f

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/pure/override.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4
5 class base {
6 public:
7 base() {f();} /lalways calls base::f
8 virtual "base() {f();} //always calls base::f
9
10 virtual void f() const {cout << "base::fin";}
11 void g() const {f();} //doesn’t necessarily call base::f
12}
13
14 class derived: public base {
15 public:
16 derived(): base() {f();} //always calls derived::f
17 “derived() {fO;} /lalways calls derived::f
18
19 void f() const {cout << "derived::in";}
20}
21
22 int main()
23{
24 base b;

ety hesenea ©2014 Mark Meretzky

530 Inheritance Chapter 5

25 b.g();

26

27 derived d;

28 d.g();

29

30 return EXIT_SUCCESS;

31}
base::f Line 24 calls line 7, whitcalls line 10.
base::f Line 25 calls line 11, whiccalls line 10.
base::f Line 27 calls line 16, whitcalls line 7, whit calls line 10.
derived::f Line 27 executes tHebody} of line 16, whib now calls line 19.
derived::f Line 28 calls line 11, whiccalls line 19.
derived::f Destructd: line 30 calls line 17, whitdill calls line 19.
base::f Line 30 calls line 8, whitcalls line 10.
base::f Destructb: line 30 calls line 8, whitcalls line 10.

Something you must neer do

A program may blw up if it calls a pure virtual function that has not yet beeerridden by a func-
tion in a denved dass. Br example, line 22 calls line 16, which calls line 7, which calls line 10, which
blows up. Will line 22 ezen compile on your platform?

You can remee line 16 entirely Even without it, classderived would still have a onstructor
which takes no arguments, and which would call the constructor forbelasswith no arguments.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pure/blowup.C

#include <iostream>
#include <cstdlib>
using namespace std;

class base {
public:
base() {f();} /lalways calls base::f
virtual “base() {f();} //would also call base::f if we ever got this far

©CoOo~NOOOUTA, WNPE

10 virtual void f() const = 0;

11 void g() const{f();} //doesn’t necessarily call base::f
12}

13

14 class derived: public base {

15 public:

16 derived(): base() {}

17 void f() const {cout << "derived::in";}
18}

19

20 int main()

214

22 derived d;

23 return EXIT_SUCCESS;

24}

ety hesenea ©2014 Mark Meretzky

Section 5.8 Denve dasseswl f andr abbi t from wabbit 531

blowup.C: In constructor 'base::base()’:

blowup.C:7:12: warning: abstract virtual 'virtual void base::f() const’ called
from constructor

blowup.C: In destructor 'virtual base::"base()":

blowup.C:8:21: warning: abstract virtual 'virtual void base::f() const’ called
from destructor

Undefined first referenced
symbol in file
base::f() const Ivar/tmp//ccE4aqFq.o

Id: fatal: symbol referencing errors. No output written to /dev/null
collect2: Id returned 1 exit status

5.8 Derive dasseawl f andr abbi t from wabbi t

Inheritance in the real world

In an ideal world we would knwoin advance what classes weueato write. If they will be similar,
we would begin by writing a base class for them. This would gé a tead start for the classes ded
from it.

In real life, your manager tells you what classes to write, one by one, in no particularAdtder
defining a fev of them, you notice that tgdhavefeatures in commonThey should hae been desred from
a coommon base class. Butwat’'s oo late: theywe dready been written.

wolf rabbit

Now that the abee dasses hae keen implemented, we notice too late that their member functions
are largely the same and their data members are almost the bamstrospect, is dovious that thg
should hae keen denied from a common base class.

We will rewrite our classesvolf andrabbit the way thg should hae teen written: by deving
them from a base class. The base class will be navabbit , a la Bugs Buny and Elmer Fudd.I'm
sorry we didnt havethe foresight to do this from the beginning, but thiit® way it is in the real arld. At
least it will nav be smpler to implement additional species of animals.

wabbit

wolf \ \ rabbit

Consolidate the member functions of classes wolf and rabbit

Classesvolf andrabbit have a onstructor and destructoiThe rest of their code was lumped
into a member function namedove. This seemed reasonable, simeve’ing is the only thing that an
animal does besides birth and death. But we will eee that this was the wrong way to partition the code
into member functionsWhen we consolidate these classes by deriving them from a common base, we will
realize that thg should hae keen modularized differently.

Let's draw a dagram of the modularization. The constructor and destructor for iclbbg are
identical to those fowolf , so we daw them with the same shape: an unadorned rectangle. Buotabhe
function of each class is different, so wevdthem with two shapes: begled and rounded corners.

ety hesenea ©2014 Mark Meretzky

532 Inheritance Chapter 5

constructor constructor
move move
destructor destructor

rabbit wolf

Since the constructors and destructors are the same in ¢lasisiées andwolf , we @an easily con-
solidate them into a single cppp in the base classabbit . But since the tw move functions are dfér-
ent, it seems tlyewill have © be kft behind in the dered dasses. Thenove up in classvabbit will be
a pure virtual function: a missing piece to be filled in latéfe draw it with a dashed box.

wabbit
r-———=—=—=-=-=-=-= -
constructor | _ |
v move =0
destructor | |
L _
move move
rabbit wolf

Pare down the code that gets stranded in the dered classes

Half the code is still stranded wa in the dened dasses. Ha can we minimize it? Here is where
we discoer that we should hae nodularized classasbbit andwolf differently.

Whenrabbit was aur only species of animal, no one suspectedrtiaiit::move should hae
been split into smaller functions.

But nov we rote thatrabbit::move actually does tw separate jobs: it decides which way to
move hy getting two random numbers, and then performs theveénky updating the screenAccordingly,
we split it into two functions, namedabbit::decide andrabbit::move . Similarly,
wolf::move does two jobs: it decides which way to w® by getting a leystroke, and then performs the
move by updating the screenVe glit it the same way.

The resultingrabbit::decide and wolf::decide are very different: one gets eawrandom
numbers, the other gets ayktroke. We therefore drav them with different shapes and yeahem down in
the dewed dasses. Orthe other hand, the wewabbit::move andwolf::move are identical so we
draw them with the same shape:

ety hesenea ©2014 Mark Meretzky

Section 5.8 Denve dasseswl f andr abbi t from wabbit 533

wabbit
"V decde=0 |
constructor | v decide=0
-
destructor "V move=0 ‘
Lo _

< decide > (decide)

move move

rabbit wolf

Since thg are identical, the ne rabbit::move andwolf::move can be consolidated into a
singlewabbit::move , leaving a smaller chunk of code behind in eachvegdass.
wabbit::decide will be a pure virtual function.

wabbit
r—-——-------- -
constructor | v decide=0
destructor

< decide > (decide]

rabbit wolf

Hunger and bitterness

Unfortunately too much code has been wved up to he base class. The originalbbit::move
(pp. 196-197) was hardwired tovgiyp the ghost when it met an animal ofyasther species. The original
wolf::move (pp. 198-199) ws hardwired to eat an animal ofyapecies. Nw that there is only a sin-
glewabbit::move function, hav can it react correctly to another animal?

Recall that the member functions of a dedidass can influence the behavior of the member func-
tions of the base class (pp. 529-53Byery derved dass (i.e., eery species of animal) will ha two new
member functions telling ohungry it is and he bitter its flesh tastes. One animal will eat another if the
first animals levd of hunger is greater than the second anisial’d of bitterness.

Since each species mayvhaa dfferent level of hunger and bitterness, weveaio implement these
functions down in the deméd dasses. Ujn the base class, th&ill be pure virtual functions:

ety hesenea ©2014 Mark Meretzky

534 Inheritance Chapter 5

wabbit
Vaeddeso
constructor | v decide=0
r=—7r -1
destructor move |ivh iivb
L JL —

< decide > (decide)
Q0 ()

rabbit wolf

wabbit::move will now call thehungry andbitter = member functions of the deed dasses. Iwill
use their return values to decide to eat, be eaten, or neither.

What we hae just done to the base clagabbit is similar to what we did to the base classe
whose deried dasses had to kmoabout leap years, theedr Zero, the Julian-to-Gregorian switeho ec.
See pp. 514 and 519Ve identified thesmallestchunks of code in the base class that woulee la be
written differently in one or more of the deedl dasses. Themve a declared a separate virtual member
function of the base class for each chutdcide , andhungry andbitter . (In the case of class
wabbit , these functions are merely pure virtual.) Eachvédrdass can ne haveits own style of motion
and its own place in the food chain.

Consolidate the data members.

Classegabbit andwolf have dmost the same data members. The only difference is that the
member of clasebbit is a read/write pointer(A newbornrabbit has to put its address on game’s
master list; a dyingabbit has to remee its address from the list.)

read/write pointer|| g g || read-only pointer
static data member of clasgbbit c X X c | static data member of clas®lf
y y
rabbit wolf

We will consolidate the data members into oneycpthe base classabbit . The derved dasseswolf
andrabbit will be left with no data members of their own.

Some of the dered animals will be rabbit 's, others will bewolf 's. This means that the
wabbit s will no longer all contain the same characterhe data membeavabbit::c can no longer be
static. Italso means that theabbit::g must be read/write pointesince at least some of the desd
animals will hae © write into theirgame’'s master list. (Theinitial_g argument of the constructor for
classwabbit will therefore also be a read/write pointer.)

printed 4/8/14 All rights

8:51:31 AM reserved©2014 Mark MeretZky

Section 5.8 Denve dasseswl f andr abbi t from wabbit 535

wabbit

g || read/write pointer

X

¢ || no longer static

rabbit wolf

v Homework 5.8a:
Version 3.0 of the Rabbit Game: single inheritance: deviewolf andrabbit from wabbit

KING cLAuUDIUS. Now, Hamlet, wheres Rolonius?
HAMLET. At supper.

KING cLAauDIUS. At supper! Where?

HAMLET. Not where he eats, but where he is eaten:

—HamletlV, iii, 16-19
Derive dasswolf and classabbit from a base class namegbbit . Use public inheritance.

Class wabbit and its protected members

Thewabbit.h header file will be included by the implementation Wabbit.C . It will also be
included by the header files for the ded dasseswvolf andrabbit . But it will be included by no other
file.

The decide member function in line 17 will v@ © return a pair of answers: the horizontal and
vertical distances that theabbit decided to mee. But a C or C++ function can return only oreue.
One workaround would be toVedecide return a structure with twfields. Anotheworkaround vould
be to hae decide deposit values into the twdgned integers to which its arguments poite’l | choose
the latter for the time beinguba better solution will appear on pp. 985-986 when weavkmore about
containers, iterators, amifference_type

Thex andy data members in line 7 are unsigned integers, as are the arguments to the constructor in
line 32. But thedx anddy arguments ofwabbit::decide in line 17 are (pointers to) signed igées,
as were thelx anddy structure members wolf::move on pp. 198-199 and the other structure mem-
bers on pp. 470-471. The unsigned vs. signed distinction appeared in the C Standard L#irery in
vs. ptrdiff_t , and will reappear on pp. 450-451sige_type vs.difference_type

Some of the member functions of the classewvetkfrom wabbit will need to use the members of
the game object to which the animals belon&or example,wolf::decide andwolf::punish will
need to call th&ey andbeep member functions af->term . Butg is a prvate member of class
wabbit , so it annot be mentioned byolf::decide and wolf::punish . In addition, term is a
private member of clasgame.

ety hesenea ©2014 Mark Meretzky

536 Inheritance Chapter 5

We therefore provide thkey andbeep member functions in lines 28-29, whictvgithe derved
classes access to the member functiorgsetierm . Since thg are protected members of clagabbit |,
they can be called byvolf::decide andwolf::punish

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/wabbit/wabbit.h

1 #ifndef WABBITH
2 #define WABBITH
3 #include "game.h"

4
5 class wabbit {
6 game *const g;
7 unsigned x, y;
8 const char c;
9
10 /Imove calls these functions to decide who eats who. wabbit w1l will eat
11 /lwabbit w2 if wl.hungry() > w2.bitter(), i.e., if wl’s hunger is
12 /Istronger than w2’s bitterness.
13 virtual int hungry() const = 0;
14 virtual int bitter() const = 0;
15
16 /Imove calls this function to decide which direction to move in.
17 virtual void decide(int *dx, int *dy) const = 0;
18
19 /Imove calls this function if this wabbit tries to move off the screen,
20 /lor bumps into another wabbit that it can neither eat nor be eaten by.
21 JI(Will also be called by manual::decide.)
22 virtual void punish() const {}
23
24 wabbit(const wabbit& another); /[deliberately undefined
25 wabbit& operator=(const wabbit& another); //ditto
26
27 protected:
28 char key() const {return g->term.key();} //called by wolf::decide
29 void beep() const {g->term.beep();} /Icalled by wolf::punish
30
31 public:
32 wabbit(game *initial_g, unsigned initial_x, unsigned initial_y,
33 char initial_c);
34 virtual “wabbit();
35
36 bool move();
37
38 /IA function that uses the x and y private data members of class wabbit.
39 friend wabbit *game::get(unsigned x, unsigned y) const;
40 };
41 #endif

Now that the data member is no longer static, it must be initialized by the constructor for class
wabbit just like the other data membegs x, andy. Other than that, the fotargument constructor for
classwabbit will be just like the three-argument constructor for the original classlelsit andwolf |,
except that the initial value af will be passed in as an argument.

1 / /Excerpt from the file wabbit.C.
2

ety hesenea ©2014 Mark Meretzky

(206 B SN b}

O©CoOoO~NOOOUTA,WNPE

Section 5.8 Denve dasseswl f andr abbi t from wabbit 537

wabbit::wabbit(game *initial_g, unsigned initial_x, unsigned initial_y,
char initial_c)
g(initial_g), x(initial_x), y(initial_y), c(initial_c)
{

The body of the fouargument constructor for claggabbit will begin by checking it is the same
as the termina¢’ background character or if the initial y position is out of range. In each case, it will
write an error message ¢err andexit . wabbit.C must therefore includeiostream> and
<cstdlib> , as di he originalrabbit.C andwolf.C

If there was no errothe fourargument constructor for claggbbit will put the animalk daracter
on the screen and the aninsadidress on the master list. The master list will therefore contaig e
wabbit , not just therabbit ’s. It will now be a Ist of pointers tavabbit .

Classwabbit will also have a estructoythat beeps, pauses, reves the animal address from the
master list, and draws the termisatackground character on the screen at the arsriegition.

The followving move function will move awolf or arabbit , handling ay encounter with another
animal of ay species. Thehis-> ’s in lines 26—-27 are unnecessaffhey are written only to rhetori-
cally balance thether-> ’s.

A dynamically allocated object in C++ is not allowed to commit suicide—it might crash the program

if an object saidleletethis . Instead, line 34 returns a value telling its caller thatvifaisbit should
be destructed. Line 34 must comer line 30 because in the future we wilMeaa pecies of animals that

eat each otherWe will have o execute both lines when encountering an animal that will eat and be eaten

by thiswabbit .

It is only fair to warn you that this is not the finarsion ofwabbit::move . By the end of the
course, eery line will be rewritten.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/wabbit/wabbit.C

/ *

Delete any other wabbit that got eaten during the move (line 30), but do not
delete this wabbit. If this wabbit was eaten during the move, return false
(line 34); otherwise return true.

*/

bool wabbit::move()

{
i ntdx; /luninitialized variables
int dy;
decide(&adx, &dy);

if (dx and dy are both zero) {
return true;

}

const unsigned newx = X + dx;
const unsigned newy =y + dy;

if ('g->term.in_range(newx, newy)) {
punish();
return true;

}

if (wabbit *const other = g->get(newx, newy)) {
const bool I_ate_him = this->hungry() > other->bitter();

ety hesenea ©2014 Mark Meretzky

538 Inheritance Chapter 5

27 const bool he_ate_me = other->hungry() > this->bitter();
28

29 if (l_ate_him) {

30 delete other;

31 }

32

33 if (he_ate_me){

34 return false; //not allowed to delete myself
35 }

36

37 if (_ate_him) {

38 M bumped into a wabbit that | could neither eat nor be
39 /leaten by.

40 punish();

41 return true;

42 }

43 }

44

45 g->term.put(x, y); /[Erase this wabbit from its old location.
46 X = newx;

47 y = newy,;

48 g->term.put(x, Yy, C); //Redraw this wabbit at its new location.
49

50 return true;

51}

Why do we reed separate functions for hunger and bitterness?

Why didn’t we make a $ngle member function namednk , and have the animal with the higher
rank eat the other oneRet’'s say we want to hae wo animals of speciea eat each othewhile two ani-
mals of specieb bounce dfeach other without either being eatefx.single function vould not let us do
this. Butwith two functions, we can get wiof the four possible outcomes.

/ la and b eat each other.

i nt a::hungry() const {return 30;}
i nt b::bitter() const {return 20;}

i nt b::hungry() const {return 10;}
i nt a:bitter() const {return 0;}

abrhwNRE

/ /b and a bounce off each other.
i nt b::bitter() const {return 30;}

i nt a::hungry() const {return 20;}
i nt a:bitter() const {return 10;}
int b::hungry() const {return 0;}

O Ooo~NO»

1

11 //b eats a, but a doesn't eat b.
12 int b::bitter() const {return 30;}
13 int a::hungry() const {return 20;}
14 int b::hungry() const {return 10;}
15 int a::bitter() const {return 0;}

16 //a eats b, but b doesn't eat a.
17 int a::hungry() const {return 30;}
18 int b::bitter() const {return 20;}
19 int a::bitter() const {return 10;}

ety hesenea ©2014 Mark Meretzky

Section 5.8 Denve dasseswl f andr abbi t from wabbit 539

20 int b::hungry() const {return 0;}

Class rabbit
The three-argument constructor for thevraiassrabbit does nothing more than call the feangu-
ment constructor for the base classbbit . The copy constructorpperator= , and destructor for class

rabbit are inherited from classabbit . Ditto for classwolf .

TheINT_MIN in lines 9-10, and the corresponditjT _MAX, are macros from the standard library
headexclimits> for the smallest and largast values.

The return values dfungry andbitter are constantalues. Wi, then, are thefunctions rather
than simple data member&¥ell, in a later version of the game thmight haze b do ®me computation.
For example, an anima’ levé of hunger might depend on Wwomary times it hasmove'd since its last
meal.

It looks like hungry andbitter can be static member functions, sinceytbise no non-static
members. (Ifact, they use no members at allBut hungry andbitter must be virtual member func-
tions, and a static member function cannot be virtual.

Since all the member functions of claabbit are nav inline, there is no longer gmabbit.C

file.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/rabbit3/rabbit.h
1 #ifndef RABBITH
2 #define RABBITH
3 #include <cstdlib> /ffor rand
4 #include <climits> /lfor INT_MIN
5 #include "wabbit.h"
6 using namespace std,;
7
8 class rabbit: public wabbit {
9 i nt hungry() const {return INT_MIN;}
10 int bitter() const {return INT_MIN;}
11
12 void decide(int *dx, int *dy) const {
13 *dx = rand()%3-1;
14 *dy =rand()%3-1;
15 }
16
17 public:
18 rabbit(game *initial_g, unsigned initial_x, unsigned initial_y)
19 wabbit(initial_g, initial_x, initial_y, 'r’) {}
20}
21 #endif
Class wolf

The newwolf.h file will be the same as the neabbit.h , with four differences:

(1) Awolf s character is uppercad®’ ; arabbit ’sis lowercasér . All deadly animals will be
uppercase.

(2) Awolf is at the top of the food chain. It T MAXhunger andNT_MAX bitterness.

(3) If arabbit tries to mee df the screen, or bumps into another animal that it can neither eat nor
be eaten hyit's no me’s fault. We ae therefore content to let classbbit inherit the emptypunish

member function from classabbit . But if awolf tries to mae df the screen or bumps into another
animal that it can neither eat nor be eaterthmre is a human being who requires chastisement. Ideally we

ety hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

540 Inheritance Chapter 5

would administer a series of gradually increasing electrical shocks, but for the present we sienghsgi
wolf the following inline prvate member function. It calls theeep member function inherited from
classwabbit :

void punish() const {beep();}

(4) The wolf::decide function is too long to be inlineDefine it in the filewolf.C . Since
wolf.h does not caltand , it does not need to includestdlib>

Like rabbit::decide , wolf::decide will merely decide which direction to mae in, and
then return its decision twabbit::move . Transplant the decision-making code from the original
wolf::move on pp. 198-199 intawolf::decide . Like rabbit::decide , wolf::decide
should not check for falling bthe screen or colliding with @bbit : these checks are already performed
by wabbit::move

Now that classvolf no longer has a data member nargedolf::decide can no longer say
g->term.key() andwolf::punish can not sayg->term.beep() . They will have o call the
key andbeep member functions inherited from clasabbit .

wolf.C will no longer includerabbit.h , since it no longer mentionsbbit 's. Andwolf.C
will not includeiostream andcstdlib , since it no longer uses anything declared in these header files.

Here is the end of theolf::decide function, picking up from line 35 afiolf.C on p. 198.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/wabbit/wolf.C

i f (the key member function inherited from class wabbit says that
t he user pressed a key k) {

f or (search the array of structures using a pointer p) {
if(k=p ->c){

* dx = p->dx;
*dy = p->dy;
r eturn;
}
}
punish(); //[Punish user who pressed an illegal key.
}
/[Arrive here if the user pressed no key, or pressed an illegal key.

*dx = *dy=0;

Changes to class game

All the animals, not just theabbit 's, will be on the same master liggjame::master will there-
fore be dist<wabbit *> , and game::get will return awabbit* . game.h will need a forvard
declaration for claswabbit , not rabbit

Want to male aure we neer again have 1 change the return type ghme::get ? Declare its return
value, and its local variable, to be of cita typegame::master_t::value_type . That's what
value_type is for. Within the{ curly brace} of the declaration for clagmme, and within the body of
game::get ,you dont haveto write thegame:: at the start ofjame::master_t::value_type

Only classwabbit will now be a fiend of clasggame; classegabbit andwolf will no longer
be.

game.C will still include rabbit.h andwolf.h . I'm not happy about this, havever. It means
we hare © modify game.C whene&er we aeate a n& species of animal.

et hesenea ©2014 Mark Meretzky

Section 5.8 Denve dasseswl f andr abbi t from wabbit 541

Thewolf will now be dsnamically allocated (constructed witlew) with all the other animals in
game::.game , instead of automatically allocated (constructed with a declaratiaggnre::play . But
don't construct thevolf in the loop ingame::game —construct it with anew outside the loop.

The main loop in game::play

The wolf will now be on he master list. The call tempty in line 71 on p. 470 will therefore
become thenaster.size() > 1 in the following line 3, and the loop in the following lines 4-16 will
move all the animals, not just thebbit ’'s. Thewolf no longer requires gnspecial handling in the
main loop, so the calls to thedwnove’s in lines 72 and 80 on p. 470 can be consolidated into thevfollo
ing line 8. The main loop will still call move function, andnove will call decide .

game::play
)

returnstrue orfalse togame:play

wabbit::move
Y

returnsdx, dy to move

wabbit::decide

More preciselythe wabbit::move function will call eitherrabbit::decide or wolf::decide
thanks to the magic of virtual functions.

game::play
A

returnstrue or false togame:play

wabbit::move

returnsdx, dy to wabbit::move returnsdx, dy to wabbit::move

rabbit::decide wolf::decide

Themove in line 8 and thalelete in line 14 will remae dements from the master list. But a list
iterator cannot be incremented after the element to which it refers has begadiesre the “increment of
death’ on pp. 444-445.To avoid this misdeed, the+it must come between theseotlines, at line 9.

Let’s look at the previous version of this loop. On p. 470ntloee in line 80 was applied only to
rabbit ’s. Arabbit not being carniorous, this call tanove destructed no other animal on the master
list. It was therefore safe to increment the iterator in line 78 before catiiong.

But themove in the following line 8 will be applied tovery animal,wolf andrabbit . When
applied to awolf , it may destruct another animal on the list. The iterator must therefore be incremented
after we callmove, in line 9. Had we incremented it before teve, the iterator might hae landed on
an element that would then be destructed and vedroy the move.

Thedelete in line 14 destructs the element to which the iterator in line 7 refers. The increment in
line 9 must therefore come before tihelete in line 14. Similarly, the increment in line 25 must be
executed before thelelete in line 26. For the same reason, the increment on p. 470 in line 78 had to
come before thdelete inline 81.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/gamed/game.C

ety hesenea ©2014 Mark Meretzky

542 Inheritance Chapter 5

1 / /Excerpt from game.C, showing the body of game::play.
2
3 f or (; master.size() > 1; term.wait(250)) {
4 f or (master_t::const_iterator it = master.begin();
5 it != m aster.end();) {
6
7 wabbit *const p = *it;
8 const bool alive = p->move();
9 ++it;
10
11 if (lalive) {
12 /[The wabbit that moved in line 8 blundered
13 /linto another wabbit and was eaten.
14 delete p;
15 }
16 }
17 }
18
19 //The following lines go at the end of the destructor for class game.
20
21 /[Delete any remaining wabbit’s.
22
23 for (master_t::const_iterator it = master.begin(); it I= master.end();) {
24 wabbit *const p = *it;
25 ++it;
26 delete p;
27 }
28}

List of the 12 source files that constitute the game

(1) term.h andterm.c (pp. 85-89). These are the onlyawritten in C; the rest are C++.
(2) terminal.h andterminal.C (pp. 157-163)

(3) game.h andgame.C (pp. 540-542)

(4) wabbit.h andwabbit.C (pp. 535-538)

(5) wolf.h andwolf.C (pp. 539-540)

(6) rabbit.h (p.539). There no longer is amgbbit.C file.

(7) main.C (pp. 193-194)

A

5.9 Multiple Inheritance

5.9.1 ASimple Example

cowboy bank

cowboybank

ety hesenea ©2014 Mark Meretzky

©CoOo~NOOOUOTA, WNPE

10
11
12

Section 5.9.1 A Simple Example 543

A C++ class can be dead from more than one base class. This is catlettiple inheritance Java
has only single inheritance.

Our first kample will be a silly one, just to illustrate the syntax and scoping rullesgart with two
base classes to model the behavior of a cgwahd a bank.

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/multiple/cowboy.h

#ifndef COWBOYH
#define COWBOYH
#include <iostream>
using namespace std;

class cowboy {
i nti;
public:
cowboy(int initial_i): i(initial_i) {}

void chew() const {cout << this << " Gimme a chaw 'a 'baccy.\n";}
void draw() const {cout << this <<" Put 'em up, pardneri\n";}

13}
14 #endif

©CoOo~NOOOUTA,WNPE

10
11
12

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/multiple/bank.h

#ifndef BANKH
#define BANKH
#include <iostream>
using namespace std;

class bank {
i ntj;
public:
bank(int initial_j): j(initial_j) {}

void deposit() const {cout << this << " Please take a deposit slip.\n";}
void draw() const {cout << this <<" Your account is overdrawn.\n";}

13}
14 #endif

Before the establishment ofWaand finance in the Wild West, maof the functions of banks were
performed by itinerant egdboys. We will use multiple inheritance to model the behavior of typitaivw-
boy bank’. He can do ®erything that a cowbpcan do, as well asverything that a bank can do.

As usual, the constructor for the ded dass begins by calling the constructor for the base class.
But now there are tw base classes and awonstructors. Becaus# line 8, the constructor faxowboy
will be called before the constructor foank . (The order has nothing to do with the fact that line 12 lists
the arguments farowboy before those fobank .) Thenthe constructors will be called for the data mem-
bers introduced in clag®wboybank (thek in line 9).

When the cowboybank dies, the destructors for the data members introduced in class
cowboybank will be called first. Then we will destruct thank , and finally thecowboy .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/multiple/cowboybank.h

1 #ifndef COWBOYBANKH
2 #define COWBOYBANKH

et hesenea ©2014 Mark Meretzky

544 Inheritance Chapter 5

3 #include <iostream>
4 #include "cowboy.h"
5 #include "bank.h"
6 using namespace std,;
7
8 class cowboybank: public cowboy, public bank { //say "public” twice
9 i ntk;
10 public:
11 cowboybank(int initial_i, int initial_j, int initial_k)
12 :cowboy(initial_i), bank(initial_j), k(initial_k) {}
13
14 void run() const {cout << this << " Time to clear out of town.\n";}
15}
16 #endif
Theres no poblem with the function calls in lines 10-12. But the callitaw in line 14 is ambigu-
ous and will not compile. Lines 15 and 16 disambiguate it indivections. Seé¢he binary scope operator
in line 10 on p. 123; line 25 @fclipse.C on p. 246; line 42 oflerived.C on p. 477.
—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/multiple/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "cowboybank.h"
4 using namespace std,;
5
6 i nt main()
7
8 cowboybank cbb(10, 20, 30);
9
10 cbb.chew(); /linherited from cowboy
11 cbb.deposit(); /linherited from bank
12 cbb.run(); /lintroduced in cowboybank
13
14 /[cbb.draw(); /lwon’t compile: ambiguous
15 cbb.cowboy::draw(); /Ithe draw inherited from cowboy
16 cbb.bank::draw(); /lthe draw inherited from bank
17
18 cout <<"\n"
19 << &cbb << " == &cbb\n"
20 << static_cast<cowboy *>(&cbb) << " == addr of cowboy in cbb\n"
21 << static_cast<bank *>(&cbb) << " == addr of bank in cbb\n"
22 << reinterpret_cast<bank *>(&cbb) << "\n";
23
24 return EXIT_SUCCESS;
25}

An upcastis a cowersion from “pointer to dexied” to ‘‘pointer to base! Whenthe abee lines 20
and 21 upcast the addresbb , we get the address of tlewwboy object and théank object within the
cowboybank . On my platform, the address of thenk object issizeof (cowboy) bytes from the
start of thecowboybank . This is our first example of a cast that changes the value of a pointer.

An upcast must alays be done with atatic_cast . Line 22 shows what goes wrong when we
try to do it with areinterpret_cast . For a “downcast”, see p. 718.

ety hesenea ©2014 Mark Meretzky

Section 5.9.2 Hidden Pointers Il: a Thunk 545

Now that we hae en the addresses of the base objects inside thedlebject, lets look at the
values ofthis in the lines 10-11 and 15-1@&\ call to a member function of classeswboy or bank
will always receve the address of an object whose mostvadrdass iscowboy or bank .

Oxffbffle4 Gimme a chaw 'a 'baccy. address otowboy object withincowboybank
Oxffbffle8 Please take a deposit slip. address obank object withincowboybank
Oxffbffle4 Time to clear out of town. address otowboybank object

Oxffbffle4 Put 'em up, pardner! address otowboy object withincowboybank
Oxffbffle8 Your account is overdrawn. address obank object withincowboybank

Oxffbffled == &cbb

Oxffbffle4 == addr of cowboy in cbb

Oxffbffle8 == addr of bank in cbb == &cbb + sizeof (cowboy)
Oxffbffled the address of theowboybank

At this point, multiple inheritance still looks simple, do&st? Theonly problem was a name colli-
sion and some pointer adjustment.

v Homework 5.9.1a:

Will a static_cast from a “pointer to acowboybank ” to a “ pointer to abank” always
change the value of the pointer? What if the pointerdovéboybank is zero?
A

5.9.2 HiddenPainters IlI: a Thunk

Now let’'s add virtual functions to multiple inheritance and look at a possible implementéftoan.
following program has three classespt@f which hare a nember function namefd.

mother father rudimentary f

derived bigger and better f

We would expect the program toveexactly two member functions namefd, but the output on my
platform shows that it has three. The stand-afatieer object in lines 9-19 afain.C has one; the
derived object in lines 21-31 omain.C has another; and tHather object inside thelerived
object has a third (line 33-42).

We wually think of the last terf ’s as being the same function. After all, tHisther ’sf has been
overridden by thederived ’sf, hasntit? We can een sse the namderived::f in the output of each
call to this function.

But if we look at the guments, we can see that thef classderived and thef of thefather in
the derived must be slightly dierent. Thef of classderived prints out its implicit agument
unchanged. Thé of thefather in thederived begins by subtractingizeof (mother) from its
implicit argument. Theextra code that performs the subtraction is calléduak. The thunk is necessary
becausalerived::f must alvays have an implicit argument which is the address alexrived object,
not the address of thiather object in thederived

| wouldn't be surprised if thef of thefather in thederived is merely the thunk, followed by a
“jump” to the start of thé of classderived

ety hesenea ©2014 Mark Meretzky

546 Inheritance Chapter 5

fath vtbl for classfather functions in memory

——— » father::"father

j —) » father:"father for dynamics

——+—» father::f

vtbl for classderived
d and formother in derived functions in memory

——+——— » derived::"derived

[——» derived::"derived for dynamics

— ——+——» derived::f

k
vtbl for father in derived functions in memory
——+——» derived::"derived with thunk
—— » derived::"derived for dynamics, with thunk
—+———» derived::f with thunk

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/thunk/mother.h

#ifndef MOTHERH
#define MOTHERH
using namespace std;

class mother {
i nti;
public:
nmother(int initial_i): i(initial_i) {}
virtual "mother() {} //this example simpler if every class has a vtbl

O©CoOoO~NOOOUOTPA,WNPE

10}
11 #endif

—On the Web at
http://i5.nyu.edu/ Omm64/book/src/thunk/father.h

#ifndef FATHERH
#define FATHERH
#include <iostream>
using namespace std;

class father {
i ntj;
public:
f ather(int initial_j): j(initial_j) {}
10 virtual “father() {}
11 virtual void f() const {cout << "father::f, this == " << this << "\n";}
12
13 struct vtbl {

O©CoOoO~NOOOUOTA,WNPE

et hesenea ©2014 Mark Meretzky

Section 5.9.2 Hidden Pointers Il: a Thunk 547

14 void (*ptr_to_destructor)(father *);
15 void (*ptr_to_dynamic_destructor)(father *);
16 void (*ptr_to_f)(const father *);
17 h

18

19 struct layout {

20 const vtbl *ptr_to_vtbl;

21 int j;

22 3

23}

24 #endif

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/thunk/derived.h

ed

1 #ifndef DERIVEDH
2 #define DERIVEDH
3 #include <iostream>
4 #include "mother.h"
5 #include "father.h"
6 using namespace std,;
7
8 class derived: public mother, public father {
9 i ntk;
10 public:
11 derived(int initial_i, int initial_j, int initial_k)
12 . mother(initial_i), father(initial_j), k(initial_k) {}
13 void f() const {cout << "derived::f, this == " << this << "\n";}
14
15 struct vtbl {
16 void (*ptr_to_destructor)(derived *);
17 void (*ptr_to_dynamic_destructor)(derived *);
18 void (*ptr_to_f)(const derived *);
19 3
20
21 struct layout {
22 const vtbl *ptr_to_vtbl; //vtbl for derived & mother in deriv
23 int i
24 const father::vtbl *ptr_to_fvtbl; [/Ivtbl for father in derived
25 int j;
26 int k;
27 3
28}
29 #endif
The repetition ifmain.C will be consolidated in tev dages, on pp. 676-677 when wevdidem-
plates, and on 1017 when wesbd&Runtime Type Identification.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/thunk/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "father.h"
4 #include "derived.h"
5 using namespace std;
6

printed 4/8/14 All rights

8:51:31 AM

reserved

©2014 Mark Meretzky

Inheritance Chapter 5

7 i nt main()

8 {

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45}

f ather fath(10);
const father:layout& flay =
reinterpret_cast<const father::layout &>(fath);

cout << "father at address " << &fath << " has an f whose address is "<<

reinterpret_cast<const void *>(reinterpret_cast<size_t>(
flay.ptr_to_vtbl->ptr_to_f)) <<"\n"
"Let's call this function twice, passing it " << &fath << ".\n";

fath.f();

flay.ptr_to_vtbl->ptr_to_f(&fath); /llow-level way to do the same thing

cout <<"\n";
derived d(20, 30, 40);
const derived::layout& dlay =
reinterpret_cast<const derived::layout &>(d);

cout <<"derived at address " << &d << " has an f whose address is " <<

reinterpret_cast<const void *>(reinterpret_cast<size_t>(
dlay.ptr_to_vtbl->ptr_to_f)) <<"\n"
"Let's call this function twice, passing it " << &d << ".\n";

d.f();

dlay.ptr_to_fvtbl->ptr_to_f(&d); /Nlow-level way to do the same thing

cout <<"\n"
const father *const p = &d;
const father::layout& flay2 =
reinterpret_cast<const father::layout &>(*p);

cout << "father at address " << p << " has an f whose address is " <<

reinterpret_cast<const void *>(reinterpret_cast<size_t>(
flay2.ptr_to_vtbl->ptr_to_f)) <<"\n"
"Let's call this function twice, passing it " << p << ".\n";

p->f();

flay2.ptr_to_vtbl->ptr_to_f(p); /Nlow-level way to do the same thing

return EXIT_SUCCESS;

ety hesenea ©2014 Mark Meretzky

Section 5.9.3 Virtual Base Classes 549

father at address 0xffbff0e8 has an f whose address is 0x11800.
Let’s call this function twice, passing it Oxffbff0e8.

father::f, this == Oxffbff0e8

father::f, this == Oxffbff0e8

derived at address 0xffbff0d4 has an f whose address is 0x119a8.
Let’s call this function twice, passing it Oxffbff0d4.

derived::f, this == Oxffbff0d4

derived::f, this == Oxffbff0d4

father at address OxffbffOdc has an f whose address is 0x119fc.
Let’s call this function twice, passing it OxffbffOdc.

derived::f, this == Oxffbff0d4

derived::f, this == Oxffbff0d4

5.9.3 \rtual Base Classes

A virtual base class

Now that we hae multiple inheritance, a class can inherit BXrom the same ancestor alongotw
different bloodlines.Let’s dart with a class represinting a wivdon a GQJI. Usingsingle inheritance, we
augment it with a horizontal and vertical scrollbars. Then we use multiple inheritance to gathey the tw
branches together to mala window with both scrollbars.A diagram with this shape is calleliamond
inheritance.

window
(grandparent)
window window
with with.
horizontal vertical
scrollbar scrollbar
(mother) (father)
window with
horizontal
and vertical
scrollbars
(grandchild)

Let's gve anthropomorphic names to the classes:gilamdpaent, motherfather, andgrandchild.
The grandchild should inheriverything that its mother has: a wingd@nd a horizontal scrollbart should
also inherit gerything that its &ther has: a windeand a vertical scrollbarBut the grandchild must inherit
only one window. In ather words, the tavwindows that it inherits must be the same windo

printed 4/8/14 All rights

8:51:31 AM reserved©2014 Mark MeretZky

550 Inheritance Chapter 5

To make them the same wineg write the leyword virtual in lines 15 and 30The virtual in
line 15 tells the mother to be prepared to share its wirnwith another object; the one in line 30 tells the
father the same thing. Here theosd has nothing to do with virtual functions. The designer of the lan-
guage just wanted to get as much mileage as possible out of the smallest nuraheorafsk

Thevirtual ’s dso cause the grandparent (i.e., iaedow) in the grandchild to be constructed
and destructed only oncéHow bad would it be if the same objectw constructed or destructed twice?
Let's hope we neer find out.) To accomplish this, haever, we will have b make an &ception to one of
the principle rules of inheritance.

Until now, a onstructor for a dered dass has alays begun by calling a constructor for the base
class, or the constructor foveey base class if there is more than oo@wboybank had two.) Buthow,
for the first time, we doh'want to do this. The grandchidtonstructor will indeed call the constructors
for its two base classes, the mother aathér But if the constructors for the mother and father then both
called the constructor faheir base class, the grandparent,dveid up constructing the grandparent twice.

So which parent will hae the prvilege of constructing the grandparent@ avoid favaritism, neither
one. Theparents will be religed of their customary duty of constructing the grandparénwill be the
constructor for the grandchild that calls the constructor for the grandp&iemtarly, the two parents will
be relieved of the duty of destructing the grandparent. It will be the destructor for the grandchild that calls
the destructor for the grandparent.

All of this is arranged by writing theelword virtual in lines 15 and 30The virtual in line
15, for example, mads the constructor for the mother skip line 19 when the mother is part of a grandchild.
In this case, the grandparent in the mother has already been constructed by the grandchild, ifDime 54.
the other hand, when the mother is not part of a grandchild, the constructor for the mothecutd kne
19 in the normal way.

Normally a constructor can call the constructors only for its immediate parent(s). But the constructor
for our grandchild can maka drect call to the constructor for a remote ancestor in line 54 because the
ancestor is virtual.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/multiple/virtual_base.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 class window { /l[grandparent
6 i nti;
7 public:
8 window(int initial_i): i(initial_i) {
9 cout << "construct window " << i << "\n";
10 }
11
12 “window() {cout << "destruct window " << i << "\n";}
13}
14
15 class window_with_horizontal: public virtual window { //mother
16 int
17 public:
18 window_with_horizontal(int initial_i, int initial_j)
19 : window(initial_i),
20 j(initial_j) {
21 cout << "construct window_with_horizontal "
22 << initial_i <<" " << initial_j << "\n";
23 }
24

ety hesenea ©2014 Mark Meretzky

Section 5.9.3 Virtual Base Classes 551

25 “window_with_horizontal() {

26 cout << "destruct window_with_horizontal " << j << "\n";
27 }

28}

29

30 class window_with_vertical: public virtual window { [ffather

31 int k;

32 public:

33 window_with_vertical(int initial_i, int initial_k)

34 : window(initial_i),

35 k(initial_k) {

36 cout << "construct window_with_vertical "

37 << initial_i <<" " << initial_k << "\n";

38 }

39

40 “window_with_vertical() {

41 cout << "destruct window_with_vertical " << k << "\n";
42 }

43 };

44

45 class window_with_horizontal_and_vertical: /[grandchild
46 public window_with_horizontal,

a7 public window_with_vertical {

48

49 int I

50 public:

51 window_with_horizontal_and_vertical(int initial_i, int initial_j,
52 int initial_k, int initial_I)

53

54 : window(initial_i),

55 window_with_horizontal(initial_i, initial_j),
56 window_with_vertical(initial_i, initial_k),

57 I(initial_I) {

58 cout << "construct window_with_horizontal_and_vertical "
59 << initial_i<<""

60 << initial_j<<""

61 << initial_k <<""

62 << initial_I << "\n";

63 }

64

65 “window_with_horizontal_and_vertical() {

66 cout << "destruct window_with_horizontal_and_vertical "
67 << | << " \n"

68 }

69 };

70

71 int main()

72

73 window_with_horizontal_and_vertical w(10, 20, 30, 40);
74 cout <<"\n"

75 return EXIT_SUCCESS;

76}

The one coyp of the grandparent is moshared by the mothgfather and grandchild:

ety hesenea ©2014 Mark Meretzky

552 Inheritance

Chapter 5

construct window 10

construct window_with_horizontal 10 20

construct window_with_vertical 10 30

construct window_with_horizontal _and_vertical 10 20 30 40

destruct window_with_horizontal _and_vertical 40
destruct window_with_vertical 30

destruct window_with_horizontal 20

destruct window 10

Line 54 calls line 8.

55 calls 18, whil skips 19.

56 calls 33, whil skips 34.
lines 36-37

lines 66-67

line 65 calls line 40, whitkips line 12
line 65 calls line 25, whitkips line 12
line 65 calls line 12

What happens if we rem@e ae or both of the virtual's

To cause the grandchild to inherit only onendow , the keyword virtual is needed on both of the
abore lines 15 and 30. If we rerae ane or both of them, the grandchild will inheritawopies of the

grandparent.

We'll probably neer want to remoe mevirtual , but we’ll shav what happens gway. If we
remove the one in line 15, we get tngrandparents in the grandchild. As abowe begn by constructing
the grandparent that the grandchild inherits virtually (in this cas&ititow in the fither). Therwe con-
struct the motheiincluding its grandparent. The (rest of thather comes last, because of the order of the

above lines 46-47.

construct window 10

construct window 10

construct window_with_horizontal 10 20

construct window_with_vertical 10 30

construct window_with_horizontal_and_vertical 10 20 30 40

destruct window_with_horizontal _and_vertical 40
destruct window_with_vertical 30

destruct window_with_horizontal 20

destruct window 10

destruct window 10

construct window shared by father and grandclini
construct mothes window
construct rest of mother
construct rest of father
construct rest of grandchild

destruct grandchild, 'cept for its moth, fath, wind
destruct fatherexcept for his window
destruct motheexcept for her window
destruct mothes window

destruct window shared by father and grandchild

If we restore thevirtual in line 15 remae te one in line 30 the output changes to the folig.
Again, we construct the grandparent that the grandchild inherits virtually (in this caséndog in the
mother). Thenwe construct the (rest of the) mothdrhe father comes last, because of thevaldmes

46-47.

construct window 10

construct window_with_horizontal 10 20

construct window 10

construct window_with_vertical 10 30

construct window_with_horizontal_and_vertical 10 20 30 40

destruct window_with_horizontal _and_vertical 40
destruct window_with_vertical 30

destruct window 10

destruct window_with_horizontal 20

destruct window 10

construct window shared by mother and grandct
construct rest of mother
construct fathes window
construct rest of father
construct rest of grandchild

destruct grandchild, 'cept for its moth, fath, wind
destruct fatherexcept for his window

destruct fathes window

destruct motheexcept for her window

destruct window shared by mother and grandch

Finally, here is the output with bothirtual ’'s removed. Theconstructor for a grandchild can
malke a drect call to the constructor for a grandparent only when the grandparent is inherited virtually
along at least one bloodline to the grandchilde therefore also had to ren®te

window(initial_i), in line 54.

printed 4/8/14
8:51:31 AM

hesenea ©2014 Mark Meretzky

Id

hild

Id

Section 5.9.3

Virtual Base Classes 553

construct window 10

construct window 10

destruct window_with_vertical 30
destruct window 10

destruct window 10

construct window_with_horizontal 10 20

construct window_with_vertical 10 30
construct window_with_horizontal _and_vertical 10 20 30 40

destruct window_with_horizontal_and_vertical 40

destruct window_with_horizontal 20

construct mothes window
construct rest of mother
construct fathes window
construct rest of father
construct rest of grandchild

destruct grandchild, 'cept for its moth, fath, wi
destruct fatherexcept for his window

destruct fathes window

destruct motheexcept for her window
destruct mothes window

nd

Now that each parent in the grandchild has its own grandparent, the grandchild could be a flight sim-
ulator The two windows could display ya and pitch, and the tavscrollbars could control them:

yaw

pitch

window with

horizontal scrollbar and
window with

vertical scrollbar
(grandchild)

If we forget to remee thewindow(initial_i),

is

from line 54, the error message on my platform

virtual_base.C: In constructor
int, int, int)":

virtual_base.C:54:5: error: type 'window’ is not a direct base of

An alternative dag

Why not male three separate classesndow , horizontal_scrollbar ,and
vertical_scrollbar , ahd derve the other classes from thenirhis would get rid of the diamond
inheritance, so there would be no more trouble with virtual base classes:

horizontal
scrollbar

window
with
horizontal
scrollbar

. vertical
window
scrollbar
window w/ window
horizontal with
& vertical vertical
scrollbars scrollbar

| didn’t do this because the connection between a windad its scrollbars is so intimateSince
evay member function of a scrollbar would need to access thagrmembers of its windyg it would be

awkward for the scrollbars to be separate classes.

printed 4/8/14
8:51:31 AM

hesenea ©2014 Mark Meretzky

O wWwNE

A WN P

554 Inheritance Chapter 5

Multiple inheritance with and without virtual base classes
A classnurse provides another example of multiple inheritance. Here inw Merk State, a

nurse_practitioner can do eerything that anurse can do, plus more: he or she can prescribe
additional drugs. And aurse_midwife can do eerything that anurse can do, plus more: he or she
can deler babies. Anurse_practitioner_midwife can do gerything that a

nurse_practitioner and anurse_midwife can do, plus more. But a

nurse_practitioner_midwife should inherit only onaurse .

On the other hand, consider a small medical partnership comprigingitges: a
nurse_practitioner and anurse_midwife . (In hip medical circles, this kind of partnership is
known as “a stamp and a clarhp’In this case the partnership should inherib s¶te nurses.

Another example: clagestream is derved from classegstream andostream . But these tw
classes h&e a ommon parentios_base . The grandchild clas®stream has only one copof its
grandparenios_base . See the diamond diagram on pp. 383-385.

One last example: A bacon cheeseburger has only one hamburger.

Derive dass stackte from classes stackt and stacke

We ckerived dassesstackt andstacke from classstack on pp. 503-505.Now let’s derive a
grandchild that will inherit the features of both dedi dasses. W can keep the original grandparent class
stack unchanged.

stack grandparent class
stackt stacke mother and father classes
stackte grandchild class

Before we had multiple inheritance, it seemed reasonablevidedihe code in the parent classes
stackt andstacke into two major member functiongush andpop. But if we kept this diision,
there would be no way to write the member functions of the grandchild class corFectlgxample, the
following stackte::push would accidentally calstack::;push twice. (Thebinary scope operator

in lines 3 and 4 was last seen in lines 15-1Main.C on p. 544.)

void stackte::push(int i)
{
stacke::push(i);
stackt::push(i);
}

before thg can share a child, we will ka o change the way the code in classexckt andstacke is
partitioned into member functions.

In the nev implementation of classtackt , the pop function calls its_pop after it calls
stack::pop :it must extract the number from the stack before it can print it. But in thelness
stacke , the pop calls its pop beforeit callsstack::pop : it must check for underfie before etract-
ing a number from the stack.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/stack2/stackt.h

#ifndef STACKTH
#define STACKTH
#include <iostream>
#include "stack.h"

et hesenea ©2014 Mark Meretzky

Section 5.9.3 Virtual Base Classes

5 using namespace std;

6

7 class stackt: public virtual ::stack {

8 public:

9 stackt() {cout << "stackt()\n";}
10 “stackt() {cout << ""stackt()\n";}
11
12 void _push(int i) const {cout << "push(" <<i<<")\n";}
13 void _pop(inti) const {cout << "pop(" << i<<")\n";}
14
15 void push(int i) {::stack::push(i); _push(i);}
16 int pop() {constinti = ::stack::pop(); _pop(i); return i;}
17}
18 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stack2/stacke.h

1 #ifndef STACKEH

2 #define STACKEH

3 #include "stack.h"

4

5 class stacke: public virtual ::stack {

6 public:

7 ~ stacke();

8

9 void _push() const; //Ino explicit argument
10 void _pop() const;
11
12 void push(int i) {_push(); ::stack::push(i);}
13 int pop() {_pop(); return ::stack::pop();}
14}
15 #endif

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/stack2/stacke.C

#include <iostream>
#include <cstdlib>
#include "stacke.h"
using namespace std;

stacke::"stacke()

i f (size()!=0){
cerr << "stack destructed with nonzero size " << size() << "\n";

OCO~NOOOUTLA,WNPEP
—~~

10 }

11}

12

13 void stacke::_push() const

14 {

15 if (size() >= capacity()) {

16 cerr << '"size ==" << size() << ", capacity ==" << capacity() << "\n";
17 exit(EXIT_FAILURE);

18 }

19}

555

ety hesenea ©2014 Mark Meretzky

556 Inheritance

20
21 void stacke::_pop() const
224
23 if (size() <=0){
24 cerr << "can't pop stack with size " << size() << "\n";
25 exit(EXIT_FAILURE);
26 }
27}
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/stack2/stackte.h

1 #ifndef STACKTEH
2 #define STACKTEH
3 #include "stackt.h"
4 #include "stacke.h"
5
6
7
8

class stackte: public stacke, public stackt {
public:

void push(int i);

i nt pop();

©

10}
11 #endif

Now we can write the member functions of the grandchild class.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/stack2/stackte.C

1 #include "stackte.h"
2
3 void stackte::push(int i)
4 {
5
6 . :stack::push(i);
7 stackt::_push(i);
8 }
9
10 int stackte::pop()
11 {

Chapter 5

stacke::_push(); /Imust come before the call to ::stack::push

12 stacke::_pop(); /Imust come before the call to ::stack::pop

13 const inti=::stack::pop();

14 stackt::_pop(i); /Imust come after the call to ::stack::pop

15 return i;
16}

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stack2/main.C

#include <iostream>
#include <cstdlib>
#include "stackte.h"
using namespace std;

i nt main()

{

O~NO O WNPE

stackte s;

printed 4/8/14
8:51:31 AM

All rights
reserved

©2014 Mark Meretzky

Section 5.9.3 Virtual Base Classes 557

10 s.push(10);

11 cout << s.pop() <<"\n";
12 cout << s.pop() <<"\n";
13 return EXIT_SUCCESS;
14}

stackt()

push(10)

pop(10)

10

can’t pop stack with size 0

Multiple inheritance without virtual base classes

To keep all thecowboy ’s on a linked list, eaclcowboy must h&e anext data memberTo keep
all the bank s on another list, eactbank must also hee anext data member The two dasses can
inherit this data member from a common base class naotsd. We saw tow to provide an
operator<< for a base class on pp. 496-497.

A cowboybank would hare © be a1 two eparate lists, the list @owboy ’'s and the list ofbank ’s.
It must therefore hee wo dfferentnext data members, so its parents must not be virtual.

node base class

cowboy bank derived classes

cowboybank | grandchild class

The static data membeowboy::begin in line 21 contains the address of the f®ivboy on the
list, or zero if the list is emptyThe constructor focowboy (line 22) places the méorncowboy at the
beginning of the cavboy list, in front of aly othercowboy ’s that may already be on the lisdimilarly, the
constructor fobank (line 33) places the newbobank at the beginning of the bank list.

Thenext data member of classde should be pxiate, and the user should be able to loop along
the lists without writing the arrows in lines 68-70 and 75-We'I| fix these problems when we do itera-
tors. Theprint member functions of classeswboy andbank are protected so that thean be called
by theprint member function of the grandchild classvboybank .

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/multiple/cowboybank.C

#include <iostream>
#include <cstdlib>
using namespace std;

class node {

virtual void print(ostreamé& ost) const = 0O;
public:

node *next;

node(node *initial_next): next(initial_next) {}
10 virtual "node() {}

O©CoOoO~NOOOUOTPA,WNPE

12 friend ostream& operator<<(ostream& ost, const node& n) {

ety hesenea ©2014 Mark Meretzky

558 Inheritance Chapter 5

13 n.print(ost);

14 return ost;

15 }

16 };

17

18 class cowboy: public node {

19 int i

20 public:

21 static cowboy *begin;

22 cowboy(int initial_i): node(begin), i(initial_i) {begin = this;}
23 protected:

24 void print(ostream& ost) const {ost << "cowboy " << i;}
25}

26

27 cowboy *cowboy::begin = 0;

28

29 class bank: public node {

30 int

31 public:

32 static bank *begin;

33 bank(int initial_j): node(begin), j(initial_j) {begin = this;}
34 protected:

35 void print(ostream& ost) const {ost << "bank " << j;}
36}

37

38 bank *bank::begin = 0;

39

40 class cowboybank: public cowboy, public bank {

41 int k;

42

43 void print(ostream& ost) const {

44 ost << '"cowboybank";

45 cowboy::print(ost);

46 ost <<" "

47 bank::print(ost);

48 ost <<" "<<Kk;

49 }

50

51 public:

52 cowboybank(int initial_i, int initial_j, int initial_k)
53 :cowboy(initial_i), bank(initial_j), k(initial_k) {}
54}

55

56 int main()

57

58 cowboy ¢l =40;

59 bank bl =80;

60

61 cowboybank cb1(30, 70, 100);
62 cowboybank cb2(20, 60, 90);

63

64 cowboy c¢2=10;
65 bank b2 =50;
66

ety hesenea ©2014 Mark Meretzky

Section 5.9.4 Hidden Pointers IlI: a Virtual Base Class Creates a Discontinuous Object 559

67 cout << "Here are the cowboys:\n";
68 for (const node *p = cowboy::begin; p != 0; p = p->next) {
69 cout <<*p<<"\n“;
70 }
71
72 cout <<"\n";
73
74 cout << "Here are the banks:\n";
75 for (const node *p = bank::begin; p != 0; p = p->next) {
76 cout <<*p<<"\n“;
77 }
78
79 return EXIT_SUCCESS;
80}

i N | [

cowboy::begin I T
10 40 cowboy::i
20 30 y
P —
] — —
bank::begin 60 70
J 50 80 bank::j
90 100 cowboybank::k

Here are the cowboys:

cowboy 10

cowboybank cowboy 20, bank 60, 90
cowboybank cowboy 30, bank 70, 100
cowboy 40

Here are the banks:

bank 50

cowboybank cowboy 20, bank 60, 90
cowboybank cowboy 30, bank 70, 100
bank 80

5.9.4 HiddenPainters lll: a Virtual Base Class Creates a Discontinuous Object

The simplest implementation of a virtual base class has one strange consetjueagaesult in the
creation of a spacially discontinuous object.

Before we had virtual base classes, a base object belonged to only uee dgect, or at least to
only one dewned object that was not in turn part of amea larger one. The simplest way tovgi the
derived abject access to the base object was to put the latter physically inside of the former.

ety hesenea ©2014 Mark Meretzky

560 Inheritance Chapter 5

base

But when a base class is virtual, a base object may belong to more than wetbathgect. Thebase
object can no longerwabys be inside of the deed object to which it belongsinstead, each of the deed
objects contains a pointer to the shared base object.

pointer to thebase object

base

Each dened object, together with its base object, is considered to be one big obmatxample,
thesizeof a derived abject will include thesizeof the base objectyen though the latter may be some
distance way in memory The derved object is spacially discontinuous.

The following family with three'parent’ classes will demonstrate thatdwiscontinuous objects of
the same class mayJedfferent distances between their parBerivation from a virtual base class is
dashed.

grandparent

= T =

—~ 1 ~

mother father stepfather

grandchild stepgrandchild

In line 68 of main.C , the mother and the father inside of g will share the same
grandparent object. Andin line 72, themother , father , and thestepfather inside ofsg will
share the samgrandparent object.

On my platform, a deved abject does not ha an actual pointer to a base object of a virtual base
class. Ithas a pointer to a table of data, whose first field is the offset in bytes from the end ofviitk deri
object to the start of its base object. This offset is of the dataptygif t (line 20), which should
always be used for a distance that could be p@sii negdive.

The mother and father in line 68 share the samgrandparent . On my patform, the
mother is separated from thgrandparent by a total of 12 bytesThe father occupies 8 bytes (a
pointer and the data memhgr, and thel data member of thgrandchild occupies 4 bytes.

Themother , father , and stepfather in line 72 share the sanggandparent . On my pat-
form, thismother is separated from itgrandparent by 20 bytes.Thefather andstepfather
each occupbytes; thd occupies 4 bytes.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/discontinuous/main.C

1 #include <iostream>

ety hesenea ©2014 Mark Meretzky

Section 5.9.4 Hidden Pointers llI: a Virtual Base Class Creates a Discontinuous Object

2 #include <iomanip>
3 #include <cstdlib>
4 using namespace std,;
5
6 class grandparent {
7 i nti;
8 public:
9 grandparent(int initial_i): i(initial_i) {}
10 int f() const {return i;}
11}
12
13 class mother: public virtual grandparent {
14 int
15 public:
16 mother(int initial_i, int initial_j)
17 : grandparent(initial_i), j(initial_j) {}
18
19 struct table {
20 ptrdiff_t diff; //offset from end of mother to its grandparent
21 3
22
23 struct layout {
24 const table *p;
25 int j;
26 3
27},
28
29 struct father: public virtual grandparent {
30 int k;
31 father(int initial_i, int initial_k)
32 . grandparent(initial_i), k(initial_k) {}
33}
34
35 struct stepfather: public virtual grandparent {
36 int k2;
37 stepfather(int initial_i, int initial_k2)
38 : grandparent(initial_i), k2(initial_k2) {}
39}
40
41 struct grandchild: public mother, public father {
42 int I;
43 grandchild(int initial_i, int initial_j, int initial_k, int initial _I)
44 : grandparent(initial_i),
45 mother(initial_i, initial_j),
46 father(initial_i, initial_k),
47 [(initial_I) {3
48 };
49

50 struct stepgrandchild: public mother, public father, public stepfather {
51 int I;

52 stepgrandchild(int initial_i, int initial_j, int initial_k,
53 int initial_k2, int initial_I)

54 : grandparent(initial_i),

55 mother(initial_i, initial_j),

561

ety hesenea ©2014 Mark Meretzky

562 Inheritance

Chapter 5

56 father(initial_i, initial_k),

57 stepfather(initial_i, initial_k?2),

58 [(initial_I) {

59}

60

61 void print(const mother *m);

62

63 int main()

64 {

65 cout << "sizeof mother, not counting its grandparent, is "
66 << sizeof (mother) - sizeof(grandparent) << ".\n\n";
67

68 grandchild g(10, 20, 30, 40);

69 cout << "mother in grandchild:\n";

70 print(&g);

71

72 stepgrandchild sg(50, 60, 70, 80, 90);

73 cout << "mother in stepgrandchild:\n";

74 print(&sg);

75

76 return EXIT_SUCCESS;

77}

78

79 void print(const mother *p)

80 {

81 const mother:layout& lay =

82 reinterpret_cast<const mother::layout &>(*p);
83 const ptrdiff_t diff = lay.p->diff;

84 const char *const cp = reinterpret_cast<const char *>(p)
85 + sizeof (mother) - sizeof (grandparent);

86 const grandparent *const gp =

87 reinterpret_cast<const grandparent *>(cp + diff);
88

89 cout

90 << p << " == a ddress of mother\n"

91 << static_cast<const void *>(cp)

92 << " == address of first byte after mother"
93 " (not counting its grandparent)\n"

94 << hex << setw(10) << diff << dec

95 << " == o ffset to mother’'s grandparent (in hex)\n"
96 << gp << " == address of mother's grandparent\n"
97 << static_cast<const grandparent *>(p)

98 << " == s tatic_cast<const grandparent *>(p)\n"
99 << "grandparent’s f returns " << gp->f() << ".\n\n";

100}

ety hesenea ©2014 Mark Meretzky

Section 5.9.5 Mix and Match the Ancestor Classes 563

sizeof mother, not counting its grandparent, is 8.

mother in grandchild:

0xffbff078 == address of mother

Oxffbff080 == address of first byte after mother (not counting its grandparent)
¢ == offset to mother’s grandparent (in hex)

Oxffbff08c == address of mother’s grandparent

0xffbff08c == static_cast<const grandparent *>(p)

grandparent’s f returns 10.

mother in stepgrandchild:

0xffbff058 == address of mother

Oxffbff060 == address of first byte after mother (not counting its grandparent)
14 == offset to mother’s grandparent (in hex)

Oxffbff074 == address of mother’s grandparent

0xffbff074 == static_cast<const grandparent *>(p)

grandparent’s f returns 50.

5.9.5 Mixand Match the Ancestor Classes

v Homework 5.9.5a:
Version 3.1 of the Rabbit Game: multiple inheritance: mix and match the ancestor classes

Classwabbit has tw groups of missing pieces. It does not kWnehat its place in the food chain is
(hungry , bitter), and it does not kmohow to decide which way to me (decide , with an empty
punish function that a deved dass might want towerride).

It seemed reasonable to deridasswolf directly from classwvabbit |, filling in the two missing
groups.

wabbit
wolf rabbit
But this bundled thevolf ’s rank in the food chainAolf::hungry andwolf::bitter) with its style
of motion (volf::decide and wolf::punish). Any derived dass that inherits thevolf 's rank

would also be forced to inherit its motion, and viegsa. Inheritancgives you all the members of the
base class, whether you want them or not.

To inherit one without the othewe will use multiple inheritance:

wabbit
victim brownian predator manual
rabbit killer_rabbit wolf

Keep classvabbit the same.Derive wo new dassesmanual andpredator , from it. Move the two
member functions for thavolf 's style of motion and punishment from clas®lf to classmanual .
Move the two member functions for thevolf ’s rank in the food chain from classlf to class

et hesenea ©2014 Mark Meretzky

~NOoO oA~ WN PP

564 Inheritance Chapter 5

predator . Then denve dasswolf from classesnanual andpredator

Similarly, derive wo more classes namedrownian and victim from classwabbit . (In
physics, ‘brownian motion” is random motion.)Move the member function for theabbit ’s style of
motion from classabbit to classbrownian . (rabbit::punish happens to be the same function as
wabbit::punish , SO bn’t move t anywhere.) Mae the two member functions for theabbit s rank
in the food chain from clagabbit to classvictim . Then dene dassrabbit from classes
brownian andvictim

The extra layer of classes will let us mix and match siyle of motion with ag rank in the food
chain. for example, we can ded a dasskiller_rabbit that inherits the same motion asadbit
and the same rank asvalf .

In fact, we will denve sxteen classes fromvabbit . The ravs are styles of motion; the columns are
ranks in the food chain. Deadly specikar(gry==INT_MAX) haveuppercase names.

inert victim predator halogen
hungry==INT_MIN hungry==INT_MIN hungry==INT_MAX hungry==INT_MAX
bitter==INT_MAX bitter==INT_MIN bitter==INT_MAX bitter==INT_MIN
immobile P’ boulder s’ sitting_duck 'B’ black_hole L land_mine
brownian g’ gnat r rabbit 'R’ killer_rabbit t | 'S’ strangelove
manual 'h’ horse * 'f fugitive "W wolf 'K" kamikaze
visionary 'p pest d deer A’ alien P’ positron

*This horse is the wooden crowd barrier.
tFor Monty Pythors killer rabbit (1975), see

http://us.imdb.com/Title?0071853
For the killer rabbit that attacked President Carter on April 20, 1979, see
http://en.wikipedia.org/wiki/Jimmy_Carter_rabbit_incident

The four rank classes
Derive four classes fronwabbit :inert , predator ,victim , andhalogen . They will over-

ride wabbit::hungry andwabbit::bitter as follows.

(1) Aninert has no appetite and is unpleasant to awrt::hungry should returdNT_MIN
andinert::bitter should returdNT_MAXas in the following lines 7-8.

(2) Apredator has a hearty appetite and is unpleasant toggatiator::hungry and
predator::bitter should both returtNT_MAX

(3) Avictim has no appetite and is tastyictim::hungry and victim::bitter should

both returnNT_MIN .

(4) A halogen has a hearty appetite and is tagtlogen::hungry should returdNT_MAX
andhalogen::bitter should returdNT_MIN .

Here is classnert . The other three rank classes will be the same except for theg & hunger
and bitterness.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/inert.h

#ifndef INERTH

#define INERTH

#include <climits> //for INT_MIN and INT_MAX
#include "wabbit.h"

class inert: public virtual wabbit {
i nt hungry() const {return INT_MIN;}

ety hesenea ©2014 Mark Meretzky

Section 5.9.5 Mix and Match the Ancestor Classes 565

8 i nt bitter() const {return INT_MAX;}
9 public:
10 inert(game *initial_g, unsigned initial_x, unsigned initial_y,
11 char initial_c)
12 wabbit(initial_g, initial_x, initial_y, initial_c) {}
13}
14 #endif

The four rank classes will noverride wabbit::decide , and so will remain abstract classes.
The motion classes

Then denve three more classes frowabbit : immobile , brownian , and manual . (We will do
classvisionary later) They will override wabbit::decide andwabbit::punish as follows.

(1) Animmobile never moves. immobile::decide always returng),0 to wabbit::move
as in line 6 of the followingmmobile.h . Do not override wabbit::punish . There will be no
immobile.C file.

(2) A brownian moves randomly around the screebrownian::decide returns tvo random
values towabbit::move , as ar old rabbit::decide did. brownian::decide will be inline in
the filebrownian.h , which will have b include<cstdlib> andusenamespacestd for therand
function. Donot override wabbit::punish . There will be ndorownian.C file.

(3) Amanual moves when we press ade key @nd beeps when we press argifleone). Like aur
old wolf::decide , manual::decide looks up the &ystroke in a able and finds the corresponding
pair ofint ’'s. It then returns these ownt s to wabbit::move . manual::decide is too big to be
inline, so define it in manual.C file. Thisfile will mention nothing that belongs to namespsitk, so i
will not need to saysingnamespacestd; . For the time being, do not construct more than one
manual . Think about the machinery necessary teehgeveal of them,; it will appear on pp. 799-802.

Classmanual will also need gunish function that beepsMove thepunish from classwolf to
classmanual , keeping it prate.

For example, here is clasgsimobile . The other motion classes will be similar.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/immobile.h
1 #ifndef IMMOBILEH
2 #define IMMOBILEH
3 #include "wabbit.h"
4
5 class immobile: public virtual wabbit {
6 void decide(int *dx, int *dy) const {*dx = *dy = 0;}
7
8 public:
9 i mmobile(game *initial_g, unsigned initial_x, unsigned initial_y,
10 char initial_c)
11 wabbit(initial_g, initial_x, initial_y, initial_c) {}
12}
13 #endif

The motion classes will notverride wabbit::hungry and wabbit::bitter , and so will
remain abstract classes. Update the “calleddiyynments in lines 28-29 @fabbit.h on p. 536.

The grandchildren

Finally, use multiple inheritance to create three or four of the sixteen posgitaledchild’ classes.
For example, derierabbit from brownian andvictim , wolf from manual andpredator , and
boulder from immobile andinert . To make both parents public, the following line 6 will Y& o

ety hesenea ©2014 Mark Meretzky

566 Inheritance Chapter 5

saypublic twice. Therewas no ®mpelling reason for line 6 to construct thranobile before the
inert . | adopted this order only because the name of each motion class is anedyhde most of the
rank classes are nouns.

Each grandchild class will inherit itkecide , punish , hungry , and bitter ~ member functions
from its two parents. Irfact, other than the constructar gandchild will have o member functions of its
own. Thedeclarations for the grandchild classes will therefore be almost identical. On pp. 695-696, this
repetition will be consolidated with a “template”.

Here is clasdoulder . The immobile and theinert inside theboulder each contain a
wabbit . But it's thesamewabbit , thanks to the magic of virtual base classes.

Line 9 calls the constructor for classbbit , which initializes theboulder ’s wabbit . Then line
10 calls the constructor fimmobile , which would normally initialize the entiienmobile . But class
immobile is derived virtually from classvabbit , so he call in line 10 initializes only the part of the
immobile that is not contained in theabbit . Similarly, call to the constructor for clagsert in line
11 initializes only the part of theert that is not contained in thveabbit . Thewabbit in the
boulder is initialized only once.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/boulder.h

#ifndef BOULDERH
#define BOULDERH
#include "immobile.h"
#include "inert.h"

class boulder: public immobile, public inert {
public:
boulder(game *initial_g, unsigned initial_x, unsigned initial_y)
wabbit(initial_g, initial_x, initial_y, 'b’"),
10 immobile(initial_g, initial_x, initial_y, 'b’),
11 inert (initial_g, initial_x, initial_y, 'b")
12 {
13}
14 #endif

©CoOoO~NOOOUTA, WNPE

Dominance

Classboulder inherits two different versions oflecide : the flesh-and-bloodecide inherited
from classmmobile and the ghostlypure virtualdecide inherited from clasgabbit via class

inert . Fortunatelywhen aboulder saysdecide , it getsimmobile::decide rather than
wabbit::decide ; the deciding factor is thammobile is the dened dass andwvabbit is the base
class. V¢ therefore say thammmobile::decide dominates,or hideswabbit::decide

You can ignore the Microsoft igual C++ warning about dominance; it is only a warning, not an
error. If you find it annoying, disable it by saying

#pragma warning (disable: 4250)
See

http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/vccore98/HTML/c4250.asp

Why not eliminate the dominance by eliminating the multiple inheritané&?airrently hae a da-
mond.

ety hesenea ©2014 Mark Meretzky

Section 5.9.5 Mix and Match the Ancestor Classes 567

wabbit
data members g x y c;
void move();
immobile inert
void decide(); int hungry();
int bitter();
boulder
Why not change it to a pitchfork, eliminating the dominance?
immobile wabbit inert
void decide(); data members g x y c; int hungry();
void move(); int bitter();

boulder

This would be okay for mg, but might inhibit future grath. For example, an animal’levd of
hunger might depend on Wwamary times it has meed snce its last meal, and classbbit will have a
new member function returning this numbe®r the direction in which an animal decides towaaright
depend on its distance to the nearest animal, andwtdsst will have a rew member function returning
this distance. In either case, future versions oftt@de , hungry , and bitter in the denved dasses
will have © call these n& member functions of classabbit .

In fact,manual::decide already calls thé&ey andpunish member functions ofvabbit . We
have £en hav easy this is whemanual is derved from wabbit . But if manual were not so deved,
eachmanual object would need to contain a pointer towabbit object whos&ey andpunish func-
tions it should call.We will therefore keep the motion and rank classesvégifrom classvabbit .

A counting function

We will need to keep a count of the animals of each species o Wih@n to terminate theage.
Add the following prvate, non-inline, non-static member function to clgase.

master_t::size_type count(char c) const;

It will return the number of animals in the master list whose data merrtes the gien value. For exam-
ple, count(’r’) will return the number afabbit ’s in the game. Thdunction is named after the
count algorithm in the C++ Standard Librarut there is no name conflict, because caunt has the
last namegame.

game::count will contain a loop similar to the one game::get . game:.get accessed tw
data members of th@abbit pointed to byfit . Yourgame::get probably did not dereference the iter
ator three times:

ety hesenea ©2014 Mark Meretzky

W N

0o ~NO O

10
11
12
13
14
15

1
2
3

568 Inheritance Chapter 5

i f ((*it)->x == x && (*it)->y ==y) {
r eturn *it;
}

It was easier to storét into a pointep once and for all.

wabbit *const p = *it; //or const master_t::value_type p = *it;
Hf(p->x==x8&&p->y ==y){

r eturn p;
}

But game::count will access only one data member of W&bbit pointed to bytit , so dn’t bother
with a pointer Just say(*it)->c

To access the data member of easkabbit , game::count |, like game::get , will have b be a
friend of classvabbit . Make aure that the friend declaration wabbit.h correctly specifies the func-
tion’s name, arguments, returmlue, and whether it is@nst or noneonst member function.Give it a
comment lile the one in line 38 afvabbit.h on p. 536. The comment @ame::get in wabbit.h
should nav refer togame::get and togame::count

To oount the elements ingame::master_t , the return type ofount must be
game::master_t::size_type . Inside the curly brace} of the class definition for clagmame, and
inside the body of a member function of that class, we can refer t@@ype::master_t simply by
sayingmaster_t . But outside these twplaces, we must refer to it by its full narpame::master_t
See lines 3 and 5 ofinton2.C on p. 423.

Instead of recounting the animals on demand, it would$terf to hold the count of each species in a
separate data member of clgssne. But | dont want to hae b add a nev member to clasgame when-
evea a rew dass is detied:

/ Ihypothetical private data members of class game:
/la maintenance nightmare

master_t::size_type count_of rabbits;
master_t::size_type count_of wolves;
master_t::size_type count_of boulders;
/letc.

Could each count be a data member (static or otherwise) of the corresponding grandchilN@lass?
because we may want the program to run multiplees. Eaclyame object will needs its own count of
rabbit s, its own count ofvolf s, etc. If a count were a data membergdme, it would hare © be ron-
static.

We'll get the speed of data memberst lithout their proliferation, when we dmaps on pp.
795-796. Ourounting code has yet to reach its final form.

The constructor for class game

Create enougboulder 's to give the screen some texture, and thio somemine’s. Or make a
maze whose walls are madebaiulder s, with awolf and asitting_duck

The most programmer-friendly way to create gnanimals of mag species at manplaces is to
draw the rectangular picture in lines 8-1%he data type of an array subscript shouwdags besize t

(lines 6, 16, 18, 19); see p. 66. Get rid of shreictlocation and the array ofocation ’s on pp.
470-471.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/game5/game.C

/ [Excerpt from game.C

game::game(char initial_c)

et hesenea ©2014 Mark Meretzky

Section 5.9.5 Mix and Match the Ancestor Classes 569

4 term(initial_c)
5 {
6 static const size_t xmax = 8; /Inumber of columns in the picture
7 static const char a[][xmax + 1]={ //plus 1 for terminating "\0’
8 " bbbbbbbb", //a maze of boulders
9 "b.....b",
10 "b.bbbb.b",
11 "b..s.b.b", /[The 's’ is a sitting duck.
12 "bbbbbb.b",
13 "W......b", /[The "W’ is a wolf.
14 "bbbbbbbb"
15 3
16 static const size_t ymax = sizeof a / sizeof a[0];
17
18 for (size_ty =0;y <ymax; ++y) {
19 for (size_t x = 0; x < xmax; ++x) {
20 if (term.in_range(x, y)) {
21 switch (a[yllx]) { //sorry the y comes before the x
22 case .-
23 break;
24
25 case b
26 new boulder(this, x, y);
27 break;
28
29 case s
30 new sitting_duck(this, X, y);
31 break;
32
33 case W’
34 new wolf(this, X, y);
35 break;
36
37 default:
38 cerr << "bad character ™ << a[y][x]
39 << Mat("<<x<<", "<y <<"\n"
40 exit(EXIT_FAILURE);
41 }
42 }
43 }
44 }
451}

Theswitch statement will be replaced with a “maph pp. 797-798.

The game::play function
Compare the diagrams on p. 541.

printed 4/8/14
8:51:31 AM

All rights
reserved

©2014 Mark Meretzky

1 / /Excerpt from game.C, showing the body of the function game::play.

570 Inheritance

game::play

returnstrue or false

wabbit::move

Chapter 5

to game::play

returnsdx, dy to Wabbit::move/ \Wurnsdx, dy towabbit::move

brownian::decide

manual::decide

You decide when the game should beero A reasonable choice would be to end the game when

there are no more animals ofyaatlible species (i.e., those dexdl from classesictim

or halogen). If

you have amanual animal and another animal hungry enough to eat it, you might also want to end the
game when thenanual animal is gone. At that point, the user woul&édaothing left to do.

There may still be mansurviving wabbit ’s when the game isver, 0 move he test from the outer
loop (line 3 ofgame.C on p. 542) to the inner loop (lines 19-27 lwdlo Remwe the message from
game::"game and replace it with messagesdlikose in lines 19-27.

—On the Web at
http://i5.nyu.edu/

f or (;; term.wait(250)) {

Omm64/book/src/game5a/game.C

f or (master_t::const_iterator it = master.begin();

it !'= m aster.end();) {

wabbit *const p = *it;

const bool alive = p->move();

++it;

if (lalive) {
[IThe
/lanother
delete p;

}

/[Change

if (count(r)<=0){

term.put(0,
return;
}
if (count('W’) <= 0) {
term.put(0,
return;
}

printed 4/8/14
8:51:31 AM

lines 19-27 to fit your game.

0, "No more rabbits.");

0, "No more wolves.");

wabbit that moved in line 8 blundered into
wabbit and was eaten.

All rights
reserved

©2014 Mark Meretzky

O~NO O WNPE

Section 5.10 An Alternati ve to Inheritance 571

¥ Homework 5.9.5b:
Version 3.2 of the Rabbit Game: mass extinction

The destructor for claggame now destructs and deallocates all the suing wabbit ’s. If every
one of these animals performed a beep and pause, it wouddydui crazy.

Remaore the beep and pause from the destructor for clagsbit . A wabbit will now beep and
pause only when it is killed in an encounter with anotabit .

Make these three changes:

(1) Remae theg->term.beep(); andg->term.wait(1000); from the destructor for class
wabbit .

(2) To make awabbit beep and pause when another animal runs into it and eats it, insert
other->beep(); and other->g->term.wait(1000); at line 29% ofwabbit.C on p.
538.

(3) To make awabbit beep and pause when it runs into an animal that eats it, esgrf); and
g->term.wait(1000); at line 33% ofvabbit.C on p. 538.
We inserted tw dfferent beeps, theother->beep() and the plain beep() (i.e.,

this->beep()), to male each sound issue from the correct source. Our audio is currently monophonic,
but it might become stereo.
A

5.10 AnAlternati ve to Inheritance
The abee aimals cannot change from one species to anotBat the folloving scheme wuld

allow arabbit to turn into akiller_rabbit and back agin. Oran animal could become sluggish
after a big meal by temporarily turning into iaert
The alternatie £heme would no longer tia any tassrabbit or classkiller_rabbit . In

fact, there would no longer beyadasses deved fromwabbit . Instead, eactvabbit will have pinters
to two other objects that knehow to move and eat: anotion object and aank object.

This nev scheme is anxample of adesign patternin particular it's the ‘strategy’ design pattern
in the well-known Erich Gammesign Ritternsbook, pp. 315-323.

These lines represent inheritance:

motion

immobile brownian manual visionary

All four motion objects are static data members of classesatefiom classmotion . An object
can be a static data member of its own class; our keshple was therigin member of claspoint
on p. 239. (Of course, an object cannot be a non-static data membemof tkass; the object would blo

up to infinite size.) Letting an object be a static data member of its own class ensures that at least one

object of that class will be constructebh our case, no additional ones should be constructed. This is the
“ singleton” design pattern in Gamma pp. 127-134.

class motion {

public:
virtual void decide(int *dx, int *dy) const = 0O;
virtual void punish() const = 0O;

}s

class immobile: public motion {
void decide(int *dx, int *dy) const {*dx = *dy = 0;}

ety hesenea ©2014 Mark Meretzky

572 Inheritance Chapter 5
9 public:
10 static const immobile imm;
11}
12

13 class brownian: public motion {

14 void decide(int *dx, int *dy) const {
15 *dx = rand()% 3-1;

16 *dy =rand()%3-1;

17 }

18 public:

19 static const brownian brown;
20}

21

22 class manual: public motion {

23 void decide(int *dx, int *dy) const;
24 void punish() const;

25 public:

26 static const manual man;

27}

28

29 class visionary: public motion {

30 void decide(int *dx, int *dy) const;
31 public:

32 static const visionary vis;

33}

All four rank objects are static data members of ctask .

34 class rank {

35 const inth;

36 const intb;

37 public:

38 rank(int initial_h, int initial_b): h(initial_h), b(initial_b) {}
39

40 static const rank inert(INT_MIN, INT_MAX);
41 static constrank victim(INT_MIN, INT_MIN);
42 static const rank predator(INT_MAX, INT_MAX);
43 static constrank halogen(INT_MAX, INT_MIN);
44

45 int hungry() const {return h;}

46 int bitter() const {return b;}

47},

These arrows represent pointet¥e saw a p. 53 that a normal pointer (lines 52-53) can point to a
static data member (lines 80-84).

e hesenea ©2014 Mark Meretzky

Section 5.10

decide

punish

manual::man

decide

punish

motion objects

48 class wabbit {

49 game *constg;

50 unsigned X, Y;

51 char ¢; /Ino
52

53 const rank *r;

54 const motion *m;

55 public:

56 bool move();

57 /letc.

58}

59

60 bool wabbit::move()

61 {

62 int dx;

63 int dy;

64 m->decide(&dx, &dy);
65

66 /letc.

67 if (there is another wabbit) {

68 const
69 const
70

71 /letc.
72

73 if

74 m->punish();
75

76 /letc.
77

78 //One

79 if (rand() % 100 == 0) {

printed 4/8/14
8:51:31 AM

\ c bitter
brownian::brown U m rank::victim

bool |_ate_him =
bool he_ate_me = other->r->hungry() >

(neither ate the other) {

An Alternati ve to Inheritance 573

game object
term
master

hungry
bitter

g rank::predator

X

y hungry

r H

wabbit object rank objects

longer const

/luninitialized variables

this->r->hungry() > other->r->bitter();

this->r->bitter();

percent of the time, change the species of the object.

hesenea ©2014 Mark Meretzky

574 Inheritance Chapter 5

80 r = either &rank::inert or &rank::victim or &rank::predator

81 or &rank::halogen;

82

83 m = either &mmobile::imm or &brownian::brown or &manual::man
84 or &visionary::vis;

85

86 ¢ = t he character for the species we just turned into;

87 }

88}

5.11 Claswi si onary

Class visionary

Classvisionary will be another motion class, likemmobile , brownian , andmanual . A
visionary s range of vision xtends three units invery direction. The following diagram has a hga
line around the squares within visual range ofstonary in the center locationEach square is labeled
with the distance from its center to the center of the square that holdsitimary

N2 | 5 | 25| V17| 4 | V17|25 | 5 | 42

5 |32 | Vi3 |V10}-3-}V10| Vi3 |32 | 5

s | viz| 2| vs | 2 | v5 | 2v2| Vi3 | 2vs

viz|vie| vs | v2 | 1 | v2 | v5 | vio | vi7

viz|vio| vs5 | v2 | 1 | V2 | ¥v5 | Y10 | Vi7

N5 |vis|v2 | V5 | 2 | v5 | 2v2|vas| 2vs

~ -

5 |32 | V13| V10{-3-fV10| V13|32 | 5

HN2| 5 | 25| V17| 4 | V17|25 | 5 | 42

With each mue, avisionary animal will tale one step way from an enemy within visual range.
If there are seeral enemies, it will arbitrarily pick one. If there are no enemies close enough to see, the
visionary will have the luxury of taking one stepwards food. If there is no food eithehe
visionary will be lethargic and not me.

To test classvisionary , we @an derve visionaryvictim , known as adeer , and trap it
between a pair ammobilepredator 's, known asblack_hole ’'s. A deer is alowercasd, a
black_hole is an uppercasB; the latter are subscripted for ytour gemience in the following dia-
grams.

If two or more enemies are in visual range, @udd be hard to predict what our simpisionary
will do. It will arbitrarily pick one enemy and recoil from it, ignoring the oth&milarly, if there are no
enemies and tavor more pieces of food, owisionary will arbitrarily pick one and head ward it,
ignoring the other To make the following deer 's behave predictably we haveonly oneblack hole in
visual range of theeer at ary given time.

ety hesenea ©2014 Mark Meretzky

Section 5.11 Classvi si onary 575

The deer in our first two examples are dven back and forth between twblack_hole ’s. It
bounces to and from the location marked with. aA smartervisionary would escape at right angles
instead of vibrating foreer; an e/en amarter one would ke that ablack_hole isimmobile and can
be approached safely as long as we dwonich it.

By
B d|1 B d
0 1 1
B,
Thesedeer s will be driven around and around the numbered paths:
B
1
B,
B,
1|d B !
B 213 i 2 d
2 3
By
B
3
B,

We @n use a carrot as well as a stick. Our carrot will bienamobilevictim , known as a
sitting_duck with a lovercases. The nat two examples assume a genetically-engineededr
whose hunger has been increased so that it canséting duck , but whose bitterness is unchanged
so it can still be eaten byldack hole . Implement this by giving classeer the following public

inline member function,w@rriding thehungry function thatdeer inherits fromvictim

i nt hungry() const {return INT_MIN + 1;} //hungry enough to eat a victim

If an enemy and a meal are within visual range at the same timgsitreary will flee from the
former and ignore the lattefFor example, thaeleer at the starting position in the left diagram will flee

from B0 and ignores ..

et hesenea ©2014 Mark Meretzky

[

576 Inheritance Chapter 5

B0 So Bl
B,
B, d S, 2
1 5 S, 413 |1
2 4 517 1|d S,
So 3 B3 6
By
82 B3 S,

A smart player would hae thewolf corner thedeer in a corner of the screen. Couldaien (a
visionarypredator) chase aleer across the board? Couldlaer lure analien into a
black_hole ?

¥ Homework 5.11a:
Version 3.3 of the Rabbit Game: a friend of classabbit

It would seem natural to write the visual logicvigionary::decide . But we cant. Thecode
will need to use the animabsandy data members, and these aregteé members of classabbit .

One possibility would be to expose the valuex @indy to the dened dasses. W an do this by
making them public or protected, or giving claggbbit the following public or protected member func-
tions.

unsigned get_x() const {return x;}
unsigned get_y() const {return y;}

But exposing the values is a dangerous narcotic. If aadetiass becomes addicted to x, y codrdinates, it
will be hard to change the base class to polar codrdinates.

Another possibility would be to write all the visionary logic in clasbbit . (Code follows the
data members, p. 467.) But the logic dotebalong there. It belongs in clagsionary

What would be themallestpiece of code we could add to clagzbbit that would allow
visionary::decide to do what it has to do? All we need is thiference friend of class
wabbit in line 9. It will return the offset that euld mose s from the location ofvabbitwl to the
location ofwabbitw2 . For example, ifwl was at (L0, 10) andv2 was to he upper right oW1 at (13, 6),
the return value would be (3, —4): three units to the right and four units up.

difference needs to use the pate memberx andy of classwabbit , so it must be a member
function or a friend of that clasd.made it a friend because it dealshandedly with tw wabbit ’s.
Had it dealt with only one, or had one of them played a starring roleyltvhare made it a member func-
tion.

It doesnt matter whether a friend function is declared in the publiva®] or protected section of its
class. Buils documentation, please declare it with the protected membeablbit since
difference is intended for use by a deed dass.

difference begins by verifying that the tavanimals belong to the samame. Itmakes no sense
to measure the distance and direction between animals in different games.

The subtractions in lines 15 and 16 must be able to yield y@siggdive, or zero results.To get
these signed results, both operands must be sigheel.data membens andy are unsigned, so we cast
them toint before the subtraction.

ey hesenea ©2014 Mark Meretzky

Section 5.11 Classvi si onary 577

The cast would yield “implementation definedésults ifx or y were greater than the maximum
integer valudNT_MAX But a check for this would ke keen grim professionalism.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/visionary/wabbit.C

/ [Excerpt from wabbit.C.

1
2
3/*

4 Return the offset that would move us from the location of w1l to the

5 | ocation of w2. For example, if wl was at (10, 10) and w2 was at (13, 6),
6 t he return value would be (3, -4), i.e., 3 units to the right and 4 units up.

7 */

8

9 void difference(const wabbit *w1, const wabbit *w2, int *dx, int *dy)

10 {

11 if (wl->g!=w2->g){

12 cerr and exit with EXIT_FAILURE;

13 }

14

15 *dx = static_cast<int>(w2->X) - static_cast<int>(w1->Xx);
16 *dy = ditto: the vertical offset between the two wabbit’s.
17}

I'm sorry thatdifference |, like wabbit::decide , returns its pair of answers through a pair of
read/write pointer guments. Se#he two workarounds, neither of them sadisfory on p. 85. Ewentu-
ally, howeve, difference will have a ngle return value, called difference_type , Which is wty
this function is namedifference
A

¥ Homework 5.11b:
Version 3.4 of the Rabbit Game: three functions that a& neither members nor friends

visionary::decide will need three more functions that deal with distances and directions:

signum , step , anddist . They do ot need to be member functions or friends of elass. Sincehey
will be called only by each other and Wigionary::decide , define them in the filgisionary.C

and let them be static to ensure thatytban be called from no other file. Do not declare them i an
header file. Here are the first lines of their definitions:

18 //Excerpts from visionary.C.

19

20 /*

21 Return 1 if the argument is positive, -1 if the argument is negative, 0O if 0.

22%

23 static int signum(int i)

244

25

26 /*

27 Return the offset that would take one step from the location of w1 to the

28 location of w2. For example, if wl was at (10, 10) and w2 was at (13, 6), the
29 return value would be (1, -1), i.e., one step diagonally to the upper right.

30 */

31 static void step(const wabbit *w1, const wabbit *w2, int *dx, int *dy)

32{

33

34 /*

35 Return the distance between w1l and w2. For example, if wl was at (10, 10) and

ety hesenea ©2014 Mark Meretzky

578 Inheritance Chapter 5

36 w2 was at (13, 6), the return value would be 5 == sqrt(3*3 + 4*4).
37 *

38 static double dist(const wabbit *w1, const wabbit *w?2)

39{

signum means ‘sign” in Latin. If the function is small enough, let it be inlink that case, you
won'’t need the kyword static : an inline non-member function is static by default.

step will begin by callingdifference . It will then callsignum twice, to reduce the horizontal
and vertical components of the offset to integers in the range -1 to 1veclusi

Thedist function is so named tosaid conflict and confusion with théistance function in the
C++ Standard Library Like step , dist will begin by calling difference . It will then use the
Pythagorean theoregfix2 + y2 to discwer the length of the é$et. Themultiplication and addition should
beint , not double , becausent arithmetic is &ster Square each number by multiplying it by itself;
this is faster than calling th@ow function in the C++ Standard Library.

The C Standard Library has only one square root function:
40 /* Excerpt from <math.h> */

41
42 double sqgrt(double);

The C++ Standard Library has three, not counting the one that tak&s @y

43 [/Excerpt from <cmath>

44

45 float sqrt(float);

46 double sqgrt(double);

47 long double sqrt(long double);

You will therefore hae b say whichsgrt function you vant. Dothis by casting the sux? + y? to

double before passing it teqrt . (Write a C++static_cast , hot a C(double) cast.)
visionary.C will include cmath and sayusingnamespacestd,; for thesqgrt function.
A

v Homework 5.11c:
Version 3.5 of the Rabbit Game: allav the derived classes to loop through the master list

visionary::decide will have © loop through the master list, searching for enemies and food.

But this is currently impossible, since the master list is\aterdata member of another cla3a gve
visionary::decide read-only access to the master list, add thevidtig three protected members to
classwabbit . The name of the data typenst_iterator in lines 3-4 is created by thgpedef in
line 2.

1 / lused by visionary::decide

2 t ypedef game::master_t::const_iterator const_iterator;

3 const_iterator begin() const {return g->master.begin();}

4 const_iterator end() const {return g->master.end();}
A

v Homework 5.11d:
Version 3.6 of the Rabbit Game: classisionary : step away from enemies and towards food

Derive dass visionary from class wabbit , overriding wabbit::decide . Give class
visionary no member functions except the constructordexadde . visionary will not override
wabbit::hungry and wabbit::bitter , and so it will remain an abstract clasgsionary will
not override wabbit::punish either.

Since @ery visionary animal has the same radius of vision, and since the radius is used only in
one function, we can makit a local static variable in line 5. But if the radius of each animal were

et hesenea ©2014 Mark Meretzky

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Section 5.11 Classvi si onary 579

different, it would hee © be a n-static data member of clagsionary

Theconst_iterator , begin , andend in line 9 are the three wemembers of claswabbit in
the previous Homeork. They allow visionary::decide to loop through the master list without
knowing that its name imaster or even that it is alist

No animal should be afraid of itself, and no animal should contemplate eatimgitkesh. Accord-
ingly, line 12 verifies that thether animal is not the same onethgs one. D verify that two objects
are not the same object, we compare their addre®sddhis andother are pointers to diérent data
types:this is a pointer to aisionary , while other is merely a pointer to a basi@abbit . To avoid
ary warning about comparing pointes to different types, wetbést to the greatest common denomina-
tor. Since we're inside aonst member function, we must cakis to a read-only pointer.

Thethis-> in line 14 is merely for rhetorical symmetry; it balancesdtmer-> in the same line.

To get thethis->bitter() to compile bitter could be a protected or public member of class
wabbit . But to get theother->hungry() to compile,hungry must be gublic member of class
wabbit . In a nember function of classisionary , protected isrt’ good enough when thether

object is not a visionary; see p. 495. By the time yoetdso coded the opposite relation, in lines 27-30,
both functions will hae © be public members of classabbit . Update the comments mabbit.h to
explain whyhungry andbitter ~ must nev be public.

In the rank classes deed from wabbit (inert , victim , etc.), thehungry andbitter func-
tions can remain préte.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/visionary/visionary.C

/ [Excerpt from visionary.C.

void visionary::decide(int *dx, int *dy) const

{
static const unsigned radius = 3; /lof vision
/ IMove one step away from a wabbit that could eat me.
f or (const_iterator it = begin(); it I= end(); ++it) {
const wabbit *const other = *it;
if (other != static_cast<const wabbit *>(this) &&
dist(this, other) <= radius &&
other->hungry() > t his->bitter()) {
step(other, this, dx, dy);
return;
}
}
/*
Arrive here if there were no enemies within the visual radius.
Now see if there’s any food | could eat within the visual radius.
If so, take one step towards it.
*/
for (const_iterator it =
do almost the same loop, ending with a step in the opposite
direction: step(this, other, ...
}

ety hesenea ©2014 Mark Meretzky

580 Inheritance Chapter 5

32 /[Arrive here if there were neither enemies nor food nearby:
33 /Nlethargic (or random, if you wish) in the absence of stimulation.
34 *dx = *dy=0;
35}
A

5.12 Prwvate Inheritance and its Variants

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/cricket/cricket.h

1 #ifndef CRICKETH
2 #define CRICKETH
3
4 class cricket {
5 unsigned chirps; /lper 15 seconds
6 public:
7 cricket(unsigned initial_chirps): chirps(initial_chirps) {}
8 double fahrenheit() const {return chirps + 39;}
9},
10 #endif
A metric_cricket can do gerything that acricket can do, plus more.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/cricket/metric_cricket.h

#ifndef METRIC_CRICKETH
#define METRIC_CRICKETH
#include "cricket.h"

1
2
3
4
5 class metric_cricket: public cricket {
6 public:

7 metric_cricket(unsigned initial_chirps): cricket(initial_chirps) {}
8 double celsius() const {return (fahrenheit() - 32) * 5/ 9;}

9},

0 #endif

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/cricket/main2.C

#include <iostream>
#include <cstdlib>
#include "metric_cricket.h"
using namespace std;

i nt main()
{
metric_cricket mc(33);
cout << "celsius == " << mc.celsius() << "\n";
10 cout << "fahrenheit == " << mc.fahrenheit() << "\n";

12 cricket *p = &mc;
13 cout << "fahrenheit ==" << p->fahrenheit() << "\n";

15 cricket& r = mc;

ety hesenea ©2014 Mark Meretzky

16
17
18
19}

Section 5.12 Private Inheritance and its \ariants 581

cout << "fahrenheit ==" << r.fahrenheit() << "\n";

return EXIT_SUCCESS;

celsius == 22.2222
fahrenheit == 72
fahrenheit == 72
fahrenheit == 72

More preciselythe keyword public in line 5 ofmetric_cricket.h does tvo things:

(1) It lets the public members oficket become public members afetric_cricket . For
example, thas why line 10 ofmain2.C can use théahrenheit member oinc.

(2) It lets a pointer to aricket point to ametric_cricket (line 12 ofmain2.C) and lets a
reference to aricket refer to ametric_cricket (line 15 ofmain2.C) without needing a castA
pointer to a base class caway}s point to an object of a (publicly) deed dass.

But if we changed theublic to private in line 5 of metric_cricket.h , the abee wo
things would change:

(1) The public members ofricket would nov be private members ofmetric_cricket
Thus thefahrenheit member of classricket could no longer be called for the objaat in line 10
of main2.C , dthough it still could be called by tleelsius member function in line 8 of
metric_cricket.h

(2) A pointer to acricket could no longer point to metric_cricket (line 12 ofmain2.C),
and a reference toa@icket could no longer refer to metric_cricket (line 15 ofmain2.C). It
would be a secret that clasgetric_cricket is derived from clas<ricket

Interface inheritance vs. implementation inheritance

A classs public members are called itser interface With this definition we can state theawea-
sons we build a deréd dass from a base class:

(1) We want to endw the derved dass with the same user ini@eé as the base class, plus mdre.
this case, we ugeublic inheritance, also callddterface inheritanceor type inheritance

(2) We want to endw the derved dass with all of the functionality of the base class (e.g., the ability
to compute the temperature from the chirping speed), but we want to force the user to use aferatly dif
interface. Inthis case, we usgrivate inheritance, also callemnplementation inheritancgNote that
public dervation actually gies us mplementation inheritance as well as interface inheritance.)

Protected inheritance

There is als@rotected inheritancein which the public members of the base class become protected
members of the dered dass. Theollowing table shows he accessible a member of a base classila/
be in each kind of deréd dass. er example, in public inheritance, the public members of the base class
become public members of the dled dass. Andin every kind of inheritance, the prgte members of the
base class are mentionable only by the base class.

member of base class is
public protected private
base class ipublic public protected unmentionable
base class iprotected protected protected unmentionable
base class iprivate private private unmentionable

ety hesenea ©2014 Mark Meretzky

582 Inheritance Chapter 5

v Homework 5.12a:
Version 3.7 of the Rabbit Game: prvate inheritance

There is no reason to degi each grandchild class publicly from its dwarents. Dexie them pri-
vately by changing the twpublic keywords toprivate in each grandchild class.

We would also lile to cerive the motion and rank classesvately, eg., derving brownian and
victim privately from classvabbit . But if we did this, no other class would km¢hatbrownian and
victim are dewed from wabbit . In particular a gandchild class such aabbit would be unware
of its avn wabbit ancestryand the constructor farabbit would be unable to makthe direct call the
constructor for its grandparewabbit .

To permit the constructor for a grandchild to call the constructowadsbit , we nmust give esery
grandchild at least one parent that is \eketipublicly or protectedly from claswabbit . We abitrarily
decide to devie the motion classesnimobile , brownian , manual , visionary) protectedly from
wabbit , and the rank classesnért , victim , predator , halogen) privately from wabbit .
(Alternatively, we ould hare cerived the motion classes petely and the rank classes protectedbis
long as the grandchild kas that at least one parent is #edi from wabbit , the grandchild will be able
to mentionwabbit .

Now that the inheritance is no longer public, we are guaranteed that the member functions of class
game (other tharget andcount , which are friends of classabbit) will never be &le to male drect
calls todecide and the other non-public member functionsvabbit .
A

Partial inheritance

A derived dass can inherit all of the implementation but only part of the exterdf a base clas3o
do this, use pvite inheritance and thesing declaation in line 13. By writing the declaration in the pub-
lic section of classlerived , we havemadebase::f a public member oflerived . base::g is also
present in clasderived , but only as a pviate member.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/cricket/using.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 class base {
6 public:
7 void f() const {cout << "base::f\n";}
8 void g() const {cout << "base::g\n";}
9},
10
11 class derived: private base {
12 public:
13 using base:f; /lusing declaration
14}
15
16 int main()
17
18 derived d;
19 d.f(); /Iwill compile
20 /1d.g(); /lwon’t compile
21 return EXIT_SUCCESS;
22}

ety hesenea ©2014 Mark Meretzky

Section 5.12 Private Inheritance and its \ariants 583

base::f

A using declaration is also used in a “namespace”; see p. 1023.

ety hesenea ©2014 Mark Meretzky

