Operator Overloading

3.1 Introduction

Not just syntactic sugar

Data members should be yatie. Theinternals of an object should be accessible only through its
public member functions and friends. Our paradigm examples are in column 1.

But column 2 offers a more familiar notation for these interactions. The operators that we routinely
apply to built-in types such ast andchar would also be applied to usdefined types such as classes
and enumerations. Extending an operator to accept operands ofdefiised type is calledperator over-
loading.

When we write the expressions in column 2, the computer wilMeedsaf we had written the corre-
sponding ones in column 3. Thesepressions call member functions and friends with the admittedly
bizarre namesperator++ , operator+= , etc. Theoperators in column 2 arev@loaded by defining
theoperator functions in column 3.

For the present, we adopt the fiction that operat@rioading is intended to provide aonvenient
notation for all data types, including classes and enumerations. Its real purpeaey,hie to povide the
same notation for all data typesCorvenience has nothing to do with it. And the purpose of a uniform
notation is to permit us to plug these data types intemplate’. Take a peek at p. 634 and bear in mind
that not until then will the real purpose of operatermading be reealed.

Coming back to earth, column 2 alsowegi us a nore flexible notation for input and outpufThe
print in line 15 of column 1 is hardwired to outputdout , while the<< in column 2 will let us specify
ary destinationcout , cerr , clog , an aitput file, etc.

1 /¥ c olumnl? /* column 2 */ [* column 3 */
2 date d; date d; date d;
3
4 d.next(); ++d; d.operator++();
5
6 d.next(280); d +=280; d.operator+=(280);
7
8 date e =d; date e =d + 10; date e = operator+(d, 10);
9 e.next(10);

10

11 int n = dist(d, e); intn=d - e; int n = operator-(d, e);

12

13if (equals(d, e)){ if(d==¢e){ if (operator==(d, e)) {

14

15 d.print(); cout << d; operator<<(cout, d);

Fas g A hesenea ©2014 Mark Meretzky

272 Operator Overloading Chapter 3

16

17 d.next();

18 d.print();

19

20 d.print();

21 cout << "\n";
22

23 d.next();

24 d.print();

25 cout << "\n";

cout << ++d; operator<<(cout, d.operator++());

cout << d <<"\n"; operator<<(

operator<<(cout, d), "\n");
cout << ++d << "\n"; operator<<(
operator<<(cout,
d.operator++()), "\n");

What we can’t do with operator overloading

(1) The following six operators canvee be oserloaded. Br example,sizeof
number of bytes in its operand no matter what its data typk: mever calls anoperator
does something else.

always vyields the
function that

sizeof x
typeid(x)
b ? x:
c:m
o.m
o.*pm

y

(2) We aan define aroperator function for an operator that has at least one operand of a user
defined data type: a class or an enumeratiut. we cart define anoperator function for an operator
whose operands are all of the built-in data types. The expressibr<d might perform output, but
10 << 2 will always perform left shift.

(3) We cannot change an operatpecedence, assochdty, or aity (number of operands, pp. 2-3).
We @annot change whether a unary operator is prdfor postfixed to its operandror example, we can
malke it possible to apply the getion operator (minus sign) to an object, but it must remain prefix.

1 date d;

2

3 / IChange AD to BC.

4 d =-d; /lcan make prefix compile: d = d.operator-();
5 d =d-; /but can’'t make postfix compile

(4) We cannot create me operators. Br example, we cannot define aperator** function to

implement an exponentiation operator.

X = base ** power; /lwon’t compile

A monolithic example

read the value change the value construct and return
of existing object(s) of existing object(s) a new dject
operator== operator+= operator+(obj, int)
binary || operator-(const obj&, const obj&) operator>> operator-(obj, int)
operator<<
unary operator!_ operator++ (prefi>§) operator- _
operator int operator++ (postfix) | operator++ (postfix)

Let's overload the familiar operators to accept operands of cass . For this
plest implementation of the class is the one with one non-static data mérabeday

purpose, the sim-
in line 7 of

date.h on p. 273.The two constructors in lines 26 and 27 call the common subroutine in line to perform

printed 4/8/14
8:43:46 AM

All rights
reserved

©2014 Mark Meretzky

Section 3.1 Intr oduction 273

error checking and install a value into the data menibeenext member function has been renamed
operator++ in line 47. It will be replaced by lines 48 and 7Bhe superseded lines are commented out
but remain in the source code for pedagogical reas@fesddn’t bother with aroperator-- to replace
prev .

Since maw of the operator functions call each othewe pesent them in a single monolithic
example. Inorder of increasing irasiveness, we will see functions thatagnine an existing object; ones
that change the value of an existing object; and ones that construcbhjeet. Thepostfix
operator++ is a special case: it will construct axnebjectandchange

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/overload/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std,;
5
6 class date {
7 i nt day; /Inumber of days before or after Jan 1, 0 AD
8 static const int length[];
9 static const int prefl;
10 public:
11 enum month_type { /lindices into the length array
12 january =1,
13 february,
14 march,
15 april,
16 may,
17 june,
18 july,
19 august,
20 september,
21 october,
22 november,
23 december
24 3
25
26 date(int month, int d, int year) {install(month, d, year);}
27 date(); /initialize to the current date
28 bool install(iint month, int d, int year);
29
30 int julian() const;
31 void print() const; /loutput the date to cout
32
33/ bool operator==(const date& another) const {return day == another.day;}
34 friend bool operator==(const date& d1, const date& d2){return d1.day==d2.day;}
35 friend int operator- (const date& d1, const date& d2){return d1.day-d2.day;}
36

37/l friend bool operator!=(const date& d1, const date& d2){return d1.day!=d2.day;}
38// friend bool operator!=(const date& d1, const date& d2) {return {(d1 == d2);}

39
40

date& operator+=(int count) {day += count; return *this;}

41/ friend date& operator+=(date& d, int count) {d.day += count; return d;}

42
43

date& operator-=(int count) {day -= count; return *this;}

s A hesenea ©2014 Mark Meretzky

274 Operator Overloading Chapter 3
44 /] const date operator+(int count) const {date d=*this; d.day+=count; return d;}
45 // const date operator+(int count) const {date d = *this; return d += count;}
46
47 /| date& operator++() {++day; return *this;} [prefix
48 /| date& operator++() {return *this += 1;} [prefix
49
50/ const date operator++(int) { /Ipostfix
51/ const date old = *this;
521/ ++day;
531/ return old,;
541 '}
55
56 /I const date operator++(int) { /Ipostfix
571 const date old = *this;
581/ ++*this; /[(*this).operator++();
59 // return old,;
60/ }
61
62 const date operator-() {date d = *this; d.day=-d.day; return d;} //unary
63
64 operator int() const {return julian();}
65 operator long() const {return day;}
66 operator bool() const {return abs(day) < 4000 * 365;}
67
68 friend ostream& operator<<(ostreamé& ost, const date& d);
69 friend istreamé& operator>>(istreamé& ost, date& d);
70}
71

72 inline bool operator!=(const date& d1, const date& d2) {return !(d1 == d2);}
73 inline bool operator!(const date& d) {return Istatic_cast<bool>(d);}//call |. 64

74

75 inline const date operator+(date d, int count) {return d += count;}
76 inline const date operator+(int count, date d) {return d += count;}
77 inline const date operator-(date d, int count) {return d -= count;}

78

79 inline date& operator++(date& d) {return d += 1;} [Iprefix
80

81 inline const date operator++(date& d, int) [Ipostfix
82 {

83 const date old = d;

84 ++d; //d.operator++();

85 return old;

86}

87

88 inline date::month_type& operator++(date::month_type& m) [prefix
89 {

20 if (m == date::december) {

91 m = date:january;

92 } else{

93 m = static_cast<date::month_type>(m + 1);

94 }

95 return m;

96}

97

as A hesenea ©2014 Mark Meretzky

Section 3.1 Intr oduction 275

98 inline const date::month_type operator++(date::month_type& m, int) //postfix

99{
100 const date::month_type old = m;
101 ++m; /loperator++(m);
102 return old;
103}
104 #endif

The abee lines 90-95 can be written as a single expression with only one assignment and one
return . The?: executes before the because of their equal precedence and right-to-left assdgiati
This is much harder to read.

105 return m = m == dite::december ? date::january :
106 static_cast<date::month_type>(m + 1);

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/overload/date.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 #include "date.h"
5 using namespace std;
6
7 constint date::length[] = {
8 0, / /dummy element to give january subscript 1
9 31, [/ljanuary
10 28, /lfebruary
11 31, /Imarch
12 30, [lapril
13 31, /Imay
14 30, /ljune
15 31, Ijuly
16 31, /laugust
17 30, /Iseptember
18 31, /loctober
19 30, /Inovember
20 31 /ldecember
21}
22
23 const int date::pre[] ={
24 0, /[dummy element to give january subscript 1
25 0, /ljanuary
26 pre[1]+ length[1], /lfebruary
27 pre[2]+ length[2], //march
28 pre[3]+ length[3], Iapril
29 pre[4] + length[4], /Imay
30 pre[5] + length[5], /ljune
31 pre[6] + length[6], july
32 pre[7]+ length[7], /laugust
33 pre[8]+ length[8], /Iseptember
34 pre[9]+ length[9], /loctober
35 pre[10] + | ength[10], //november
36 pre[11] + | ength[11] //december
37}
38

as e A hesenea ©2014 Mark Meretzky

276 Operator Overloading

39 date::date() /lInitialize to the current date.

40 {

41 const time_tt=time(0);

42 if (t==static_cast<time_t>(-1)) {

43 cerr << "time failed\n";

44 exit(EXIT_FAILURE);

45 }

46 const tm *const p = localtime(&t);

a7 install(p->tm_mon + 1, p ->tm_mday, p->tm_year + 1900);
48}

49

50 bool date::install(int month, int d, int year)

51 {

52 if (month < january || month > december) {
53 cerr << "bad month "

54 << month << "/" << d << """ << year << "\n";
55 return false;

56 }

57

58 if (d<1]||d>length[month]) {

59 cerr << "bad day "

60 << month << "/" << d << """ << year << "\n";
61 return false;

62 }

63

64 day = 365 *year + pre[month] +d - 1;

65 return true;

66 }

67

68 int date::julian() const

69 {

70 int j = d ay% 365;

71

72 if (<0){

73 j +=365;

74 }

75

76 return j+1;

77}

78

79 void date::print() const

80 {

81 div_t divide = div(day, 365);

82 if (divide.rem <0){

83 divide.rem += 365;

84 --divide.quot;

85 }

86

87 int d = divide.rem + 1; //Julian date (1 to 365)

88 int month; /luninitialized variable

89

20 for (month = january; d > length[month]; ++month) {
91 d -=length[month];

92 }

printed 4/8/14
8:43:46 AM

All rights
reserved

Chapter 3

©2014 Mark Meretzky

Section 3.1 Intr oduction 277

93
94 cout << month <<"/" << d <<"/" << divide.quot;
95}
96
97 ostreamé& operator<<(ostream& ost, const date& d)
98 {
99 div_t divide = div(d.day, 365);
100 if (divide.rem < 0) {
101 divide.rem += 365;
102 --divide.quot;
103 }
104
105 int day =divideorem + 1; //Julian date (1 to 365)
106 int month; /luninitialized variable
107
108 for (month = date::january; day > date::length[month]; ++month) {
109 day -=date::length[month];
110 }
111
112 return ost << month << "/" << day << "/" << divide.quot;
113}
114
115 istreamé& operator>>(istream& ist, date& d)
116 {
117 int month;
118 if ((ist>>month)){ //if (ist.operator>>(month).operator!()) {
119 return ist;
120 }
121
122 char c¢;
123 if (ist>>c)){
124 return ist;
125 }
126 if (c!'="1){
127 ist.setstate(ios_base::failbit);
128 return ist;
129 }
130
131 int day;
132 if (st >> day)) {
133 return ist;
134 }
135
136 if (ist>>c)){
137 return ist;
138 }
139 if (c!'="1){
140 ist.setstate(ios_base::failbit);
141 return ist;
142 }
143
144 int year;
145 if (st >> year)) {
146 return ist;

Fasae A hesenea ©2014 Mark Meretzky

278 Operator Overloading Chapter 3

147 }

148

149 if (!d.install(month, day, year)) {
150 ist.setstate(ios_base::failbit);
151 }

152

153 return ist;

154}

3.2 Anoper at or that examines an object

Apply the == operator to two dat e’s

The first operator that we will apply todate object will be==. We chose it because it does not
create ay new dject, or @en change the value of an existing object. It merely examines the value of
existing objects.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/overload/equals.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std,;
5
6 i nt main()
7
8 date di; /lInitialize to today’s date.
9 date d2;
10
11 if (d1==4d2){
12 cout << "They're the same date.\n";
13 } else{
14 cout << "Midnight occurred between lines 8 and 9.\n";
15 }
16
17 return EXIT_SUCCESS;
18}

They're the same date.

To usedate objects as the operands of an, we nust define a function namexperator==
One advantage of operatovedoading is that it ders standard names for the most common functions.
Instead okequal ,is_equal ,ortheequals we had on p. 211, we can simply name our function

operator==

The return value of theoperator== will be the value of the xpression dl ==d2
operator== will therefore returrbool .

Since ouroperator== will need access to the pate members of clagfate , it will have © be a

member function or a friend of that clas&ny function that accesses thevate members of anclass
would hare © be a nember function or a friend, and tbhperator functions obg the same rules.

Deciding between a member function or a friend (or neither) is the first big decisioneve hake
when defining amperator function. Fortunately the rules are the same as for a normal functiea.
pedagogical purposes we will try it botlays. Thealternatves ae equally correct andfafient; our choice
can be based purely on aesthetics.

asae A hesenea ©2014 Mark Meretzky

Section 3.2 An oper at or that examines an object 279

operator== as a member function

In the expressiordl == d2 in the abee line 11,d1 andd2 are called théeft andright opelands
of the==. If we define anoperator function for a binary operator as a member function, the language
says that the function must be a member function of the left operand and mus& tereight operand as
its agument. Inthis case, line 11 would bekass if we had written

if (dl.operator==(d2)) {
Compare p. 282.

The definition of thioperator== is in line 33 ofdate.h on p. 273.To ensure that the function
cannot change or damadé, we made it aconst member function.To avoid copying d2, we passed it
by reference.To ensure that the function cannot change or danad2geve passed it as a read-only refer
ence.

But the function definition in line 33 is commented out because we can do it Géteeproblem is
that the notation is lopsided. The function deals with dhjects, but only one of them has a name.

The advantage of a member function is that it can refer to the members of an object by means of the
simplest possible notation: no notation at &t this simplicity becomes a liability when weviatwo
objects. Hav can we provide names for both?

operator== as a friend

We saw the solution back on pp. 204-206. Instead of the asymmetrical member function in line 33
of date.h , we @an define the perfectly balanced friend in line 8w thatoperator== is a free func-
tion (i.e., not a member function, p. 113), thevabime 11 will nav behave & if we had written

if (operator==(d1, d2)) {

This change makes the function body more symmetrioalddes not increase its speed. Deeprdo
in the machine, bothersions tak the same t@ arguments. Onlythe surface notation is different: one
explicit and one implicit argument for the member functiorp plicit arguments for the friend.

But notation is importantThe friend definition acts as documentation, announcing that we will be
dealing @enhandedly with more than one object. The member function in line 33 is for demo purposes
only, and is commented out tvaid a name collision with 34.

We nmotivated our decision carefully because it will almostais go the same ay. Operator ver-
loading is mostly uniform boilerplateoperator== will almost alvays be a friend, not a member func-
tion, for all classes(For a pathological example of @perator== that has to be a member function, see
line 302 ofterminal.h on p. 976.)

Apart from the strange name, the only special feature afpanator function is the shorthand
notation with which it can be called. Instead of thevabimes 19 or 20, we can write line 11.

An operator—- that occupies the same ecological niche

Theoperator- in line 35 ofdate.h is a friend for the same reason asdperator== in 34.
It supersedes thdist function on p. 211.We @n nav see wly the return value oflist was positive
when its left argument was a date that was later than its right argument: we wantee ib co@lpatible
with theoperator- that would replace it.

There is anotheoperator- in line 77 ofdate.h . As wsual, we can he wo functions with the
same name as long as their arguments afereiift. Thisfunction is more complicated because it con-
structs a n& object; we will talk about it on p. 286.

An operator== that doesn’t necessarily compa dl the data members

Why do we haveto defineoperator== at all? Why isnt it just built into the language that dw
objects are equal if their corresponding data members are edua|often we want to prade our avn
definition for equality For example, tw objects in an engineering application might be considered equal if

s A hesenea ©2014 Mark Meretzky

280 OperatorOverloading Chapter 3

they are within 5% of each othefTwo dbjects in the federal budget might be considered equalyifatee
within a billion dollars of each other: “close enough fovgoment work”.

Consider thestack objects on pp. 149-154. When deciding ibtere equal, only the firat ele-
ments of theia data members should bragnined. Andf both stacks are empty thahould be consid-
ered equal without comparing thé& at all.

1 / /Excerpt from stack.C showing a friend of class stack.

©CoOo~NOOOUOTPA,WN

16}

ool operator==(const stack& s1, const stack& s2)

F“RU

if (slnl!=s2.n){
r eturn false;

}

f or(size_ti=0;i<sl.n;++i){
if (sl.afi] '=s2.a[i]) {
return false;

}
}

return true;

Apply the != operator to two date’s

Theoperatorl= in line 37 ofdate.h on p. 273 is a friend, l&kthe operator== " in line 34. It
has to be a member function or a friend, because it mentions\tbie pnembeday .

But a class should ke o unnecessary members or friends: we want to minimize the number of sus-
pects when the data members are found ve lree wrong alues. Accordinglyline 38 rewrites
operator!= so that it no longer mentionsyaprivate member Note that thé= in the{ body} of line 37
compares tw integers; it is built into the languagd&he == in the body of 38 compares dvdate 's; we
created it ourselves in line 34. The parentheses in 38 foree-tteeexecute before thé.

Line 38 is merely a&all-through, a function that calls another to do most of itsrkv Butthe extra
call and return do not exist at the machinglle The expression

! (d1==d2)
in 38 behaes as if we lad written
I operator==(d1, d2);

Thisoperator==is an inline function, so grall to it is replaced by a cgpf its body in line 34. The
I(d1==d2) therefore behaes as if we lad written a direct comparison of theotimtegers

| (d1.day == d2.day)
and the compiler will optimize this to
dl.day != d2.day

It is no sin for on@perator function to call another if the first is inline.

The advantage of line 38 is that it mentions nggbei member of clasdate . It therefore no longer
needs to be a member function or a friend of the dasts , and has been nved down to line 72. The
definitions in 37 and 38 were for pedagogical purposes only.

To keep theoperator!= inline it must be defined idate.h , not date.C . But naw that it is
defined outside the curly braces of the class definitioddite (lines 6 and 70), the function requires the
keywordinline . This makes it static in the C sense: visible only in this header file an@ tfikes that
include it. Were it not static, the function would be “multiply defineifi't he header file were included in

s A hesenea ©2014 Mark Meretzky

N -

Section 3.2 An oper at or that examines an object 281

more than oneC file of a program. See p. 99.

v Homework 3.2a: define the four other comparison operators
We witey >x incasex <y . . .
—Paul R. HalmosiNaive Set Theoygl14

We havedefinedoperator== andoperator!= for classdate . Define the four remaining com-
parison operators

operator<

operator>

operator<=

operator>=

Define operator< as a friend lik operator== . Define the other three idate.h as inline
functions that are neither members nor friengiserator>= should calloperator< just like
operator!= calls operator== . operator> should calloperator< , and operator<= should
call operator>= | by revesing the operands:

i nline bool operator>(const date& d1, const date2 d2) {return d2 < d1;}

The functionequals that you wrote on p. 211 should be renamedrator== . Simplify the
body of themin function in that home&ork to

{returnd2 <d1?d2:d1;}

Do not simplifymin to d1<d2xd1d2 ; this would change the behaviormifn whendl == d2

For advanced applications, aperator< must obg additional rules. See pp. 776-777.
A

v Homework 3.2b: define an operator< for a class date with three data members
Define aroperator< friend for a classlate with the three priate, non-static data members

i ntyear;
i nt month; //date::january to date::december inclusive
i nt day; /11 to date::length[month] inclusive

One vay to do this would be to compute eatdte s distance from January 1, AD. (In other
words, compute the value that would be in the one-data-meret&on of the object.)We could the com-
pare the resulting numbers to find out if the first date is earlier than the second.

Another way would be to encode each date as an integer value in a format 20th1231 or
2014365 . We oould then compare the twesulting numbersA third approach would be to pass the two
date 's to theoperator- that returns the distance betweem thate 's. If the resulting number is ge
ative, we could return true.

But all of the abwe grateggies do more work than is necessafigure out whichdate is earlier by
comparing the data members of theotdate 's. Your operator< must not call ay other function,

includingjulian . Demonstrate that yowperator< is correct by handing it in together with the out-
put of http://i5.nyu.edu/ Cmm64/book/src/less/main.C
A

v Homework 3.2c: define an operator! for a class date with three data members

Define anoperator! that would test if the three integer data members déte have a bgad
combination of values:

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"

s A hesenea ©2014 Mark Meretzky

282 Operator Overloading Chapter 3

cerr << "d is in an inconsistent state.\n"
return EXIT_FAILURE;

4 using namespace std,;
5
6 date d;
7
8 / IRecklessly sabotage the date; see p. 133
9 i nt *const p = reinterpret_cast<int *>(&d);
10 p[l] = 100;
11
12 if () { /lif (d.operator!()) {
13
14
15

}

operator! will be a publicconst member function returningool . Since the! operator is
unary and theperator! function is a member function, the language says that the function will be a
member of its operand. The afeoline 11 will behae & if we had written the comment alongsid€om-
pare p. 279.

operator!'= will return true if themonth data member is betweganuary anddecember
inclusive and theday data member is between 1 dedgth[month] inclusive; false otherwise Note
that anoperator! for the one-data-member cladate would aways returntrue , because anvalue
for the data member isdd.

cin andcout have anoperator! that serves the same purpose; see pp. 319-320.
A

3.3 Anoper at or that changes an object
More irvasive thanoperator== is operator+= , which changes the value of an object.

Always defineoperator+= beforeoperator+ . Cprogrammers find this surprising because the
consider+= more exotic tharr. But += merely changes thealue of an existing variable, while con-
structs a whole ne variable. or example, the-= in the followving line 4 deposits a sum into theisting
variablea, while the+ in line 5 constructs aanonymous tempary variable to hold the sum:

1 i nta=10;

2 i ntb=20;

3

4 a +=b; /[Change value of the existing variable a.
5 cout<<a+b<<"\n" //Construct a new variable.

6 cout << (a +=b) << "\n"; //The value of a += b is the new value of a.

Note also that thexpressiona += b does more than change the valueaofThe expession also
produces aalue of its own, which is the nevalue assigned ta. Line 4 neer uses the value d += b
for anything, but line 6 uses the valuesoft= b as an operand in a larger expression.

To agree with geryone’s expectations, ouoperator+= will have © behase the same ay. The
following line 13 shows that thexgressiortoday +=7 changes the value tdday . Lines 16, 19, and
20 shov that the value of thexpression is the mevalue oftoday . To make this happenpperator+=
will have o return the ne value of the object.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/overload/plusequals.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

abrhwNRE

s A hesenea ©2014 Mark Meretzky

Section 3.3 An oper at or that changes an object 283

6 void f(const date& d);

7
8 i nt main()
9 {
10 date today;
11 f(today);
12
13 today +=7; /Ichanges the value of today
14 f(today);
15
16 f(today +=7);
17
18 cout << "The julian date that is 7 days after ";
19 (today +=7).print();
20 cout <<"is" << (today += 7).julian() << ".\n";
21
22 f((today +=7) += 365);
23 return EXIT_SUCCESS;
24}
25
26 void f(const date& d)
27 {
28 d.print();
29 cout << "has julian date " << d.julian() <<".\n";
30}
Member function or friend?
operator+= needs to mention the pate membeday , so it will have 1o be a nember function or
friend of classlate . Ifitis a member function, the albe line 13 will behae &s if we had written
1 t oday.operator+=(7);
If it is a free function, line 13 will beka &
2 operator+=(today, 7);

Lines 40 and 41 odate.h on p. 273 defineperator+= as a member function and friendine
41 requires us to define a referemceLine 40 is simpler and betteFor an unusuabperator+= that
does not need to be a member function or a friend, see lineptaible.h on p. 736.For an df the
grid operator+= that cant be a nember function or a friend, see p. 903.

Return by value or by reference?

The += operator alays returns the e value of its left operandln the abee line 16, the left oper
and is an objectShould it be returned by value or by reference? This is the second big decisioreviee ha
malke when defining alwperator function. Again, the rules are the same as for a normal function.

Recall thatreturn by valueconstructs and returns a gopf an dject; return by eferencemerely
returns the address of the object. Return by value is slower and mighddeeffects, so we return by ref-
erence whener possible. Thdatter is alvays possible except for one case: when the returned object is
destructed by the very act of being returned. This happens when the returned object is automatically allo-
cated in the function from which we are returning.

In line 40 ofdate.h , operator+= is a member function.The returned object is the object
*this to which the member function belongghis is not an automaticariable inoperator+= , 0
there is nothing to pwent a return by reference.ine 40 specifies the return by reference by declaring a
return type oflate& .

as e A hesenea ©2014 Mark Meretzky

=

284 Operator Overloading Chapter 3

In line 41 ofdate.h , operator+= s a friend. The returned object is the one to widatefers.
Although the referencd is automatically allocated, the object to which it refers is not, thus allowing a
return by reference. But weVmdready rejected 41 as inferior to 40.

Assignment operators such agerator+= , operator-= , and operator= always return the
new value of their object*this) so hat it can be used in a largetqpeession. Exampleare in lines 16,
19, and 20 abe. For a pathalogical case whereytd® rot return*this , see p. 903.

Dereference and re-reference

Despite the stathe return*this; in line 40 ofdate.h returns the object’address. Thestar
dereferences the pointiris ; the return by referenc&eé-references’it. Sincethe star and the return by
reference cancel each other out, coulare return the objec$ address more simply by getting rid of both
of them?

date operator+=(int count) {day += count; return this;} //doesn’t compile

The nev function seems plausible, but it will mak harder to use the returralue. Firstof all, we
have 0 get it to compile. Sinceoperator+= now returnsthis , we would have © change the return
type to “pointer todate " :

date *operator+=(int count) {day += count; return this;} /does compile

When we use the return value, we wouldagis hare © remember to write a star in front of it. The &bo
line 16 would become
f (*(today +=7));

with an extra pair of parentheses. It would be simpler to banish the star in tediaba® to line 40 of
date.h , where it can be written once and for all. This, by tle;us exactly why Stroustrup introduced
references into C++.

Return an Ivalue or an rvalue?

Return by reference is faster than return &ly®. Moreimportantly return by reference is necessary
to male aur operator+= behae like the hiilt-in +=. Consider the follwing expression, which adds 10
to anini and then knocks the sum down to the range 0 to 19 imelugidemonstrates that the value of
i += 1 0is anlvalue, an expression that can be assigned to (pp. 12-A8alistic example is in line 20
of main.C on p. 998.

(i += 1 0) %= 20;
To permit ouroperator+= to return an Ivalue, it must return by reference and the reference must

be read/write.The abee line 22 shows that the valuetoday +=7 is an halue. (Thenner parenthe-
ses w@erride the right-to-left associativity af=.) Of course the example could be written more simply as

f (today += 372);
but for the time being the extre= is our only way to demonstrate thatlay += 7 is an lvalue.

We havemotivated our decisions carefully becauseythéll almost alvays go the sameay. For all
normal clasespperator+= will be a public, non-static member function that retutttis as a
read/write reference.

An operator—= that occupies the same ecological niche

Line 42 ofdate.h shavs the correct way to implemenperator-= . Resist the temptation to
implement it indate.h as neither a member function nor a friend:

/ Ireturn d.operator+=(-count);
date& operator-=(date& d, int count) {return d += -count;}

The problem in the alve line is that the rgetion could werflow. For example, if our integers are 32-bit

s A hesenea ©2014 Mark Meretzky

Section 3.4 An oper at or that constructs an object 285

two's cmmplement, their values will be limited to the slightly lopsided range -2,147,483,648 to
2,147,483,647 incluge. If count were —2,147,483,648, the iger expression-count could not possi-
bly hold the correct value of 2,147,483,648.

4/8/2014 has julian date 98. lines 10-11
4/15/2014 has julian date 105. lines 13-14
4/22/2014 has julian date 112. line 16
The julian date that is 7 days after 4/29/2014 is 126. lines 18-20
5/13/2015 has julian date 133. line-22

3.4 Anoper at or that constructs an object

operator+ computes a sum and constructs & bject to hold it. The sum does not go intyan
previously existing object. Theday in the following line 13, for eample, remainsinchanged.

The value of the pressiontoday + 7 is the n& object. o make this happenpperator+
must return the meobject that it constructs.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/overload/plus.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "date.h"

4 using namespace std;

5

6 void f(const date& d);

7

8 i nt main()

9 {
10 date today;
11 f(today);
12
13 f(today + 7); /ldoes not change the value of today
14 f(today);
15
16 (today + 7).print();
17 cout << "has julian date " << (today + 7).julian() << ".\n";
18
19 return EXIT_SUCCESS;
20}
21
22 void f(const date& d)
23
24 d.print();
25 cout << "has julian date " << d.julian() <<".\n";
26}

Return by value or by reference?
If operator+ were a member function of cladate , the abwee line 13 would behse & if we had
written

27 f(today.operator+(10));

This member function is defined in line 44dz#te.h on p. 274, where the weobject is namedl. The
new object begins its life as a cgpof the existing object, but is immediately increased. Since it is

as e A hesenea ©2014 Mark Meretzky

28
29

30

N -

286 OperatorOverloading Chapter 3

automatically allocated, it cannot be returned by reference. It must be returned by value.

Return an Ivalue or an rvalue?

Return by walue is not sufficient: the neobject must be returned ascanst value. Surprisingly
it's up to us to esure that the expressitoday + 7 is not an Ivalue:

/IMust not be allowed to compile.
(today + 7) =t omorrow; /ltoday.operator+(7) = t omorrow;

The way to preenttoday + 7 from being an Ivalue is to makhe value of the expressiorcanst . We
accomplish this by havingperator+ return aconstdate

Member function or friend?

The operator+ in line 44 ofdate.h has to be a member function or friend because it mentions
the private membeday . But we can easily rewrite it in line 45 withoutyamention ofday . The+=in 45
that allows us to do this is tteperator+= we defined in 40.Now thatday is unmentioned, we can
redefineoperator+= in line 75 as neither a member function nor a friend. This function createswhe ne
object by receiving its first argument bglwe. Asabove, the nev object begins its life as a cppf an
existing object, and the most natural way to do this is via pass by value.

Of lines 44, 45, and 75 afate.h , the last is the simplest-or every class,operator+ will be
neither a member function nor a friend. It will be a call-througbpterator+= . The first argument will
by passed by value; the return value will be passeccasst value. Whenwe call thisoperator+ |, the
aborve line 13 will behae & if we had written

f(operator+(today, 7);

operator+ and operator—

We dso need lines 76 and 77 déte.h to allow us to iy 10 + today andtoday - 10 . We
now havetwo differentoperator- functions:

date today;
date d =today - 10; //date d = operator-(today, 10); line 77 of date.h
i nt dist = today - d; //int dist = operator-(today, d); line 35 of date.h

4/8/2014 has julian date 98. lines 10—-11: the original value

4/15/2014 has julian date 105. line 13: print the value of the expressimday + 10
4/8/2014 has julian date 98. line 14: demonstrate that line 13#shad no effect otoday
4/15/2014 has julian date 105. lines 16-17

¥ Homework 3.4a:

Use theoperator+ that creates a nedate to simplify employee::retire in line 17 of
employee.h on p. 259.
A

3.5 MemberFunctions vs. Friends

Not every operator function needs to mention the yae members of the object(s) passed to it.
But if it does need to mention them, aperator function (or indeed anfunction) must be either a
member function or &iend

as e A hesenea ©2014 Mark Meretzky

A WNBEP

o O

(0]

Section 3.5 Member Functions vs. Friends 287

When do we hae no choice of member function vs. friend vs. neither?
In four cases, we ra ro choice:

(1) If theoperator function must be pvate, it must be a member function. The terfpsiblic”
and ‘private” apply only to members, not to friendsperator= is the one that is most frequently pri-
vate.

(2) The folloving operator ’'s must be member functions of their left operandfiey must there-
fore be member functions, and non-static ones to boot.

operator=
operator[]
operator()
operator->

Oddly, operator+= and the other reassignment operators do nat foecbe member functions.

(3) If anoperator function is a member function, it must be a member function of its left or only
operand. The in line 2 could be a member function of its left opertouthy , or it could be a non-mem-
ber function. But ther in line 4 could not be a member function of its left operand. Only objeets ha
member functions, andis not an object. The in line 4 is the non-member function in lined#te.h

date today;
date e =today + 7, //could be date e = today.operator+(7);

/ lor date e = operator+(today, 7);
date e = 7 + today; /Imust be e = operator+(7, today);

Similarly, the ++ and-- operators (prefix and postfix) whose operands are enumerations cannot be mem-

ber functions. Only objects @ member functions, and an enumeration is not an object. Thevioto
increments are the non-member functions defined in lines 88 of date.h and 98 of d#dðof.

date::month_type m = date::;january; //m is an enumeration
++m; /Imust be operator++(m);
mt+; /Imust be operator++(m, 0);

(4) Anoperator function can neer be a nember function of its right operand. If it needs to men-
tion a prvate member of its right operand, it must bgiend of the operand For example, we will see
later that theoperator<< function

date today;
cout << today; /loperator<<(cout, today);

must be driend of classdate . Of course, aroperator function could also be a member of its left
operand. Afunction can be &iend of mary classes as well as a member of one class.

What should we do when we do hae a doice?

When not constrained by the aleofour cases, aoperator function that needs to mention a pri-
vate member can be either a member functionfaead , whichever is more natural.

(1) If theoperator function does not need to mentiorygmivate membermake it neither a mem-
ber function nor &riend . Examples we ha&e fen includeperator'= and the binarpperator+

The remaining cases assume thatojperator function does need to mention avate member.

(2) Anoperator function for a unary operator should be a member function of the opsrater-
and. Ary function that does something to one object should be a member function of that object:

* This requirement will cramp our style on p. 903.

Fasae A hesenea ©2014 Mark Meretzky

288 Operator Overloading Chapter 3

if (!d) { /fif (d.operator!()) {
d = -d; /ld = d.operator-();
(3) If the operator is binary and tbperator function treats the operands the sanag,\make it a

friend.

a == / loperator==(a, b)

a<h | loperator<(a, b)

a+b | loperator+(a, b)

a-»b / loperator-(a, b)

(4) If the operator is binary and the left operand plays the starring role, theatperator func-
tion a member function of the left operarfeor example, may operator functions change the value of
their left operand but not their right:

a+=b / lais affected, b remains untouched: a.operator+=(b)
a-=>b / lais affected, b remains untouched: a.operator-=(b)

3.6 oper at or ++, Prefix and Postfix

Prefix operator++ changes the value of an existing object

The prefix++ operator occupies the same ecological niché=asin the following line 13, ther+
changes the value of its operand. The value of ¥peessiont++today is the nev value of the object.
And the value of thexpression++today is an Ivalue, alling it to be subjected to anothef in line 17
and to+=in line 18.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/overload/prefix.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "date.h"

4 using namespace std,;

5
6 void f(const date& d);
7
8 i nt main()
9 {
10 date today;
11 f(today);
12
13 ++today; /loperator++(today);
14 f(today);
15
16 f(++today); /[f(operator++(today));
17 f(++++today); /[f(operator++(operator++(today)));
18 f(++today += 365); /[f(operator++(today).operator+=(365));
19
20 cout << "The julian date of the day after ";
21 (++today).print(); /loperator++(today).print()
22 cout <<"is" << (++today).julian() <<".\n";
23
24 return EXIT_SUCCESS;
25}
26

s A hesenea ©2014 Mark Meretzky

Section 3.6 oper at or ++, Prefix and Postfix 289

27 void f(const date& d)

28{

29 d.print();

30 cout <<"has julian date " << d.julian() <<".\n";
31}

Line 47 ofdate.h on p. 274 definegperator++ as a member function in the mold of the
operator+= in line 40. (An operator++ with no arguments is the prefix operatoit returns*this
as a read/write reference to allthe abee lines 17 and 18 to g the object anven newer value.

Theoperator++ in line 47 ofdate.h must be a member function because it mentions thietri
memberday . But we can easily rewrite it in line 48 withoutyamention ofday. The+= in line 48 that
allows us to do this is theperator+= we defined in 40. Nw thatday is unmentioned, we can redefine
operator++ in line 79 as neither a member function nor a friend.

4/8/2014 has julian date 98. lines 10—-11: the original valué
4/9/2014 has julian date 99. lines 13-14

4/10/2014 has julian date 100. line 16

4/12/2014 has julian date 102. line 17

4/13/2015 has julian date 103. line 18

The julian date of the day after 4/14/2015 is 105. lines 20-22

Postfix operator++ constructs a new object
The postfix++ operator constructs awenbjectand changes the value of an existing object. In the
following line 16, for example, three actions are performed.
(1) The++ constructs a cgopof today .
(2) Thenit changes the value tdday , but this has no effect on the gopf the original value.
(3) Finally, it returns the cop

The value of thex@ressiortoday++ is therefore not the currenalue oftoday . Itis a opy of the \alue
that was irtoday before it was incremented.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/overload/postfix.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "date.h"

4 using namespace std,;

5
6 void f(const date& d);
7
8 i nt main()
9 {
10 date today;
11 f(today);
12
13 today++; /loperator++(today, 0);
14 f(today);
15
16 f(today++); /lf(operator++(today, 0));
17
18 cout << "The julian date that is 1 day after ";
19 today++.print(); /loperator++(today, 0).print();
20 cout <<"is"<<today++.julian() <<".\n";
21

as e A hesenea ©2014 Mark Meretzky

290 OperatorOverloading Chapter 3

22 /ltoday++ +=365; //won't compile: today++ is not an Ivalue
23 return EXIT_SUCCESS;

24}

25

26 void f(const date& d)

27 {

28 d.print();

29 cout <<"has julian date " << d.julian() <<".\n";

30}

Line 50 ofdate.h on p. 274 shows the three actionss in line 44, the automatically allocated
variable must be returned byle. Anit must be returned ascanst value to preent the abwe line 22
from compiling.

The value of thent amument of postfioperator++ is never used. Its just a kludge to let us
have wo dfferent member functions with the same narben’t even give it a name: if we did, we awuld
get the “unused argumehivarning. Fr another argument whose value is unused, see p. 756.

Line 50 ofdate.h has to be a member function or friend because it mentions tfaepmember
day. But we can easily werite it in line 56 without ap mention ofday . The++ in line 58 that allows us
to do this is the prefinperator++ we defined in 79. N thatday is unmentioned, we can redefine
operator++ in line 81 as neither a member function nor a frieNdte that the argument in line 81 must
be pased as a read/write reference,

4/8/2014 has julian date 98. lines 10-11: the original value
4/9/2014 has julian date 99. lines 13-14

4/9/2014 has julian date 99. line 16

The julian date that is 1 day after 4/10/2014 is 101. lines 18-20

At last we hae a eason to prefer
31 for (inti=0;i<10; ++i) { [[fast
to
32 for (inti=0;i<10;i++) { /Islow

Postfixoperator++ for an object is much slower than prefix. Theabo is not an object, but it may
become one in the future. Get into the habit of using prefix wieepessible.

Increment an enumeration

Line 88 ofdate.h on p. 274 is a prefix that increments an enumeratibnannot be a member
function or friend of the enumeration. The reason is simple: an enumerationveamhiaembers or
friends. Onlyan object can ha them.

Our operator++ wraps around frondecember to january . Most of the time, hwever, it
merely does the arithmetic in line @&te.h . This line comerts the enumeration tmt , does some
arithmetic, and corerts theint result back to an enumeration. As wevsm p. 23, enumeration-tat
corversion can be implicit, but the cegrsion back requires a cast.

Since theoperator++ functions change the value of their enumeration arguments,gbmants
must be passed as read/write references. As usual, the ppetfator++ in line 98 ofdate.h does
its work by calling the prefioperator++ in line 88.

33 #include <iostream>
34 #include "date.h"
35 using namespace std;

36
37 date::month_type m = date:jjanuary;
38 cout << ++m<<"\n" /lcout << operator++(m) << "\n";

as e A hesenea ©2014 Mark Meretzky

39

=
CQowo~NOOUODWNLPE

NNNRPRRERRERRRR
NP OWOWO~N®UANWNER

Section 3.6 oper at or ++, Prefix and Postfix 291

cout << m++<<"\n" /lcout << operator++(m, 0) << "\n";

v Homework 3.6a: define operators for class life

(1) Change the name bfe::next to life::operator++ . Give it no aguments, so it will
be the prefioperator++ . Change its return type froroid tolife& and h&e it return*this;

(2) Define a postfisoperator++ for classlife , which will call the prefixoperator++ to do
most of its vork. Donot defineoperator-- s for clasdife : there is no way to work backwards to the
previous generation.

(3) Creatdife::operator+= . Ifits right operand is wgtive, write an error message (including
the ngdive \alue) tocerr and callexit(EXIT_FAILURE) . Otherwise go into a loop that repeatedly
calls the prefboperator++

(4) Write twolife::operator+ 's, just like the twodate::operator+ 's in lines 58-59 of
date.h

Test them with the following objed. Line 4 shavs that prefixt+ returns a value; line 8 shows that
postfix++ returns a &lue. Linel3 shows that= returns a value; line 17 shows thateturns a value.

| ife g = glider_matrix;

++g; /lg.operator++();

g.print();

(++g).print(); /lg.operator++().print();

g++; /lg.operator++(0);

g.print(); /lLines 7 and 8 should print the same picture.
g++.print(); //g.operator++(0).print();

g.print(); /lLines 8 and 9 should print different pictures.
g +=4; /lg.operator+=(4);

g.print();

(@ +=4).print(); //g.operator+=(4).print();

life g2=g+4; INife g2 = operator+(g, 4);

g2.print();
(g + 4).print(); /loperator+(g, 4).print();

for (life g = glider_matrix;; g +=4) {
g.print();
ask the user if they want to fast-forward 4 generations;

}

(5) Define aroperator== friend of clasdife that will compare thenatrix data members of
the two life objects. ltshould ignore thg data membersWe aly want to knav if the two objects con-
tain the same picture; we doare hav mary generations it took them to get there.

Define anoperator!= that is neither a member nor a friend of cléfes . The operator!=
will call operator==
A

Operator overloading and operator precedence

We onsidered thexpression*p++ on p. 7 when discussing operator precedence and asdbgciati
The two operators hee equal precedence and right-to-left assoeigti Why dd p. 7 lavish so much fefrt
on establishing that the operator, dthough postfix, will be xecutedbefore the* ?

Fasae A hesenea ©2014 Mark Meretzky

292 Operator Overloading Chapter 3

If the operands are objects, the operators will trigger function cBiis.functions will be called in
the same order as the operators weeewded. Ifwe do not knw the rules of precedence and assodiigti
and the gaps in the rules, our programs will be impossible to debug.

If p is an object, wryone expects that its postiperator++ will return another oject of the same
class. Dort disappoint them. This second object is an gnoous temporarywhoseoperator* is then
called. Thecomputer behzes as if we lad written the following expression.

p.operator++(0).operator*()

For another example of a call to a member function of an ymomis temporary object returned by a func-
tion, see line 2 on pp. 137-138.

Of coursep might be a pointerIn this case the expressityp++ calls no functions.
Had the increment been prefix, it would still beaited before the.

If p is an objectpperator++ would still be called first. But it would be tlaperator++ that takes no
arguments.

p.operator++().operator*();

If p is a pointerthe expressioft++p would call no functions.
With parentheses, theoperator would bexecuted first.

I
*lp)+t
L —

This time there are four possibilitie. p and*p are objects, we would calberator* before the
postfixoperator++

p.operator*().operator++(0);
If p is a pointer to an object, thewould be the built-in dereferencing operator.
(*p).operator++(0);

If p is an object whoseperator* returns a norconst reference to a built-in, pointesr enumeration,
the++ would be the built-in postincrement operator.

p.operator*()++;

If p is a pointer to a built-in, pointeor enumeration, the expressi¢tp)++ would call no functions.

v Homework 3.6b: vector arithmetic

A vector is a point in three-dimensional spacéou can also think of it as an awdfrom the origin
to the point. Since the namector is already used by the C++ Standard Library will name our class
vec .* Definethe class in &ec.h file. All of the followng functions will be inline, so there will be no

* We actually could name our clasgctor while also including the standard library headers. There areviys to
do this. If we sayisingnamespacestd; , we @an refer to the standard library vectovastor and to our vector as
uvector . Otherwise, we can refer to the standard library vectstdas/ector and to ours agector .

s A hesenea ©2014 Mark Meretzky

Section 3.6 oper at or ++, Prefix and Postfix 293

vec.C .

Give the class three ptéte, non-statidouble data members namedy, and z, and no other data
members. Gie it a public, three-argument constructor with a default value of zero for each argument.

Give it a public, non-staticconst member function namegrint that will take no eplicit argu-
ments and return no valuerint will output the object t@out with commas and parentheses:
x,¥,2) . vec.h will have b include<iostream> and sayusingnamespacestd for cout
and<<.

Give it a public, non-staticconst member function nameléngth that will return the length of

thevec : /xZ + y2 + z2. vec.h will have o include<cmath> and sayusingnamespacestd for the
sgrt function.

Defineoperator functions for the follaving. Imitatewhat we did for clasdate .

(1) Make it possible to compare tvvec objects:vl==v2 . Two vec’s ae equal if
vix==v2x ,vly==v2y , ec. Alsomale it possible to sayl!=v2 , but do not define the
other four comparison operators.

(2) Make it possible to add oneec to anothervl +=v2 . This will have the effect of adding
v2.Xx ontovl.x ;v2y ontovl.y ;etc. operator+= must return the wevalue of the left operand of
the+= operator Also male it possible to sayl +v2 ,vl-=v2 ,andvl-v2

operator+ will take two vec'’s as aguments, the first passed bglwe. Thefunction must con-
struct a newec , and pass-by-value is the easiest way to do this.

(3) Make it possible to ngae avec : -v . This will construct and return awevec whosex is the
negative d v.x ; whosey is the ngative d v.y ; etc.

(4) Make it possible to multiply aszec by adouble : v *= d . This will have the effect of multi-
plying v.x by d; multiplying v.y by d; etc. operator*= must return the wevalue of the left operand
of the*= operator Also male it possibletosay * d,d * v,v /= d (check for division by zero),
andv / d .

(5) Thedot product of twovec s vl andv2 is adouble whose value is
vix*v2x+vly*v2y+vlz*v2z

Make it possible to compute the dot produdt* v2 . (If the data members were one array of three
double ’s rather than three separateuble 's, operator* could hae alled the algorithm
inner_product in the standard library Do not define aperator*= for dot product.

(6) Thecross poduct of two vec 's vl andv2 is avec whosex isv1.y*v2.z - v1.z*v2.y ,
and whosey isv1.z*v2.x - v1.x*v2.z , ahd whosez is v1.x*v2.y - v1.y*v2.x . The usual
symbol for cross product i§ but we will have o write a caretvl “v2 . First define aroperator” to
construct and return the cross product. Then defirmparator'= that will do its work by calling
operator” . operator'= will be neither a member function nor a friend. Its firgiusnent will be a
read/write reference; its second will be a read-only reference. What woddyhree wrong had we writ-
tenoperator’= first and hadperator~ call it?

operator” and the unarpperator- will construct and return a nevec by sayingreturn
vec(three arguments); . The binary versions afperator+ , operator- , operator* ,and
operator/ will construct a n& vec by copying an existing one. In each case, the vec will auto-
matically allocated, so it must be returned by value.

Demonstrate that yowperator functions are correct by handing in yaugc.h file together with
the output ohttp://i5.nyu.edu/ Cmm64/book/src/vec/main.C

Extra credit: ient amatrix class and multiply @ec and amatrix ; theoperator* will be a
friend of both classed-or space cadets only:went aquaternion class and multiply aec and a
guaternion
A

as e A hesenea ©2014 Mark Meretzky

294 Operator Overloading Chapter 3

v Homework 3.6¢: midpoint between two point’s
A andB are vectors coming out of the origin. Their sumidB. Their average,(A+B)/2 , extends
only half as far from the origin as the sum, and is the midpoiAtamidB.

y
A

A+B

A+B)/2

\j
x

Themidpoint member function of clagsoint was in lines 19-21 opoint.h on pp. 201-202.
Change it to the following function by writing @perator+ andoperator/ that returnconst
point . operator/ will be aconst member function of clagsoint ; operator+ will be a friend.
Now that midpoint no longer mentions gnprivate members of clagsoint , it does not need to be a
member function or friendKeep its definition in th@oint.h file, though, and keep it inline.

1 i nline const point midpoint(const point& A, const point& B)
2 {
3 / IReturn the average.
4 return (A +B)/ 2; [lreturn operator+(A, B).operator/(2);
5}
A

v Homework 3.6d: fanciful oper at or/ and oper at or %member function for class date

Imagine tvo member functions of clastate that would return thélate ’'s year and day of the year
in the range 0 to 264 inclug Why not name thenoperator/ andoperator% ? With the agument
7,0perator% could also return thdate ’s day of the week: 0 for Sunday for Monday etc.

If the argument is annumber other than 7 or 36b6perator% will output an error message to
cerr andexit

1 const char *const name[] = {
2 " Sunday",
3 " Monday",
4 " Tuesday"”,
5 " Wednesday",
6 " Thursday",
7 " Friday",
8 " Saturday”
9 B
10
11 date today;
12
13 cout <<"Currentyear: " <<today/365<<"\n" //today.operator/(365)
14 << "Julian date: " << today % 365 + 1 << "\n" //today.operator%(365)

as e A hesenea ©2014 Mark Meretzky

Section 3.6 oper at or ++, Prefix and Postfix 295

15 << "Day of week: " << name[today % 7] << "\n";

A

v Homework 3.6e: midpoint between twalat e’s

Change your definition ahidpoint in Homevork 2.11b { (4) on pp. 211-212 to the foliog.
Now that midpoint no longer mentions grprivate members of clagsoint , it does not need to be a
member function or friend of the class.

Both operands of the in line 7 aredate s, so0 this- calls theoperator- friend defined in line 32
of date.h rather than the neither-member-nor-friend in line 54.

1 / /Declared in date.h, defined in date.C

2
3 const date midpoint(const date& d1, const date& d2)
4 {
5 [Ireturn (d1 + d2) / 2; /laverage of two dates
6
7 div_td =div(dl - d2, 2);
8 i f (drem<0){
9 - -d.quot;
10 }
11 return d2 + d.quot;
12}

| wish the body of this function could simply be the \abdne 5. But this line will not compile,
because we lva written nooperator+ that will accept tw date s, To do so vould expose the values of
the private data member(s)-or example, assume thdtl andd2 weredate ’s early in the year 2014If
eachdate had one priate data membatay giving the number of days since January 4,00 thend1+
d2 would be adate in the year 4028. But if eadtiate had one priate data membeday giving the
number of days since January 1, 194 thend1+d2 would be adate in the year 2058.
A

A fictitious but useful intermediate result

When a newcomer enters the field and finds himeself confronted by the nuances of
international questions, he becomes an easy target for the military-CIA-paramili-
tarry-type answers which can be added, subtracted, multiplied, or divided.

—Chester BowlesRromises to Keem. 330

Adding the tvo date ’s in the abee line 5 would be so useful that | am tempted to mékpossible.
But we must ta& care that the sum of mwdate 's is reve output to the userlt will be strictly an interme-
diate result, like the unsightly infinities that are “renormalizédivay in quantum theory.

We will use the classlate with one non-static data membp#reintday in line 27 of the follav-
ing date.h

The sum of tw date objects will be atimebomb object. Atimebomb must eentually be
defused by dividing it by 2, i.e., by calling @perator/ member function. If we do not, the
timebomb ’s destructor will give us an eror messageWe saw smilar error checking in the destructor for
classstack in lines 6-13 ofstack.C on p. 150.Remember the warning about not incinerating aerosol
cans that still hae pressure?

Classeslate andtimebomb will always be used togetheso hey share the same header fil€he
forward declaration in line 6 allows 19 and 20 to mention the riatee ; see pp. 465-466.

To ensure that aimebomb can be constructed only by adding together date 's, its constructor
is private in line 11. Only the member functions and friends of diassbomb will be able to call this
constructar And the only friend of this class is thperator+ that adds together twaate ’s (line 20).

as e A hesenea ©2014 Mark Meretzky

296 OperatorOverloading Chapter 3

This operator+ must also be a friend of cladate , since it mentions a prate member otlate
(line 43). Itis our first example of a friend of more than one class.

Human beings will constructdate by calling the three-argument constructor in line 35. The
operator/ will construct adate by calling the one-argument constructor in line I8.ensure that this
constructor will be called only byperator/ |, the constructor is prate and theoperator/ is a friend
of classdate . Itis our first example of a function that is a member of one class and a friend of another.

Classtimebomb had to be defined before clakse , since classlate mentions a member of
timebomb (line 39). If both classes had mentioned a member of the, etkesould hare keen forced to
throw in the towel and le¢very member function of both classes be a friend of the other class. This can be
done without mentioning the names of the individual member functions; see p. 467.

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/timebomb/date.h

1 #ifndef DATEH

2 #define DATEH

3 #include <iostream>
4 using namespace std,;
5
6
7
8

class date;

class timebomb {

9 i ntsum;
10 bool ticking; //true if this timebomb is still ticking
11 timebomb(int initial_sum): sum(initial_sum), ticking(true) {}
12 public:
13 “timebomb() {
14 if (ticking) {
15 cerr << "forgot to divide the sum of two dates by 2\n";
16 }
17 }
18
19 const date operator/(int n);
20 friend timebomb operator+(const date& d1, const date& d2);
21}
22
23 class date {
24 static const int length[];
25 static const int prefl;
26
27 int day;
28 date(int initial_day): day(initial_day) {}
29 public:
30 enum month_type {
31 january = 1, f ebruary, march, april, may, june,
32 july, august, september, october, november, december
33 3
34
35 date(int month, int day, int year);
36 void print() const;
37
38 friend timebomb operator+(const date& d1, const date& d2);
39 friend const date timebomb::operator/(int n);
40 };
41

as e A hesenea ©2014 Mark Meretzky

Section 3.6 oper at or ++, Prefix and Postfix 297

42 inline timebomb operator+(const date& d1, const date& d2) {
43 return dl.day + d2.day;

441

45

46 inline date midpoint(const date& d1, const date& d2) {

a7 return (d1 +d2)/2; [Ireturn operator+(d1, d2).operator/(2);
48}

49 #endif

The abwe line 43 calls the constructor for clagsebomb , behasing as if we had said the folle
ing.
50 return timebomb(dl.day + d2.day);
Another example of an implicit constructor call is in line 20 of the followiimgbomb.C . See p. 138.

The operator+ could hae keen defined within thé curly brace} of classdate . We smply
replace the declaration in line 38 with the definition in lines 42-44, changingyerkl inline to
friend . But we left the definition where it is, since the function is a friend of more than one class.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/timebomb/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 #include "date.h"
5 using namespace std;
6
7 constint date::length[] = {
8 0, / /dummy element to give january subscript 1
9 31, 28, 31, 30, 31, 30,
10 31, 31,30,31,30,31
11}
12
13 const int date::pre[] = {
14 0, //[dummy element to give january subscript 1
15 0, /ljanuary
16 pre[1]+ length[1], /lfebruary
17 pre[2]+ length[2], //march
18 pre[3]+ length[3], Iapril
19 pre[4] + length[4], /Imay
20 pre[5]+ length[5], /ljune
21 pre[6] + length[6], july
22 pre[7]+ length[7], /laugust
23 pre[8] + length[8], //september
24 pre[9]+ length[9], /loctober
25 pre[10] + | ength[10], //november
26 pre[11] + | ength[11] //december
27},
28
29 date::date(int month, int d, int year)
30{
31 /[Error checking omitted for brevity.
32 day = 365 *year + pre[month] +d - 1;
33}
34

35 void date::print() const

as e A hesenea ©2014 Mark Meretzky

298 OperatorOverloading

36 {
37 div_t divide = div(day, 365);
38 if (divide.rem <0){
39 divide.rem += 365;
40 --divide.quot;
41 }
42
43 int d = divide.rem + 1; //Julian date (1 to 365)
44 int month; /luninitialized variable
45
46 for (month = january; d > length[month]; ++month) {
a7 d -=length[month];
48 }
49
50 cout << month << "/" << d<<"/" << divide.quot;
51}
—On the Web at
http://i5.nyu.edu/ Omm64/book/src/timebomb/timebomb.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std,;
5
6 const date timebomb::operator/(int n)
7
8 if(n!l=2) {
9 cerr << "sum of 2 dates must be divided by 2, not by "
10 << n << "\n“
11 exit (EXIT_FAILURE);
12 }
13
14 ticking = f alse;
15
16 div_t d = div(sum, 2);
17 if (drem<0){
18 --d.quot;
19 }
20 return d.quot;
21}
—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/timebomb/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std,;
5
6 i nt main()
7
8 const date d1(date::;january, 1, 2014);
9 const date d2(date::;january, 3, 2014);
10 const date d3(date::;january, 4, 2014);
11

printed 4/8/14 All rights
8:43:46 AM reserved

Chapter 3

©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 299

12 midpoint(dl, d2).print(); cout << "\n"; /leven distance
13 midpoint(d2, d1).print(); cout << "\n";
14
15 midpoint(dl, d3).print(); cout << "\n"; /lodd distance
16 midpoint(d3, d1).print(); cout << "\n";
17
18 return EXIT_SUCCESS;
19}
1/2/2014 line 12: left operand is the earlier dateven distance
1/2/2014 line 13: right operand is the earlier date
1/2/2014 line 15: left operand is the earlier datadd distance
1/2/2014 line 16: right operand is the earlier date

3.7 operator () foran Object that Does Only One Thing

An object with only one public member function, not counting the constructor and destrioetor
only one thing for usFor example, the classiyrandom had only one member function, trend in lines
3-8 ofmyrandom.C on p. 176.

When an object does only one thingyegihe member function the admittedly strange name
operator() . The parentheses are part of the function na@tenge line 10 ahyrandom.h on p. 176
to

1 i nt operator()();

The first pair of parentheses are part of the function name; the second pair surround thegemamt ar
list. Changdine 3 ofmyrandom.C on p. 176 to

2 i nt myrandom::operator()()

We @an then call this member function simply by applying(dheoperator to its object. When we write the
expressiorrl() in line 7, the computer will bekia & if we had written the expression

rl.operator()() in the comment.The first pair of parentheses is part of the name of the member
functionoperator() ; the second pair is the empty argument list.

3 myrandom rl;

4 myrandom r2(2014);

5

6 for(inti=0;i<3;++){

7 cout << rl() << "\n" /lcout << rl.operator()() << "\n"

8 << r2() <<"\n"; I << r2.operator()() << "\n";
9

}

rl andr2 look like functions. Buthey are really objects, and we can construct asyntdrithem as
we need. An object endowed with aperator() to male it look like a tunction is called dunction
object. Such objects can be used to customize ‘#igorithms’ in the C++ Standard Library; our first
example will be on pp. 764-770.

3.8 Initialization vs. Assignment: a Constructor vs. operator=

Initialization puts the first value into a wevariable. Assignmentputs a ne value into an xsting
variable. W& saw o p. 262 that for a variable of a built-in data type, a pointeran eumeration, there is
little difference between thesedwperations.

But for an object, initialization and assignment may do very different jdwsteough thg may still
be written with the same symbadiVe will begin with classeslate andstack , where initialization and

s A hesenea ©2014 Mark Meretzky

N -

NOoO o~ WNPRE

8
9
10
11
12
13
14
15
16
17
18}

300 OperatorOverloading Chapter 3

assignment just happen to do the same Riltt this will be the exception rather than the rule.

An object is initialized by calling its constructor; for an objéditjalization andconstructionmean
the same thingln a declaration, a constructor with one argument can be called with an equaA sigpy
constructorfor example, alays has one argument as in line 2.

The symbok is also used for assignment to an object. Butthislls a different member function,
one namedperator= . When we write line 3, forample, the computer beles as if we kad written
the corresponding comment. The right operdtdis passed tmperator= by reference toeid con-
structing an unnecessary gagf it; the reference is read-only to ensure ttfatannot be damaged by the
operator=

date d1(date::april, 8, 2014); //initialization: call 3-arg constructor
date d2 = d1; /linitialization: call copy constructor
d2 = dj; /lassignment: d2.operator=(d1);

Two member functions defined for us implicitly

An added complication (or simplification, depending on you point of view) is that the computer will
define these tavmember functions for us if we @ rot defined them oursedg. Thdirst is the constructor
whose argument is another object of the same class, i.e., thearmiructor The second is the
operator= whose argument is another object of the same clastass may hee ®veal
operator= s, each with an argument of a different type.

For example, we neer defined a cop constructor for classlate since we were satisfied with the
computers. Butthe abee line 2 compiles ayway. When it calls the cop constructoy the computer
behaes as if we lad defined and called the following public gamnstructor Assume that the class has
the three original data membemsar , month , andday .

/ /ICopy the non-static data members from the other object to this one,
/ /in the order in which they were declared.

date::date(const date& another)
year(another.year), month(another.month), day(another.day)

{
}
Similarly, we reve defined a member functiosperator= for classdate since we were satisfied
with the one the computer provided for us. But line 3 of the previous fragment compilesy/aiiVhen it
callsoperator= , the computer bekas as if we lad defined and called the following public

operator= . It returns*this by reference, just lik the operator+= and prefixoperator++ for
classdate inlines 40 and 47. alate.h on pp. 273-274.

date& date::operator=(const date& another)
{

/[Copy the non-static data members from the other object to this one,

/fin the order in which they were declared.

year = another.year;

month = another.month;

day = another.day;

return *this;

The operator= in line 3 of the previous fragment is a member function of the odcso he
value returned by theeturn*this in the abwe line 17 is the ne value ofd2. This is used as the

value of the gpressiond2 =d1 . Since this expression has a value, we could use it as the right operand
of another assignmenkgression. Andsince that epression has a value, we could use it as the right

as e A hesenea ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 301

operand of yet another.

19 d2 = d1; // d2.operator=(d1);
20 d3 =d2 =dz1; 7/ d3.operator=(d2.operator=(d1));
21 d4 = d3 = d2 = d1; //d4.operator=(d3.operator=(d2.operator=(d1)));

Operator gerloading gives us a iice, linear notation that hides the nested function cdllse = operator
has right-to-left associativitgo he first function to be called is the one that implements the rightmost
Compare the hidden nesting of thgerator<< 's on p. 340.

For classdate , the implicitly defined cop constructor andperator= are good enough for us.
But for more complicated classes we wili/ZBa write them ourselves.

Our copy constructor andoper at or = can be faster than the computer’s

Here is a class where the implicitly defined yopnstructor anadperator= are not good enough
for us. We will have o write them ourseles. Inthis simple class, the twfunctions will still do the same
job.

We dd not define a cgpconstructor andperator= for the classtack on pp. 149-154, so the
were defined implicitly.

stack s1; /linitialization: call the default constructor
s 1.push(10);
cout << sl.pop() << "\n";

stack s2 =s1; /linitialization: call the copy constructor
s2 = s1; /lassignment: s2.operator=(sl);

OO, WN B

Assume that classack has the tw original non-static data membessandn. The constant
stack_max_size was renamedmax_size when it became a static data member in Hoonk
2.14.1b, 1 (3) on p. 239nax_size andn have been gven their correct data typesize t . And we
have followed the C++ covention of creating aalue_type typedef (pp. 153-154).

7 t ypedef int value_type;

8
9 class stack {
10 static const size_t max_size = 100;
11 value_type a[max_size];
12 size t n,
13 /letc.

The=in the abwoe line 5 will call the following cop constructoywhich was defined implicitly.

14 stack::stack(const stack& another)

15 : n(another.n)

16 {

17 for (size_ti=0;i< max_size; ++i) {
18 ali] = another.a[i;

19 }

20}

And the=in the abwe line 6 will call the follaving operator= member function, also defined implicitly

21 stack& stack::operator=(const stack& another)

224

23 n = another.n;

24

25 for (size_ti=0;i<max_size; ++i) {
26 ali] = another.a[i;

s A hesenea ©2014 Mark Meretzky

27
28
29
30}

302 OperatorOverloading Chapter 3

}

return *this;

But both of these functions ¥ a rformance bug: tyedo more copying than is necessaryVe can
define faster ones that loop only as far ag Haweto.

31 //Excerpt from stack.C.

32

33 stack::stack(const stack& another)

34
35 {
36
37
38
39}
40

n(0)

for (; n<another.n; ++n) {
a[n] = another.a[n];

}

41 stack& stack::operator=(const stack& another)

42 {
43
44
45
46
47
48
49
50 }

51
52
53

54

if (&another != this) {
for (n=0; n<another.n; ++n) {
a[n] = another.a[n];
}
}

return *this;

The two objects in the following assignment are the same object.

stack s;

s.push(10);

s =8; | Iself-assignment: s.operator=(s);
In this case, we must nokezute then = 0 in the abwe line 44. Fortunately our operator= will do
nothing thanks to th# in the abwe line 43.

Admittedly, no ane will write the self-assignment in the a&bdine 53. But there are less wlous
ways in which the same object might be used as both operands of an assignmentxadinfueg@ andq
are pointers to objects, we might accidentally say

o= *q; //(*p).operator=(*q);
whenp andq point to the same object.

A constructor and oper at or = that must do different jobs

For classegdate and the originaktack , the copy constructor andperator= did the same job:
they merely copied the data from one object to anotl@perator= also returnedthis by reference).
Now we will see a class whose constructor apeérator= must do different jobs.

Imagine a classutputfile whose constructor opens an output file (line 3) and whose destructor
closes it (line 8).In between, there are member functions suchrésline for writing to the file (line
4). TheC++ Standard Library has a similar class nawfstteam (“output file stream”).

When line 3 initializes an object, we are calling its constructbe constructor called in line 3 does
only one job: it openseultfilel

When line 6 assigns to the object, we are callingpisrator= . But theoperator= called in
line 6 doeswo jobs: it closesoutfilel and open®utfile2 . outfile2 will eventually be closed

as o A hesenea ©2014 Mark Meretzky

O~NO O WNPE

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 303

by the destructor in line 8.

void f()
{
outputfile out = "outfile1"; [lInitialization: call a constructor.
out.writeline("hello™); [I\Write one line to outfilel.
out = "outfile2"; /[Assignment: out.operator=("outfile2");
out.writeline("goodbye"); [/\Write one line to outfile2.
} / /Destruction.
Assignment is usually more experesihan initialization because it does moreriu For class
outputfile , theoperator= did the work of the destructdillowed by the work of a constructor.

A class for which we must write our own copy constructor and operator=

To show how to write a class whose constructors apkrator= must do different jobs, we will
invent our own class of string objects. In real life, though, we wouwrnerite this class.We would just
use the classtring in the C++ Standard Library.

A C program would store a string of characters into an arrahaf . But there are te drawbacks
to this approach: an array cannotwgrand shrink as the program runs, and its subscripts are not range
checked.

Our string objects will be free from thesewta To permit a string to gne without bounds, we will
not attempt to store the characters in the object it3dléy will be stored offshore, in a dynamically allo-
cated liffer. Each object will hae its own huffer, and will contain a pointer to the start of itafter. For
the present, theuffer will be allocated with the C functiomsalloc andfree . Later we will use the cer
responding C++ operatonew anddelete

We nust initialize the data membaerbeforep, since the value ofi is used in the initial value qf in
lines 8 and 19 afystring.C belon. See pp. 113-114 for the order of initialization for data members.

We will talk about theoperator]] and operator<< functions in lines 19-26 laterFrst we
will demonstrate wirwe had to write our own cgpconstructor andperator= for this class.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/mystring/mystring.h

1 #ifndef MYSTRINGH

2 #define MYSTRINGH

3 #include <iostream> //for ostream and <<

4 #include <cstddef> [[for size_t

5 #include <cstdlib> /ffor free

6 using namespace std,;

7

8 class mystring {

9 size_tn; /Inumber of characters, not counting the terminating '\0’
10 char *p; /Ipointer to the 1st character; must be constructed after n
11 public:

12 mystring(const mystring& another); /lthe copy constructor
13 mystring(const char *s ="");

14 “mystring() {free(p);}

15

16 mystring& operator=(const mystring& another);

17 mystring& operator=(const char *s);

18

19 char& operator[](size_t i);

20 const char& operator[](size_t i) const;

21

s A hesenea ©2014 Mark Meretzky

304 OperatorOverloading Chapter 3

22 void print() const {cout << p;}

23

24 friend ostream& operator<<(ostreamé& ost, const mystring& m) {
25 return ost << m.p;

26 }

27}

28 #endif

malloc is called whenesr we put a value into anystring , in lines 8, 19, 34, and 5M/e dways
allocate one extra byte for tH®’ at the end of a string of charactersalloc returns avoid *
which we store into thehar * data membep. Cwould let us implicitly comert avoid * to a pointer
to a variable, but C++ requires axpécit static_cast . The cowersions and casts will disappear on p.
395, when we switch fromnalloc to new.

A bug lurks in theoperator= in line 47-60. Try to find it before we fix it on pp. 314-315.
—On the Web at

http://i5.nyu.edu/ Omm64/book/src/mystring/mystring.C
1 #include <iostream>
2 #include <cstdlib> /[for malloc, size _t, exit, EXIT_FAILURE
3 #include <cstring> /ffor strcpy, strlen
4 #include "mystring.h"
5 using namespace std;
6
7 mystring::mystring(const mystring& another) //the copy constructor
8 n(another.n), p(static_cast<char *>(malloc(n + 1)))
9 {
10 if (p==0){
11 cerr <<"couldn't allocate " << n + 1 << " bytes\n";
12 exit(EXIT_FAILURE);
13 }
14
15 strepy(p, another.p);
16}
17
18 mystring::mystring(const char *s)
19 n(strlen(s)), p(static_cast<char *>(malloc(n + 1)))
204
21 if (p==0){
22 cerr <<"couldn't allocate " << n + 1 << " bytes\n";
23 exit(EXIT_FAILURE);
24 }
25
26 strepy(p, S);
27}
28
29 mystring& mystring::operator=(const mystring& another)
30{
31 if (&another != this) {
32 free(p);
33 n = another.n;
34 p = static_cast<char *>(malloc(n + 1));
35
36 if (p==0)({
37 cerr << "couldn't allocate " << n + 1 << " bytes\n";
38 exit(EXIT_FAILURE);

as e A hesenea ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 305

39 }

40

41 strepy(p, another.p);

42 }

43

44 return *this;

45}

46

47 mystring& mystring::operator=(const char *s)
48 {

49 free(p);

50 n = strlen(s);

51 p = static_cast<char *>(malloc(n + 1));
52

53 if (p==0){

54 cerr << "couldn't allocate " << n + 1 << " bytes\n";
55 exit(EXIT_FAILURE);

56 }

57

58 strepy(p, S);

59 return *this;

60 }

61

62 char& mystring::operator[](size_t i)

63 {

64 if (@(>n){

65 cerr << "Subscript " <<i<<"mustbeinrange 0to"<<n
66 << " i nclusive\n";

67 exit(EXIT_FAILURE);

68 }

69

70 return plil;

71}

72

73 const char& mystring::operator[](size_t i) const
744

75 if (@(>n){

76 cerr << "Subscript " <<i<<"mustbeinrange 0to"<<n
77 << " i nclusive\n";

78 exit(EXIT_FAILURE);

79 }

80

81 return plil;

82}

The abee lines 33—-36 may be combined to
83 if ((p = static_cast<char *>(malloc((n = another.n) + 1))) == 0) {
and lines 50-53 may be combined to
84 if ((p = static_cast<char *>(malloc((n = strlen(s)) + 1))) == 0) {

But dontdo it. C++does not share €tage to cram as much code as possible into a single expression.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/mystring/mainl.C

s A hesenea ©2014 Mark Meretzky

306 OperatorOverloading Chapter 3

1 #include <iostream>

2 #include <cstdlib>

3 #include "mystring.h"
4 using namespace std,;

5
6 i nt main(int argc, char **argv)
7
8 mystring s = "hello"; //initialization: constructor, mystring.C |. 18
9 mystring t = s; /initialization: copy constructor, mystring.C 1.7
10
11 cout <<"sand twere initialized to the values \"";
12 s.print();
13 cout <<"\"and\"™;
14 t.print();
15 cout <<"\"\n";
16
17 s = "goodbye"; /fassignment: s.operator=("goodbye"); mystring.C |. 47
18 t =s; / lassignment: t.operator=(s); mystring.C |. 29
19
20 cout <<"sand twere assigned the values \"";
21 s.print();
22 cout <<"\"and\";
23 t.print();
24 cout <<"\"\n";
25
26 return EXIT_SUCCESS;
27}
s and t were initialized to the values "hello" and "hello".
s and t were assigned the values "goodbye" and "goodbye".
We must write our own copy constructor to aoid Siamese twins
s andt start with the same valuéhgllo”), but line 11 changes one of them.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/mystring/main2.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "mystring.h"
4 using namespace std,;
5
6 i nt main(int argc, char **argv)
7
8 mystring s = "hello"; [/lthe constructor that takes a const char *
9 const mystring t =s; /lthe copy constructor of t
10
11 s[0] =" H; IIs.operator[](0) = ' H’; in mystring.C line 62
12
13 cout <<"s==\"
14 s.print();
15 cout <<"\"\n";
16
17 cout <<"t==\"

Fas e A hesenea ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 307

18 t.print();

19 cout <<"\"\n";

20

21 return EXIT_SUCCESS; /ICall the destructors for t and s.
22}

After the abee line 9 finishes calling the cggonstructor in line 7 ofmystring.C , we havetwo
cleanly separated objects.

‘e’ 't 't O ‘e’ |’ 't O

The abee line 21 will call the destructors forands, in that order Whent ’s destructor frees the block of
memory pointed to byp , it will have ro &fect on the block of memory pointed tofyp . They are two
different blocks.

s == " Hello"
t == " hello"

Had we not written the cgponstructor in line 7 omystring.C , the abee line 9 would behee &
if we had written the following copconstructor.

23 mystring::mystring(const mystring& another)
24 :n(another.n), p(another.p)

25{

26}

It is okay for the abee line 24 to cop then data member from one object to anothBut when the line
does the same far, it turnss andt into Siamese twins.

5 n 5 n
- P p
S t

‘h (e’ ' |'I" |'o0 \O

Any change to the characters ®©fvould therefore hee the same effect on. For example, the alve line
11 would also changeto "Hello"

s == " Hello"
t == " Hello"

When the abee line 21 destructs, something much wrse would happert: would drag devn s
with it. The destructor fot frees the block of memory pointed to bp , but this would be the same
block as the one that is pointed tosp . Then when line 21 tries to destrugtit would free the same
block of memory again, corrupting the heap of memory doled ontdipc . If we are lucky, there might
be an error message about the twice-freed block.

printed 4/8/14 All rights

8:43:46 AM reserved ©2014 Mark MeretZky

308 OperatorOverloading Chapter 3

We must write our own oper at or = to avoid Siamese twins
Lines 10 and 11 change the original values afdt .

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/mystring/main3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "mystring.h"

4

5 i nt main()

6 {

7 mystring s = "hello";

8 mystring t = "goodbye";

9
10 s =1t; | Is.operator=(t); in line 29 of mystring.C
11 t = "Hello"; //lt.operator=("Hello"); in line 47 of mystring.C
12
13 cout <<"s==\"
14 s.print();
15 cout <<"\"\n";
16
17 cout <<"t==\"

18 t.print();

19 cout <<"\"\n";
20
21 return EXIT_SUCCESS;
22}

After the abwoe line 10 finishes calling theperator= in line 29 ofmystring.C , we havetwo deanly
separated objects. Line 11 changes one of them.

s == " goodbye"
== " Hello"

Had we not written theperator= in line 29 ofmystring.C , the abee line 10 would behze &
if we had written the followingperator=

23 mystring& mystring::operator=(const mystring& another)

244

25 n = another.n;

26 p = another.p;

27

28 return *this;

29}
At line 11 the pointers.p andt.p would then both point tdgoodbye" and we would again hee
Siamese twins. No pointer would point'teello” . "hello" would never be freed, leaving us with a

memory leak. Meanwhile, line 11 would damage the valus.ofinally, when line 21 destructs, t
would once again drag down with it.

s == " Hello"
t == " Hello"

as e A hesenea ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 309

The difference between a copy constructor and operator=
An operator= must do three thingsver and ab@e what a copg constructor does:

(1) operator= must destruct the old value of the object that is receiving thevakie; see the
free in line 32 of themystring.C on pp. 304-305.But there is no old value for a constructor to
destruct, since a constructor is erecting\a vaue on virgin territory.

(2) No one will @er say
mystring a = a;

or if they do, they desere to be pnished. Acopy constructor can safely assume that the old amd ne
objects are not the same object. But we might say

*p = *q; //(*p).operator=(*q);

whenp andq point to the same objecfAn operator= must therefore check that the object of which it is
a member and the object that it recsis as an gjument, are indeed twdifferent objects. This is done by
checking that the tavobjects occup different addresses; see fif{&another!=this) in line 31 of
mystring.C . Were thefree in line 32 ofmystring.C not inside thef in line 31, the expression

*p =*q would destrg the object thap andq point to.

On the other hand, aperator= does not need thi§ when the data type of the argumenfeti
from that of the object to which it belongBor example, theoperator= in line 47 ofmystring.C has
an argument that is not an object. In this case, there is no possibility that the object of which the
operator= is a memberand the argument of th@perator= , are the same object. The argument of the
operator= is not an object at all; another example is on p. 735. (There is still a bug opénetor=;
see pp. 314-315.))

(3) operator= must return (by reference) thewgalue of the object that reved the nev value;

see the declaration in line 47 and tearn*this; in line 59 ofmystring.C . The last statement of
anoperator= must alays bereturn*this; , just like the last statement of aperator+= or a
prefix operator++

The big three
If we need to write anone of the following member functions, we probably need to write all three:
(1) destructor
(2) coyy constructor
(3) operator=
Here are examples of classes which needdmnore of the abee member functions.

(1) Classcounted on pp. 241-244 has a static data member that needs to be updatedendrene
object is constructed or destructedlle had to write a cop constructor and a destructor for this clasg, b
not anoperator=

(2) Classmystring on pp. 303-308 has a non-static data member pointing to data located outside
the object but which is owned by the objedéie had to write a copconstructor an@dperator= to avoid
Siamese twins, and a destructor void memory leaks.

(3) Classesabbit andwolf on pp. 194-197 and 197-199%eamnstructors and destructors that
must call member functions of other objece celiberately declared undefinedvate copy constructors
for these classes. Ditto for classde on pp. 212-217, whose constructor and destructor change the data
members of other objects.

Four public member functions implicitly defined

Here are the four public member functions that will be implicitly defined for us if we doitée
them ourseles. Ifwe're not satisfied with them, we can define different versiaptcély. We demon-
strate with clasmystring on pp. 303-308.

as e A hesenea ©2014 Mark Meretzky

310 OperatorOverloading Chapter 3

(1) The cop constructor The computer will write a public cgpconstructor that simply calls the
copy constructor of each non-static data membHEre data members will be copied in the order in which
they were declaredThe data members will be constructed in the order in whichwleee declared. If a
data member is a built-in type, pointer enumeration, we can program as if it has a publioy@omstruc-
tor. For example,

mystring::mystring(const mystring& another)

n(another.n), p(another.p) /Ibug: Siamese twins
{
}

The computer will not write a cgpeonstructor for a class that has a non-static data member with no public
copy constructor of its own.

A WNBEP

(2) The default constructoif we havewritten no other constructathe computer will write a public
default constructor that simply calls the delt constructor of each non-static data membée data mem-
bers will be constructed in the order in whichytlveere declared. If a data member is wltbn type,
pointer or enumeration, we can program as if it has a public default constructor thes iedull of
gabage. Br example,

/ In is built-in, p is pointer.
/ /Bug: their default constructors leave them full of garbage.

mystring::mystring()
{

O O~ U

The computer will not write a default constructor for a class that has a non-static data member with no pub-
lic default constructor of its own.

(3) The destructor The computer will write a public destructor that simply calls the destructor of
each non-static data membdihe data members will be destructed in the opposite order from that in which
they were declared. If a data member is a built-in type, pointenumeration, we can program as if it has
a public destructor that does nothingor example,

11 //n is built-in, p is pointer.
12 //Bug: memory leak.

13

14 mystring::"mystring()
15{

16}

The computer will not write a destructor for a class that has a non-static data member with no public
destructor of its own.

(4) Theoperator= member function whose argument is a constant reference to another object of
the same class as this one. The computer will write a pojpdicator= that simply calls the
operator= of each non-static data membdihe data members will be assigned to in the order in which
they were declared.Finally, the operator= will return *this . If a data member is a built-in type,
pointer or enumeration, we can program as if it has a pulgierator= taking an agument of the same
type. For example,

17 mystring& mystring::operator=(const mystring& another)

18 {

19 n = another.n;

20 p = another.p; //bug: Siamese twins
21

22 return *this;

23}

The computer will not write aperator= for a class that has a non-static data member with no public

Fas e A hesenea ©2014 Mark Meretzky

A WNBEF

abrwWwNRE

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 311

operator= of its own.

The onlyoperator= that the computer will write for us is one whose argumentisnat refer-
ence to another object of the same class. If we want a different argument, wenaystalite the
operator= oursehes. For example, the computer would gladiywbawitten us a(n incorrect)
mystring::operator= taking aconstmystring& , but we had to write the
mystring::operator= taking aconstchar *,

v Homework 3.8a: define aroper at or = for the pointer version of classt ack

Write anoperator= for the classstack with a pointer data member on pp. 152-1%&turn
*this by reference.

Thisoperator= is long werdue. Lets hope no one has attempted to assignstaek to another
A

v Homework 3.8b: rewrite poi nt : : assi gn as anoper at or =
Classpoint has a member function namaskign in line 21 ofpoint.h on p. 207. Rename it

operator= . Theoperator= does not need thé that ensures that the typoint ’s are two different
objects. Returtithis by reference.
A

v Homework 3.8c: define aroper at or = for classobj

Write anoperator= for classobj on pp. 179-180 that will output the stritigperator="
and the walue of the data member Output another message if the object of which it is a menabdrthe
object that it rece@es as an ggument, are the same object. Rettiinis by reference.

Theoperator= will be too long to be inline. But makt inline aryway so we wn't haveto create
anobj.C file.
A

v Homework 3.8d: make it impossible to assign one animal to another

We havealready made it impossible to create an animal that isaafamother (p. 200).Let’s dso
ensure that no animal can be assigned to another:

rabbitrl(argument(s) for constructyr
r abbit r2(argument(s) for constructr

rli=r2; /lLet's make this illegal.

A C++ object can be assigned to only bydperator= member functionsTo make it impossible
to assign one object to another of the same class, allweethdo is make aure that it has noperator=
whose argument is another object of the same class. In fact, we wrote ropstator= for classes
rabbit andwolf . But for that very reason, the computer wrote them for us. See p. 300.

To prevent the computer from doing this, declare avaie operator= for classrabbit whose
argument is a read-only reference tmhbit , and one for claswolf whose argument is a read-only ref-
erence to avolf , but do not define them. If a member function or friend of one of these classes tries to
call theoperator= for that class, the program will not link becausedperator= was reve defined.

And if ary other function tries to call theperator= , the program will not\en compile because the
operator= is private. Ineither case, it will be impossible to assign one animal to another of the same
class.

class rabbit {
static const charc ="r’;
const terminal *t;
unsigned x, y;

as e A hesenea ©2014 Mark Meretzky

(e}

=Y

312 OperatorOverloading Chapter 3

r abbit& operator=(const rabbit& another); //deliberately undefined
public:

While you're at it, go to classode on pp. 212-217 and declare avpré, undefinedperator=
whose argument is a read-only referencenode .
A

An implicit call to a constructor
Line 2 calls theoperator= in line 47 of the abee mystring.C

mystring s = "hello";
s = "goodbye"; /Is.operator=("goodbye");

But even if we had neer written this function, line 2 would still @ark. Thecomputer would beha
as if we had written

mystring s = "hello";
s = mystring("goodbye"); /Is.operator=(mystring("goodbye"));

In other words, it wuld call the constructor in line 18 afystring.C , and then pass the wé/-con-
structed object to theperator= in line 29 ofmystring.C . We wrote theoperator= in line 47 to
avad the construction of this extra object in theabtine 2.

Had we not written theperator= , the abee line 2 would hae mntained anmplicit call to the
constructar Line 4 contains aexplicit call to the constructor.

To prevent an implicit constructor call from compiling, add theykord explicit to the start of
the declaration for the constructor in line 13ngfstring.h . We would do this to mak sure that the
above line 2 n&er constructs the unwanted object.

3.9 operator[] Returns a Reference

When we apply a subscript [rsquare brackq to an object, the computer beka as if we fad
called theoperator(] member function of that object. The subscript that we wrote in the square brack-
ets is passed to tloperator|] function as its argument.

The test in lines 64 and 75 of the mbmystring.C will catch a subscript that is too ¢p. Itwill
also catch a rystive subscript, because it will e been comerted to a lage positve rumber when copied
into thesize_t argument obperator[]

If your object contains marnitems of data, and each item has an identifying humber (subscript), the
name you should use for the member function that accesses tbperator]] . This dresses the object
up to look like an aray.

Theoperator([] function needs to access thevpre members of clagaystring . It must there-
fore be either a member function or a friend of that cl&g. we hae ro choice in this matter—by the
rule on p. 287, 1 (2pperator]] must be a member function.

Why the operator(] in line 62 of mystring.C can retun a reference

Recall that theperator+ and the postfioperator++ in lines 44 and 50 afate.h on p. 274
constructed ng objects, which had to be returned ajue. Butthe operator(] in line 62 of
mystring.C on pp. 304-305 does not construct avmbar . It returns anxsting char , so hechar
can be returned by reference.

Why the operator[] in line 62 of mystring.C must retum a reference

An expression that can be the left operand of the assignment opeisitcalled arvalue; one that
can be the right operand is calledraalue. For example, a variable could be an Ivalue or an rvalue.

X =y;

as g A hesenea ©2014 Mark Meretzky

(62N - V]

©CoOoO~NOOOUTA,WNPE

1

Section 3.9 oper at or [] Returns a Refeence 313

A literal can be an rvalue but not an Ivalue:

x = 10; /110 is a literal.

In C, the return value of a function can not be an Ivalue:

y = sqgrt(x); I1sqrt(x) can be an rvalue.
sgrt(x) =y; /lwon’t compile: sqgrt(x) can not be an lvalue.
cout << &sqrt(x); //won’t compile: sgrt(x) can not be an Ivalue.

But thats exactly what line 1Imain4.C is trying to do: use the return value of a function as atuév
The comment beside line 11 exposes the misdeed. Is theveagrio male this legd?

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/mystring/main4.C

#include <iostream>
#include <cstdlib>
#include "mystring.h"
using namespace std;

nt main(int argc, char **argv)

i
{

mystring s = "hello";
cout << g[0] << "\n"; /[cout << s.operator[](0) << "\n";
s[0] =" H; /Is.operator[](0) =" H;
cout << g0] <<"\n"; /lcout << s.operator[](0) << "\n";
const mystring t = "goodbye";
cout <<t[0] <<"\n"; /[cout << t.operator[](0) << "\n";
/I[0] ='G; /lwon't compile: t.operator[](0) ='G’;
return EXIT_SUCCESS;
h
H
g

If a function returns a pointethe return @lue with an asterisk in front of it can be aallie. See
line 18 ofreturn_int.C on p. 75. If a function returns a reference, the retatnescan be an &lue,
even without an asterisk in front of it. See line 19 of the same program.

To be an Value, the return value afnystring::operator{] must therefore be a reference.
This, in fact, is wig Stroustrup decided that C++ needed references as well as pointers: to permit line 11 of
the abee main4.C to use the return value operator(] as an haluewithout an asteriskSee Strous-
trup, Design and Evolutionpp. 85-87.

Three operators that must retum a reference

People expect to be able to use thlug of the following three operators as the left operand of the
assignment operater. Don'’t disappoint them. The correspondingerator functions must therefore
return a reference.

(1) If the object contains mgrtems of data, dress it up to lookdilen aray. The member function
that accesses the data should be naspedator[] , and it should ta& one argument.

v[20] = 10; /Iv.operator[](20) = 10;

s A hesenea ©2014 Mark Meretzky

314 Operator Overloading Chapter 3

(2) If the object contains only one item of data, or if it Bgknly one itemwailable at a time, dress
it up to look like a pinter The member function that accesses the item should be napeeator*
and it should taé& no aguments.

it = 10; /lit.operator() = 10;

(3) If the object contains only adetems of data, or if it makes only axfétems &ailable at a time,
dress it up to look li& a winter to a structure. This one is hard€reate a member function named
operator-> , taking no arguments, that will load the items into a structure and return a pointer to the
structure. Aftethe arrav, write the field of the structure that we wish to access.

p->f = 10; /Ip.operator->()->f = 10;

For example, imagine a database whose records contain three fiietdsand h. Our objectp con-
tains the identification number of a record on the disk. The member furngenator-> reads the
record, deposits the three fields into the fields of a structure in meandmeturns the address of the struc-
ture. W& can then sap->f to get the value of thie field of the record identified by.

What if we want to do more than get thalue? Whatf we want tochange the field, and write the
new value back into the database as in thevaldoe 37 For this we will need the elaborate machinery in
pp. 967-968.

Two member functions with the same name and arguments

A non-const mystring object has theoperator]] member function in line 62 of
mystring.C on pp. 304-305, but not the one in line 73. When we apply the subscript operator to one of
these objects, the computer bedgaas if we lad called theperator|] in line 62. Examples of this are
in lines 9-12 of the alve main4.C .

Corversely aconstmystring object has theperator(] member function in line 73 of
mystring.C , but not the one in line 62. When we apply the subscript operator to dhesefobjects,
the computer belvas as if we tad called (or tried to call) theperator(] in line 73. Examples of this
are in lines 15-16 of the ab®main4.C .

It looks like the two functions hae the same name andgaments. Buin reality the differ in the
data types of their invisible guments. Theperator]] in line 62 receies the read/write pointer
mystring*const , theoperator(] in line 73 receaies the read-only pointezonstmystring
*const . Itis these invisible arguments which permit us teeh&vo functions with the same namé&or
other examples, see pp. 641, 857, 896, and 900.

Why the operator(] in line 73 of mystring.C must construct and retun a const

A const can n&er be an Value. Theoperator[] in line 73 ofmystring.C returns aconst
to prevent line 16 of the abege main4.C from compiling. Recall that theperator+ and the postfix
operator++ for classdate returned econst for the same reason; see lines 44 andi&@@.h on p.
274.

This is the first time weke ®en a pair of member functions with the same name and the sgume ar
ments. V& can do this only if one function onst and the other nonenst . In other words, function
name oerloading takes into account the invisible argument too.

v Homework 3.9a: fix the bug in mystring::operator=

Now that clasamystring has aroperator][] that returns a reference to one of the characters in
the string, thers'a tential bug in th@perator= that takes a pointer tochar .

Suppose someone says the following line 1. Then line 2 is usefebarmless. Line 3 should be
equally useless but equally harmless.

mystring s = "hello"; /la non-const mystring
s = s; /| /s.operator=(s);
s = &s|0]; //s.operator=(&s.operator[](0));

Fas e A hesenea ©2014 Mark Meretzky

Section 3.10 oper at or i nt Converts an Object to an Integer 315

Why will the operator= in the abee line 3 probably destyothe contents o? Have the

operator= in line 47 ofmystring.C on pp. 304-305 check if its pointer argument points to one of the
characters in themystring to which theoperator= belongs.
A

3.10 operat or int Converts an Object to an Integer

Convert an object to another data type

We dready knaev how to convert adouble to anint . Now we will convert adate to anint with
the same syntaxUsing the same syntax for all data types, built-ins and objects, wik ihaksier to con-
vert our code to “templates”; see p. 634.

One way to covert adouble to anint is in line 9: we declare aimt variable and coyp the
double into theint . Thedouble -to-int compilation warning can beveided by changingi to
static_cast<int>(pi) . We @an also cast thdouble to int without storing the result into a
named variable; see line 12.

Lines 16 and 23 skowhat we will do for classlate . Let’s decide that the resultingt should be
the number of days from January 1A.0. to thatdate . One way to covert adate to anint is in line
16: we declare amt variable and copthedate into theint . We can also cast théate toint with-
out storing the result into a named variable; see line 23.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/convert/date_to_int.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "date.h"

4 using namespace std,;

5
6 i nt main()
7
8 double pi = 3.14159265358979323846;
9 i nti=pi /Iconvert double to int
10
11 cout << pi<<"convertedtointis" <<i<<"\n"
12 << pi<<"converted to intis " << static_cast<int>(pi)
13 << "\n\n";
14
15 date d;
16 i = d; [linti= d.operator int();
17
18 d.print();
19 cout <<"convertedtointis" <<i<<"\n"
20
21 d.print();
22 cout <<"convertedtointis"
23 << static_cast<int>(d) //<< d.operator int()
24 << "\n";
25
26 return EXIT_SUCCESS;
27}

as e A hesenea ©2014 Mark Meretzky

316 OperatorOverloading Chapter 3

3.14159 converted to int is 3
3.14159 converted to int is 3

4/8/2014 converted to int is 735208
4/8/2014 converted to int is 735208

To make the abee mrversions compile, the following line 10 defines a member function with the
unusual nameperator int . It will be called implicitly wheneer we &tempt to comert adate to an
int . Please use this coentional name for a caersion function. Do not ient your own
names—date_to_int ,date2int ,elapsed_time , etc.

A corversion function does not actually a@nt the object into aything. To ensure that the object
remains unchanged, a a@rsion function should be eonst member function. Our function merely
returns an integer representing the obgalue.

Give o arguments to a cormrsion function, and declare no data type for the retatnev Thedata
type is indicated by the name of the function itself. (In the same we declared no data type for the
return value of a constructor.)

1 / /Excerpt from date.h.

2 #ifndef DATEH

3 #define DATEH

4

5 class date {

6 static const int length[];

7 Static const int pref];

8 i nt day; /Inumber of days before or after January 1, 0 A.D.

9 public:
10 operator int() const {return day;}
11 /letc.

We @n nav use adate object in ag context in which anint would be accepted.¥or example,
when used as the right operand of the assignment in tive &be 16, theoperatorint function will
be transparently called.

Ambiguous corversion
Here is a class alate objects that can be cesrted to eitheint orlong . The comment in line
18 shows that thstatic_cast<int>() callsoperator int to do its work.
1 / /Excerpt from date.h.
2
3 class date {
4 static const int length[];
5 static const int prefl;
6
7 i ntyear;
8 i nt month; /[date::january to date::december inclusive
9 i nt day; /1 to date::length[month] inclusive
10
11 public:
12
13 /[Return the Julian date of this date.
14 operator int() const {return pre[month] + day;}

* One exception: passingdate to a ‘template’ that is unsure of whether it should accepirdan or adate . See
pp. 652-653.

s A hesenea ©2014 Mark Meretzky

15
16
17
18
19
20
21

22
23
24
25
26
27

Section 3.10 oper at or i nt Converts an Object to an Integer 317

/IReturn the number of days from January 1, 0 A.D. to this date.
operator long() const {
/lreturn static_cast<long>(365) * year + operator int() - 1;
return static_cast<long>(365) * year
+ static_cast<int>(*this) - 1;

}

Theres a poblem with having tw or more cowersion functions. Line 24 is torn between genting
thedate to anint orto along . We haveto male the decision for it, in lines 26 or 27.

date d;
if (d==10){ /lwon’t compile

if (static_cast<int>(d) ==10) { //okay: if (d.operator int() == 10) {
if (static_cast<long>(d) == 10) { //okay: if (d.operator long() == 10) {

It is avkward for a class to ka nore than one caersion function to types that can be eered to
each other Most classes lva anly one. The following clasistream will be an example.

Check for error with a conversion function

A corwversion function gies us a ornvenient notation for checking the health of an objagke will
demonstrate with date and with the objeatin .

We dten speak of the “logicdlexpression of aff , while , do-while , orfor statement:
if (a==0>b) {

But the expression is actually of typeol or ary type that can be cwerted thereto. This includest |,
double , enumerations, pointers, etc. Andwdhat we hge mrversion functions, it also includes yan
object with anoperator function that cowerts tobool , int , double , any enumeration type, or gn
pointer type.

In class date , let's replace the operator int and operator long with an
operator bool that would be useful in aifi statement. W dso switch to the three-data-member
implementation of clasdate .

2 | IExcerpt from date.h.

3
4 class date {
5 static const int length[];
6 i ntyear;
7 i nt month; /[date::january to date::december inclusive
8 i nt day; /11 to date::length[month] inclusive
9
10 public:
11
12 /IReturn true if this object is internally consistent.
13
14 operator bool() const {
15 return january <= month && month <= december &&
16 1 <=day && day <= length[month];
17 }
We @an nav write the tests in lines 20 and 24.
18 date d;
19

as e A hesenea ©2014 Mark Meretzky

318 OperatorOverloading Chapter 3

20 if (d){ /lif (d.operator bool()) {
21 cout <<"dis healthy.\n";
22 }
23
24 if () { /fif ('d.operator bool()) {
25 cout <<"dis unhealthy.\n";
26 }
Of course, thé ’s in the abee lines 20 and 24 can be combined into a siifegése
27 date d;
28
29 if (d){ /lif (d.operator bool()) {
30 cout <<"dis healthy.\n";
31 } else{
32 cout <<"dis unhealthy.\n";
33 }

The operator void * member function of cin and cout

The familiar cin is actually an object; its class is namsileam . This class has a member func-
tion namedbperator void * , Smilar to theoperator bool we wrote for classlate . It returns a
non-zero pointer if thestream ’s most recent attempt at input was successful; a zero pointer if the
istream encountered end-of-input or an i/o error.

It would have teen simpler to indicate success or failure wittoparator bool , in addition to
whatever other cowersion function(s) the class mayvea But we hae just seen whit is awkward for a
class to hee more than one function that ogants to types that can be a@nted to each otherf a dream
object is to hae mly one such function, tlyavanted it to be the one with the maximum bandwidth; it will
be our only opportunity to get the streammdntents in the form of another data type. The non-zero pointer
returned by a streasdperator void * is the address of the streamith this pointerthe entire con-
tents of the stream could be reed. (Thefunction actually belongs to a smaller object of class
basic_ios<char> within the stream, and it returns the address of this obfectass whose name con-
tains<angle brackts> is called a “template class”; the smaller objecisaplaced into the larger one by
means of “inheritanc&’ Theseare imposing topics; we’ll do them later.)

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/state/void_star.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4
5 i nt main()
6 {
7 cout << "Please type an integer: ";
8 i nti;
9 cin>>i;
10
11 cout << "cin.operator void * returns " << cin.operator void *() << ".\n"
12 << "The address of cin is " << &cin << ".An"
13 << "The address of the basic_ios<char> object within cin is "
14 << static_cast<const basic_ios<char> *>(&cin) << ".\n";
15
16 return EXIT_SUCCESS;
17}

Fasae A hesenea ©2014 Mark Meretzky

18
19
20
21
22
23

24
25
26
27
28

29
30
31
32
33
34

35

36
37
38
39
40

41

42
43
44
45
46

Section 3.10 oper at or i nt Converts an Object to an Integer 319

Please type an integer: 10

cin.operator void * returns 0x213d8.

The address of cin is 0x213d0.

The address of the basic_ios<char> object within cin is 0x213d8.

We @an nav write the test in line 21.

int i /luninitialized variable
cin >>i; /[cin.operator>>(i);
if (cin){ /fif (cin.operator void *()) {
cout << "The integer input succeeded.\n";
}
The pressioncin >> i in the abee line 20 has thealuecin ; we saw this on pp. 30-31The

above lines 20-21 may therefore be combined to the single linelt26alls the operator void *
member function of the return valueagerator>>

int i /luninitialized variable

if (cin>>1){ [fif (cin.operator>>(i).operator void *()) {
cout << "The integer input succeeded.\n";

}

Classistream has another member functioperator! , which returns @&ool . Itis the oppo-
site ofoperator void * , returning false if théstream is healtly, true if unhealtl. This lets us say
line 32:

int i

cin >>i;

if (lcin) { /lif (cin.operator!()) {

cerr << "The attempt at integer input failed.\n":

}
Incidentally the abwee line 32 would hee worked even if cin had nooperator! function. Inthis case,
the line would hee alledoperator void * and applied the unaty operator to the return value.

if (lcin) { /fif (‘cin.operator void *()) {

The abee lines 31-32 can be combined to the single line 38. It callegkeator! member function of
the return value afperator>>

int i
if ((cin>>1)){ /lif (cin.operator>>(i).operator!()) {

cerr << "The attempt at integer input failed.\n":

}

Without the parentheses, the abdne 38 would hee begun by callingoperator! , which returns a
bool . The>> would then hse right-shifted thebool .

if (lcin>>1){ /lwon’t compile: if (cin.operator!() >> i) {

Of course, thé ’s in the abee lines 26 and 38 can be combined into a siifegése

int i

if (cin>>1){ [fif (cin.operator>>(i).operator void *()) {
cout << "The integer input succeeded.\n";

} else{

s A hesenea ©2014 Mark Meretzky

47
48

©CoOo~NOOOUTA,WNPE

14
15

16
17

18
19
20
21
22

320 OperatorOverloading Chapter 3

cerr << "The attempt at integer input failed.\n":

}

If the follow-upif in the abwe lines 44-48 is too much trouble to write aroumerg attempt at input, the
conscientious programmer could also perform the error checking by throwoeptiens. Seeop.
623-625.

v Homework 3.10a: which corersion function will be called?

Give dass date the following two conversion functions. operator void * must be a
nonconst member function in order to retutinis . In aconst member functionthis would be a
constdate * which could not be implicitly corerted to avoid *

class date {
/ letc.
public:
/ letc.
operator bool() const{ //implicit argument is read-only pointer
cout << "operator bool\n";
r eturn true if the date is healthy, false otherwise;

}

operator void *() { /limplicit argument is read/write pointer
cout << "operator void *\n";
return this if the date is healthy, O otherwise;

}

Which function is called when you say
date d(date:january, 1, 2014);
it (d){

Is this disconcerting?
Which function is called when you say
const date d(date::;january, 1, 2014);
it (d){

Is this more disconcerting?

The computer picks the caarsion function whose (implicit) argument best matches the otjets
just like function name erloading. W\ can level the playing field by ging operator void * the
same implicit argument agperator bool . To get it to compile, we will hee © corvert this from a
read-only pointer to a read/write pointdie cast that does this a@nsion isconst_cast

operator void *() const {
cout << "operator void *\n";
return const_cast<date *>(this) if the date is healthy,
0 otherwise;
}
Which function is nw called in the abee lines 15 and 17? The moral is that we shouldavean
operator bool and amoperator void * in the same class.
A

as e A hesenea ©2014 Mark Meretzky

©CoOo~NOOOTA,WNPE

Section 3.10 oper at or i nt Converts an Object to an Integer

The computer will not apply more than one implicit corversion

HENRY V [t0 PRINCESSKATHERINE].

If thou would hae sich a one, takme;
and tale nme, tale a ldier;

take a ®ldier, take a kng.

321

—Henry V, Vi163-164

When you're a Jet, you're the swingin’est thing—
Little boy, you're a man,
Little man, you're a king!

—\West Side Story

The operator gas member function of cladiguid will be our first example of a function that
converts one type of object to anotherigquid to agas. Its return value is the anonymous temporary

gas object constructed in line 11 &ifiuid.h , when the return statement pasiqsid::n

to the

constructor for clasgas. (See p. 138, 1 (4), for a call to a constructor in a return statement.) Since this
return value is an automatic variable, operator gas must return via pass-by-value, not pass-by-ref-

erence.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/convert/gas.h

#ifndef GASH
#define GASH
#include <iostream>
using namespace std;

class gas { //Mason Williams
i ntn;

public:
gas(int initial_n): n(initial_n) {}

10}
11 #endif

©CoOoO~NOOOUOTA, WNPE

10
11

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/convert/liquid.h

#ifndef LIQUIDH
#define LIQUIDH
#include <iostream>
#include "gas.h"
using namespace std;

class liquid {
i ntn;
public:
liquid(int initial_n): n(initial_n) {}
operator gas() const {cout << "liquid to gas\n"; return n;} //return gas(n);

12}
13 #endif

N -

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/convert/solid.h

#ifndef SOLIDH
#define SOLIDH
#include <iostream>

as A hesenea ©2014 Mark Meretzky

322 OperatorOverloading Chapter 3

4 #include "liquid.h"
5 using namespace std;
6
7 class solid {
8 i ntn;
9 public:
10 solid(int initial_n): n(initial_n) {}
11 operator liquid() const {cout << "solid to liquid\n"; return n;}
12}
13 #endif

Lines 15-16 need no cast$heir comments slwwhat's going on: the compiler is willing to apply
an implicit cowersion.

| wanted line 18 to caert thesolid to aliquid , and then thdiquid to agas. But the com-
puter will not apply more than one implicit usiefined cowmersion, so line 18 did not compild.tried to
help it along with the cast in line 19, but that woutax@mpile either.

The path fromsolid to gas is more than one stepie rmust therefore spell out the intermediate
stepliquid in line 20. The comment shows whsatping on: theoperator liquid member func-
tion of thesolid returns an angmousliquid , and then theoperator gas member function of the
anonymoudiquid returns an angmousgas. Our first example of calling a member function of an
anonymous temporary object returned by a function was in line 2 on pp. 137-138.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/convert/path.C
1 #include <iostream>
2 #include <cstdlib>
3
4 #include "gas.h"
5 #include "liquid.h"
6 #include "solid.h"
7 using namespace std;
8
9 i nt main()
10{
11 solid ice = 10;
12 liquid water = 20;
13 gas steam = 30;
14
15 water = ice; /lconvert solid to liquid: water = ice.operator liquid();
16 steam = water; //convert liquid to gas: steam = water.operator gas();
17
18 /Isteam = ice; /lwon’t compile
19 /Isteam = static_cast<gas>(ice); /lwon’t compile
20 steam = static_cast<liquid>(ice); //ice.operator liquid().operator gas();
21
22 return EXIT_SUCCESS;
23}
solid to liquid line 15
liquid to gas line 16
solid to liquid line 20
liquid to gas line 20

as e A hesenea ©2014 Mark Meretzky

1

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29}

Section 3.10 oper at or i nt Converts an Object to an Integer 323

Convert a built-in to an object

Now that we hae mrnverteddate toint , let's convertint todate . We can't do this with an
operator date member function of clagat . The reason is simple: there is no cliags .

But we already kne how to perform this comersion. Simplydefine a constructor for clagate
taking oneint in line 36. The resultingate will be the specified number of days before or after January
1, 0AD. The castin line 21 calls this constructas $iowvn in the comment. Of course, the constructor can
also be called explicitly in line 25; see pp. 137-138, 1 (1).

A constructor that can be called with one argument is caltmheerting constructorlt might have
only one argument, or it may vea efault value for gery additional agument. Onesxample of a con-
verting constructor is the cgpeonstructoy dthough it does not perform grcorversion. o permit line 14

to compile, the corerting constructor must not bexplicit (p. 137). If it wasexplicit , line 14
would hare © be tanged to
date d(i);
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/convert/int_to_date.C
#include <iostream>

#include <cstdlib>
#include "date.h"
using namespace std;

i nt main()

{
date today;
i nti=today; /lint i = today.operator int();
cout << "The original date ";
today.print();
cout <<"convertedtointis" <<i<<"\n\n";
date d =i;
cout <<i<<"converted back to date is ";
d.print();
cout <<"\n";
cout <<i<<"converted back to date is ";
static_cast<date>(i).print(); /[date(i).print();
cout <<"\n";
cout <<i<<"converted back to date is ";
date(i).print();
cout <<"\n";
return EXIT_SUCCESS;

We'l| switch back to the classate with one data member:

30 //Excerpt from date.h.

31

32 class date {

33 static const int length[];

34 int day; /Inumber of days before or after January 1, 0 A.D.
35 public:

as e A hesenea ©2014 Mark Meretzky

36
37

=Y

abhwWwNRE

CQOwoo~NOOUODWNPE

324 Operator Overloading Chapter 3

date(int initial_day): day(initial_day) {}
operator int() const {return day;}

It is pleasant that thit in the abee line 12 contains enough information for lines 14, 21, and 25

to reconstruct thealue of the originatlate object. Thids another reason whhe cowersion function for
classistream returns avoid * . The return value could be the address ofisteam , from which
the entire value of thistream could be receered.

The original date 4/8/2014 converted to int is 735208.

735208 converted back to date is 4/8/2014
735208 converted back to date is 4/8/2014
735208 converted back to date is 4/8/2014

3.11 oper at or << and oper at or >> Peform I/O

Stream objects ae impossible to copy

The cowentional way to input and output a C++ object is byetoading the operators> and<<.
Doing it this way will let us use the same syntax for i/o with all data typas;ifs and objects. The pay-
off will come when we do templates; see p. 634.

date d;
cin>>d; /loperator>>(cin, d);
cout << d; /loperator<<(cout, d); No more d.print();

Before we define anperator>> andoperator<< for classdate , we will examinecin andcout
more closely by doing i/o with integers.

cin , cout , cerr , andclog are actually objectscin is of classistream , and cout , cerr

andclog are of clas®stream . They are calledstream objectdbecause an i/o channel carries a stream

of characters.

The ¢ stands for‘tharacter’, since thg perform i/o one character at a tim&here are alsacin ,
wcout , etc., which perform i/o one wide character at a time.

clog is just like cerr , except thatclog is huffered andcerr is not. clog is intended for lage-
volume logging and tracing outputerr for shorter error messages.

Lines 10 and 11 shwotwo ways of trying to call the copconstructor forcout . But the cop con-
structors for classastream andostream are prvate, like those for classewolf andnode, so tey
cannot be called from outside the bodies of the member functions or friends of their dldsdesrefore
have ro way to construct a cgpof anistream orostream .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/state/copy.C

#include <iostream>
#include <cstdlib>
using namespace std;

void f(ostream ost);
i nt main()

{

cout << "hello";
ostream another = cout; /lwon’t compile

asae A hesenea ©2014 Mark Meretzky

Section 3.11 oper at or << and oper at or >> Paform I/O 325

11 f(cout); /lwon’t compile: attempt to pass cout by value
12 return EXIT_SUCCESS;

13}

14

15 void f(ostream ost)

16 {

17 ost << "goodbye";

18}

My compiler complained only about line 10, but when | comment out that line it complains about 11.
The cryptic error message says that they@omstructor for clasestream calls the one for class
basic_ios<char> , Which in turn calls the one for clags_base , which is the cop constructor that
is private. We will see wty one cofy constructor calls another when we do inheritance on p. B@6now,
take a peek at the relationships between the classes in the diagrams that agcpp383—-385.

In file included from
lusr/gccl/4.5/lib/gec/sparc-sun-solaris2.11/4.5.2/../..1..1../include/c++/4.5.2/i
0s:39:0,

from
lusr/gcc/4.5/lib/gec/sparc-sun-solaris2.11/4.5.2/../../../..[include/c++/4.5.2/0
stream:40,

from
lusr/gccl/4.5/lib/gec/sparc-sun-solaris2.11/4.5.2/../..1..1../include/c++/4.5.2/i
ostream:40,

from copy.C:1:
lusr/gcc/4.5/lib/gec/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/b
its/ios_base.h: In copy constructor 'std::basic_ios<char>::basic_ios(const
std::basic_ios<char>&):
lusr/gcc/4.5/lib/gec/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/b
its/ios_base.h:785:5: error: 'std::ios_base::ios_base(const std::ios_base&)’ is
private
lusr/gccl/4.5/lib/gec/sparc-sun-solaris2.11/4.5.2/../..1..1../include/c++/4.5.2/i
osfwd:77:11: error: within this context
lusr/gccl/4.5/lib/gec/sparc-sun-solaris2.11/4.5.2/../..1..1../include/c++/4.5.2/i
osfwd: In copy constructor 'std::basic_ostream<char>::basic_ostream(const
std::basic_ostream<char>&)":
lusr/gccl/4.5/lib/gec/sparc-sun-solaris2.11/4.5.2/../..1..1../include/c++/4.5.2/i
osfwd:86:11: note: synthesized method 'std::basic_ios<char>::basic_ios(const
std::basic_ios<char>&)’ first required here
copy.C: In function 'int main()":
copy.C:10:20: note: synthesized method
'std::basic_ostream<char>::basic_ostream(const std::basic_ostream<char>&)’
first required here

Why are we forbidden to construct a gopf cout ? Well, if cout is copied in lines 10 or 11, it
might still contain buffered data that has not yet been output to the outside Whenew objects
another in line 10 andost in line 15 would then be constructed gmant with their own copies of the
string"hello” . All three objectsgout , another , and ost , would esentually outputhello , and the
user would see the word three times.

To avoid line 115 atempt to cog cout , we rrust pass the gument off by reference. See pp.
185-189. Theeference must be read/write because the i/o operation in line 21 changes the stream object.
Any istream orostream passed to or from a function must be passed as a read/write refdrente
rarity and danger of a read/write reference argument, see pp. 73-74, 158.

19 void f(ostream& ost)

as e A hesenea ©2014 Mark Meretzky

326 Operator Overloading Chapter 3

20{
21 ost << "goodbye";
22}

Perform input with operator>>

When we write thexgressiorcin>>i in line 2, the computer betes as if we lad written the call
to the member functiooperator>> in the comment beside iiThis operator>> performs intger
input.

1 i nti; /luninitialized variable

2 cin>>i; /[cin.operator>>(i);
The agumenti is passed as a read/write referencewailg operator>> to install a ne value into it.
For the same reason, the variables passed to the C fusctoh are passed by reference.

There is a similar member function fareey built-in data type excemthar . For example, this

operator>> performsdouble input.

3 double d; /luninitialized variable

4 cin>>d; /[cin.operator>>(d);
For reasons too trivial to go into mpthe operator>> s that input achar and an array ofhar s hap-
pen not to be member functiong/e'l | see wty on p. 30. Thishas no effect on the code you write; only
the expansion in the comments is slightly different.

5 char c; /luninitialized variable

6 cin>>c; /loperator>>(cin, c), not cin.operator>>(c)

7

8 char s[10]; /luninitialized variable

9 cin>>s; /loperator>>(cin, s), not cin.operator>>(s)
Call operator>> and operator void * in an if statement

The expressiorcin>>i in line 3 gives a rew vdue toi . But we also kna that the expression has
a value of its avn. We even know what this value iscin , the left operand of the>. This value is used
wheneer we input two or more values in the same expressioim &> i >> j ; see p. 31). And no
that weve dne operatorrloading, we knas where the value came from: it is the return value of the
operator>> function.

The operator>> ’s that are member functions (foveey built-in type eceptchar) return the
istream to which thg belong. For example, the call tein.operator>>(i) in the abee line 2
returnscin . Similarly, theoperator>> ’s that are not member functions (fdrar andchar *) return
theistream that was passed to therfror example, the call tmperator>>(cin, c) in the abee
line 6 also returnsin .

Since the value afin>>i iscin , we an combine lines 3-4 to the single line 8. The comment in
that line shows what'really going on: wee calling a member functioroferator void *) of an
anorymous temporary object returned by another functopefator>>). Ourfirst example of this as
in line 2 on pp. 137-138.

1 i nti;

2

3 cin>>i; /[cin.operator>>(i);

4 i f (cin){ /fif (cin.operator void *()) {

5 cout << "The integer input succeeded.\n";

6 }

7

8 if (cin>>i){ [fif (cin.operator>>(i).operator void *()) {
9 cout << "The integer input succeeded.\n";

as e A hesenea ©2014 Mark Meretzky

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27

28
29
30
31
32

Section 3.11 oper at or << and oper at or >> Peform I/O 327

}

We @n also combine lines 13-14 to line IBhe inner parentheses in line 18 are necessary te tnak>
execute before thé.

int i
cin >>i; /[cin.operator>>(i);
if (lcin) { /lif (cin.operator!()) {
cerr << "The attempt at integer input failed.\n";
}

if (Ycin>>1)){ //if (cin.operator>>(i).operator!()) {
cerr << "The attempt at integer input failed.\n";

}
Of course, we can write a singfeelse

int i

if (cin>>1){ [fif (cin.operator>>(i).operator void *()) {
cout << "The integer input succeeded.\n";

} else{
cerr << "The attempt at integer input failed.\n";

}

With data typechar , the corresponding expressions/éaightly different expansions in the com-
ments in lines 30-32, since thperator>> for char happens not to be a member function.

char c;
cin >>g¢; /loperator>>(cin, c);
if (cin>>c){ /lif (operator>>(cin, c).operator void *()) {

if (!(cin>>c)){ /if (operator>>(cin, c).operator!()) {

Call operator>> in a while loop

Here’s awhile loop that inputs integers until the input is exhausted or an error is encour{tered.
my platform, the end-of-inputdystroke is control-d .) Line 9 calls theoperator void * member
function of the return value of thaperator>> member function ofin , which keeps returning non-zero
as long as healjhintegers are still coming in.

We hreak out of the loop wheoperator void * returns zero. This tells us that an attempt at
input has failed, but it doegrtell uswhy the attemptdiled. W\ can get more detailed information from
the member functions in lines 13-180f returns true if the most recent attempt at input encounted end-
of-file. bad returns true if the most recent attemgtsanable to read characters (or the end-of-file indica-
tion) from the outside wrld. fail returns true if the most recent attemgtefd for aly reason, including
the two above. Another possible cause f#il is if the characters that were read do not spell ouga le
value for the receiving variable, in this case the integer in line 9.

It is to be hoped that we brelaut of thewhile loop because of end-of-input. In this case,dbé
andfail bits will be on, and thead bit will be off. All three bits are\ailable in the bit pattern returned
by therdstate member function in line 17For corvenience, there is an enumeration corresponding to
each bit. The enumerations can be “bitwise of'eajether to form a desired bit pattern. Just remember to
do the “or” within parentheses, since it has lower precedencethartee p. 9.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/state/while_int.C

1 #include <iostream>

Fas e A hesenea ©2014 Mark Meretzky

328 OperatorOverloading Chapter 3

2 #include <cstdlib>

3

©O© oo~NOOA~

©CoOo~NOOOTA, WNPE

using namespace std;

i nt main()
{
i nti;
while (cin >> 1) { /lwhile (cin.operator>>(i).operator void *()) {
cout <<i<<"\n" /loperator<<(cout.operator<<(i), "\n");
}
cout << "cin.eof() ==" << cin.eof() << "\n"
<< "cin.bad() ==" << cin.bad() << "\n"
<< "cin.fail() == " << cin.fail() << "\n";

return cin.rdstate() == (ios_base::eofbit | ios_base::failbit)
? EXIT_SUCCESS : EXIT_FAILURE;

The exit status iEXIT_SUCCESSTf we broke aut of the loop because of end-of-input.
10 20 30 Yau type this input and pre®®ETURN
10
20
30 After seeing these three lines of output, you press the end-of-gypuible.
cin.eof() ==
cin.bad() ==
cin.fail() ==
control-d Yau type the end-of-filegystroke, and the exit status EXIT_SUCCESS

The exit status I€XIT_FAILURE if we broke aut of the loop for ay other reason, e.g., valid
input.

10 20 abc Yau type this input and pre®®ETURIN

10

20 and befoe you even type the end-of-fileyktroke, the pogram terminates.
cin.eof() ==

cin.bad() ==

cin.fail() ==

The loop in the abee ine 9 can read a series @lwes of ap data type, or at least ylata type that

has aroperator>> . The correspondingx@ression with a&har has a slightly different expansion in the

comment in line 9, since tteharoperator>> is not a member function.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/state/while_char.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main()
{

char c;

while (cin >> ¢) { /lwhile (operator>>(cin, c).operator void *()) {

as e A hesenea ©2014 Mark Meretzky

Section 3.11 oper at or << and oper at or >> Peform I/O 329

10 cout <<gc; /loperator<<(cout, c);
11 }
12
13 return cin.rdstate() == (ios_base::eofbit | ios_base::failbit)
14 ? EXIT_SUCCESS : EXIT_FAILURE;
15}
abec Yau type this input and pre®®ETURN
abc It echoes only the non-whitespace characters.
control-d Yau type the end-of-filegystroke, and the exit status EXIT_SUCCESS

The C++ equialent of the while-getchar loop

As the abwe autput shows, theperator>> for char discards the whitespace characters that it
inputs. Sometimeghis is what we ant. Oneway to avoid this would be to use theoskipws i/o
manipulator on p. 359.

Another way would be to call the member functget instead ofoperator>> . get reads one
character from itsstream without skipping whitespace. Lékthe charoperator>> , get accepts its
char argument as a read/write reference and returnistiieam

Theput member function in line 1Qvas invented only for symmetry witlget ; saying cout<<c
would hare worked just as well. See p. 854 for another way ty @pry character.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/state/get.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 char c;
8
9 while (cin.get(c)) { //while (cin.get(c).operator void *()) {
10 cout.put(c);
11 }
12
13 return cin.rdstate() == (ios_base::eofbit | ios_base::failbit)
14 ? EXIT_SUCCESS : EXIT_FAILURE;
15}
abec Yau type this input and pre®®ETURN
abec It now echoes every character of input, including the spaces.
control-d Yau type the end-of-filegystroke, and the exit status EXIT_SUCCESS
The abwoe loop is the C++ equélent of the classiavhile-getchar loop in C. The returnalue

of getchar must not be stored in@har . Let's assume that ahar is eight bits. Then there are 256
possiblechar values. Butgetchar will return one of 257 possible values, a range that will not fit in a
char .

If getchar andputchar are macros, we cannot tatheir addressesputchar may be a macro
that evaluates its argument more than once.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/state/getchar.c

s A hesenea ©2014 Mark Meretzky

330 OperatorOverloading Chapter 3

1 #include "stdio.h"
2 #include "stdlib.h"

3
4 i nt main()
5 {
6 i ntc; /* must be int, not char, for getchar */
7
8 while ((c = getchar()) !I= EOF) {
9 putchar(c);
10 }
11
12 return ferror(stdin) ? EXIT_FAILURE : EXIT_SUCCESS;
13}
abec Yau type this input and pre®®ETURN
abec It echoes every character of input, including the spaces.
control-d Yau type the end-of-filegystroke, and the exit status BEXIT_SUCCESS
Incidentally we an nav explain why the charoperator>> , unlike the other ones, is not a mem-
ber function of classstream . The charoperator>> calls the member functioget to do most of

=
CQowoo~NOOUODWNPE

11
12
13
14
15

its work, so it needs no access to thegbei members of clagstream . (Similarly, thechar
operator<< is not a member function of classtream . It calls the member functioput to do its
work.)

Discover why an attempt at input failed

In addition toeof , classistream has two other member functions that return true or false to indi-
cate wly the most recent attempt at inpatléd. Lines11-32 sha the complete incantation that the con-
scientious programmer will write after &n.

We nust testeof beforefail (lines 12 and 21), becau&sl would be true if we encountered
end-of-inputor if the first non-whitespace character was wrong. If we tefgtiéd first, we would be
unable to distinguish between these tauses of failure.

We nust testhad beforefail (lines 16 and 21), becautel would be true if we could not input
character®r if the first non-whitespace character was wrong. If we tdsied first, we would be unable
to distinguish between thesedwauses of failure.

We testeof beforebad becauseof is the more common occurrence.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/state/why.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main(int argc, char **argv)

{
cout << "Please type an integer: ";
i nti; /luninitialized variable
cin>>i; /[cin.operator>>(i);

if (cin){ //if (cin.operator!()) {
if (cin.eof()) {
cerr <<argv[0] <<": end of input\n”;

}

s A hesenea ©2014 Mark Meretzky

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36}

37

Section 3.11 oper at or << and oper at or >> Peform I/O 331

else if (cin.bad()) {
cerr << argv[0] << ™ can't input characters "
"from the outside world\n";
}
else if (cin.fail()) {
cerr << argv|[0] << " first non-whitepace character "
<< "encountered was neither a digit,\n"
<< "nor a minus sign followed by a digit.\n";
}
else {
cerr << argv[0] << ": unknown input error\n";
}
return EXIT_FAILURE;
}
cout <<"The integer was " <<i<<"\n";
return EXIT_SUCCESS;
We @an combine the abe lines 9-11 to
if (!(cin>>1)){ /lif (cin.operator>>(i).operator!()) {
Please type an integer: 10
The integer was 10.
Please type an integer: control-d (the end-of-file &ystroke)
why: end of input
Please type an integer: abc
why: first non-whitepace character encountered was neither a digit,
nor a minus sign followed by a digit.
If we sabotagein by insertingcin.rdbuf(0); at the abee line 8% (equialent in its destruc-
tive dfect tostdin->_base=stdin->_ptr=garbage; in C), bad would return true in line 17.

Please type an integer:
why: can’t input characters from the outside world befoe | have time to type anythin

«

Taint cin by hand

The following program mads istream::fail return true even though nothing hasafled.
We'll need to do this when we write our owperator>> functions.

The functions in the previous section returned values that are determined by the settings of three bits
inside theistream . These bits are turned on automatically whegtlang goes wrong. When we
encounter end-of-file, théebf” and “fail’* bits are turned on. When some other reasowepte us from
reading characters, thbad” and “fail’’ bits are turned onWhen we hae read characters that do not spell
out a lgd value, the “fail’ bit is turned on.

The bits can also be turned on manually by calling dbtstate member function of the
istream (line 10). It turns on the specified bit(s), Veay the others unchanged. The argument is an

as g A hesenea ©2014 Mark Meretzky

332 OperatorOverloading Chapter 3

combination of three enumeratiomlves that are members of clags_base , bhitwise-or'ed together
These values correspond to the three bits ifstneam : eofbit , badbit , or failbit ,

Now that we knav about the bits, les e all six of theconst member functions that return them.
Therdstate in line 17 returns a bit pattern of tyjpestate ; we examine the individual; bits in lines
21, 24, and 27. The next four functions retbool . The functiongood returnstrue if all three bits are
off. Thefunctionseof andbad returntrue if the corresponding bit is on. The functital returns
true if either one of thdad orfail bits is on. The functionperator! returns the same value as
fail . Fnally, the operator void * function returns exactly the opposite: zeroojferator!
returnstrue , non-zero otherwise.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/state/fail.C

1 #include <iostream>

2 #include <cstdlib>

3 using namespace std,;

4

5 void health(const istream& is);

6

7 i nt main()

8 {

9 health(cin);
10 cin.setstate(ios_base::failbit);
11 health(cin);
12 return EXIT_SUCCESS;
13}
14
15 void health(const istream& is)
16 {
17 const ios_base::iostate state = is.rdstate();
18
19 cout
20 << "eof returns " << is.eof() << ", eofbit is "
21 << static_cast<bool>(state & ios_base::eofbit) << "\n"
22
23 << "bad returns " <<is.bad() << ", badbit is "
24 << static_cast<bool>(state & ios_base::badbit) << "\n"
25
26 << "fail returns " << is.fail() << ", failbit is "
27 << static_cast<bool>(state & ios_base::failbit) << "\n"
28
29 << "good returns " << is.good() << "\n"
30 << "operator void * returns " << is.operator void *() << "\n"
31 << ‘operator! returns " << is.operator!() << "\n\n";
32}

s A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA,WNPE

[N
o

11
12
13
14
15
16
17
18
19
20
21
22

Section 3.11 oper at or << and oper at or >> Peaform I/O 333

eof returns 0, eofbit is 0

bad returns 0, badbit is 0

fail returns 0, failbit is O

good returns 1

operator void * returns 0x21a38
operator! returns O

eof returns 0, eofbit is 0
bad returns 0, badbit is 0
fail returns 1, failbit is 1
good returns 0

operator void * returns 0
operator! returns 1

When will an operator>> stop reading characters?

Let's examine the fine points of theperator>> functions that input the built-in data typg¢ and
the standard library data typemplex<double> (a compl& number whose tevdata members are
double ’s). We will then male cur operator>> for classdate follow the same corentions.

First, lets sse when théntoperator>> will stop inputting characters, especially when unsuc-
cessful. Vé will feed the following program one line of input, ending with sviie. Mostof these char
acters will be input by theperator>> in line 11. The remaining characters will be input and output by
the loop in lines 34-36. (Line 34 is expanded in the comment in\BR.}Yaveto useget to input these
characters, sinogperator>> would discard whitespace.

Before line 34 callsget , howeve, wene 29 must caltlear . It does the opposite of the
setstate in line 10 of the previous program, restoritig to health by turning éfeofbit , badbit |,
and failbit . This permitscin to attempt further input after aifure. TheC Sandard Library has a

similar function namedlearerr

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/state/eat.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main(int argc, char **argv)

{
i nt status = EXIT_FAILURE; //guilty until proven innocent
cout << "Please input an integer: ";

int i [luninitialized variable

if (cin>>i){ /lif (cin.operator>>(i).operator void *()) {
cout <<"Theintegeris" <<i<<"\n"
status = EXIT_SUCCESS;

} else{

cout << argv[0] << " integer input failed, ";
if (cin.eof()) {
cout <<"eof\n";
} elseif (cin.bad()) {
cout << "pad\n";
} elseif (cin.fail()) {
cout << "fail\n";
} else{

s A hesenea ©2014 Mark Meretzky

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40}

334 OperatorOverloading Chapter 3

cout << "unknown\n";

}

cout << "operator>> did not eat the following characters: \"";

cin.clear();
char ¢;

/Iwhile (cin.get(c).operator void *() && ¢ !="\n’) {

while (cin.get(c) && c !'="\n’) {
cout.put(c);

}

cout <<"\"\n";
return status;

(1) The folloving line of input has three blanks before the numbiére operator>> for int
inputs and ignores this whitespace. ©perator>> for date will do the same thing.

Please input an integer: 10
The integer is 10.
operator>> did not eat the following characters: .

(2) This line of input has three blanks after the numbeerator>> forint stops inputting char
acters as soon as it encounters one that couldgallylee part of thent . Our operator>> for date
will do the same thing.

Please input an integer: 10
The integer is 10.
operator>> did not eat the following characters: "

(3) This line of input hagbc after the number Once again, theperator>> for int stops
inputting characters as soon as it encounters one that couldalyte part of thent . Our
operator>> for date will do the same thing.

Please input an integer: 10abc
The integer is 10.
operator>> did not eat the following characters: "abc".

(4) On my platform, amnt is 32 bits. The largest number that will fit in it is 2,147,483,647; the
smallest is -2,147,483,648. (Look up these numbers in the headatlifits> in the macros
INT_MIN andINT_MAX; they will be used on p. 539)Theoperator>> forint keeps inputting char
acters as long as there syntacticallylegd,; it then rejects aalue that is out of rangedur operator>>
for date will do the same thing.

Please input an integer: 2147483647000abc
eat: integer input failed, fail
operator>> did not eat the following characters: "abc".

(5) Here is a case where thperator>> forint inputs at least one character that could be part of
an intger, an hen fils when it does not find the rest of the gae It inputs the ngative sgn but no addi-
tional characters, and makes no attempt gougtate (ingetc , as we would say in C) the mgtive sgn.

as o A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUOTA, WNPE

O©CoOoO~NOOOUTA, WNPE

Section 3.11 oper at or << and oper at or >> Paform I/O 335

Ouroperator>> for date will do the same thing.

Please input an integer: —abc
eat: integer input failed, fail
operator>> did not eat the following characters: "abc".

(6) Finally, the operator>> for class complex<double> permits whitespace between the

tokens of a value read from input. Qoperator>> for date will do the same thing.
—On the Web at

http://i5.nyu.edu/ COmm64/book/src/state/complex.C
#include <iostream>
#include <cstdlib>
#include <complex>
using namespace std;
i nt main()
{
complex<double> c;
cout << "Please input a complex number: ";
cin >>g¢;
cout << "The number was " << ¢ << "\n";
return EXIT_SUCCESS;
Please input a complex number: (10, 20)
The number was (10,20).
To be mnsistent withnt andcomplex<double> |, our operator>> for classdate will do the
following.
(1) Inputand discard leading whitespace.
(2) Notinput trailing whitespace or grother character after trdate that is not part of the
date .
(3) Keep inputting characters as long ayttmuld be part of a syntacticallydd date
(12/31/2014), even if the numbers are out of rande?(310/2014).
(4) Settheistream s failbit if the date is out of range.
(5) Make no atempt to regurgitate the leading part afaie when it discwers that the rest of the
date is not there12/31/abc). It will set theistream s failbit
(6) Permitwhitespace before each slagR:/ 31 /2014

Input and output a date

Until now we haveoutput our objects by calling ad hoc member function suchra() . We

will now input and output an object with the gentional C++ operators< and>>.

date d;

cout << "Today is ";
d.print(); /IThe old way is bad.
cout << "\n";

cout << "Today is ";
cout << d; /[The new way is good.
cout << "\n";

Fas g A hesenea ©2014 Mark Meretzky

10

11
12
13

14
15
16

O©CoOoO~NOOOUTA, WNPE

30

336 OperatorOverloading Chapter 3

One advantage of the almlines 7-9 is that themay be combined to one statement.
cout <<"Todayis"<<d<<"\n"
Another is that we can specifyyadestination for the output:

cout <<"Todayis"<<d<<"\n"
cerr << "Todayis" << d<<"\n"
clog <<"Todayis"<<d<<"\n"

The same advantages will accrue to our our operatoiUsing the same syntax to perform i/o with all data
types, built-ins and objects, will makt easy to rewrite our code in the form of “templateSeep. 634.

There is no way we could & invented a nes printf ~ format for outputting alate . printf is
not extensible. Seep. 29-30, 1 (3).

date d;
scanf("%D", &d); /ICan’t invent a %D for scanf.
printf("Today’s date is %D.\n", d); //Can’t invent a %D for printf.
As in every language, much more can go wrong during input (lines 10-23) than output (lines 25-26).
—On the Web at
http://i5.nyu.edu/ Cmme64/book/src/state/main.C
#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;
i nt main(int argc, char **argv)
{
date d;
cout << "Please input a date in the format m/d/y and press RETURN: ";
cin >>d; /loperator>>(cin, d);
if (cin){ //if (cin.operator!()) {
if (cin.eof()) {
cerr << argv[0] << ": end of file\n";
} elseif (cin.bad()) {
cerr << argv[0] << " can't hear from outside world\n";
} elseif (cin.fail()) {
cerr << argv[0] << ": input not in the format m/d/y\n";
} else{
cerr << argv[0] << ": don’t know why input failed\n";
}
}
/loperator<<(operator<<(operator<<(cout, "The date was "), d), ".\n");
cout <<"The date was " << d <<"\n";
return cin ? EXIT_SUCCESS : EXIT_FAILURE;

The abee lines 11-13 may be combined to

if (!(cin>>d)){ /fif (operator>>(cin, d).operator!()) {

as g A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA~,WNPE

Section 3.11 oper at or << and oper at or >> Peform I/O 337

Member functions or friends?

Theoperator<< andoperator>> functions for most of the built-in types needed to use the pri-
vate members of classesstream andistream . That's why they were member functions of these
classes. Buburoperator<< andoperator>> for classdate can be written without gnmention of
the private members of the streams. Vheill not be member functions or friends of those classes.

On the other hand, owperator<< andoperator>> will need to use the prate members of
classdate . They must therefore be either members or friends of that class. But by p. 287, 1 y4), the
cant be nember functionsWere they member functions, tyewould be member functions of their left op-
erand, and the left operand ©f and>> is always a stream (as in the allines 25-26 and 11)They
must therefore be friends of cladaste .

Pass by value or pass by reference?

The date amgument ofoperator<< in line 14 does not lve © be a eference. W made it one
only to avoid constructing and destructing an unnecessary obfhedate . Itis a ead-only reference to
ensure that theperator<< cannot damage thaate . On the other hand, theéate argument of
operator>> in line 15 must be a reference, and a read/write one to boot, so tlopetator>> can
install a nev value into it. For the same reason, thegaments of the C functioscanf had to be pointers.

The stream gument and the return value gperator<< andoperator>> must be passed by
reference, since we're not allowed to g@nm ostream oristream . The agument and return value are
therefore the same object. The references must be read/write, because output and input change the

ostream andistream objects. Br functions that return a reference, see line If@tofrn_int.C on
p. 75.

#ifndef DATEH /[Excerpt from date.h.

#define DATEH

#include <iostream> /ffor ostream

using namespace std;

class date {
static const int length[];
static const int prefl;
i ntyear;
int month; 1 to 12 inclusive
int day; n to length[month] inclusive
/letc.

friend ostream& operator<<(ostreamé& ost, const date& d);
friend istreamé& operator>>(istream& ist, date& d);
/letc.

Error detection

To read a date in the formap/31/2014 |, operator>> must perform fie sparate input opera-
tions:

(1) line10,int
(2) linel6,char
(3) line26,int
(4) line31,char
(5) line4l,int

If any operation &ils, theoperator>> returns the failed stream (lines 12, 18, 28, 33, 43), and line 13 of
the abeemain.C will detect the failure.

Fas e A hesenea ©2014 Mark Meretzky

NRPRRRRRERRRRE
QOO ~NODUDWNROOON®UAWNEPR

NN
N -

NN
FNOV)

338 OperatorOverloading Chapter 3

Even if one of the fig input operations is successful, the value thag wput may be i@lid. Line
16 may hae read a character successfulbaving us with a healthinput stream. But if that character is
anything other than a slash, line 21 taints the stream and once again linedif.6f detects the failure.

Themain function is interested in knowing about these failures because it axaytovmak a ®c-
ond attempt at inputting thetate . To do tis, it will have o read and discard the remaining characters of
the irvalid date from the input stream. There is no reliable way to recognize the last of these characters;
usually the best we can do is read and discard up to the next blank or newline.

operator>> must put no values into ttdate unless all three integers aralid. Onceagain, an
invalid value makes us return prematurely (lines 51 and 57).

Note that ouoperator>> and theoperator>> s for the built-in types respond to thefdient
kinds of irvalid input in the same ay. The ‘integer” abc or the ‘date” 12-31-2014 (without the reg-
uisite slashes) will cause the member functioperator! andfail of the input stream to return true.
The syntactically lgd but out-of-range intger 2147483648 or date12/32/2014 will also cause these
member functions to return truéater, our operator>> will also be able to'throw an eception’; see
pp. 624-625.

Our operator>> also agrees with the others in consuming only as much input as is syntactically
legd. For example, if we try to feed the characteabc into the intgeroperator>> , it will input the

minus sign but not the letters. The letters can be read by a subsequent input operation after the input stream

has beertlear ’'ed. Similarly if we try to feed the charactef®/31-2014 into ouroperator>> for
classdate , it will input the12/31 but not the-2014 .

An object should be constructed only oncepgerator>> can not install a v value into adate
object by calling its constructorFor example, thedate object in line 11 of the alve main.C was
already constructed in line 8o avoid writing the same code in a constructor and indperator>> |
both functions can call a common subroutine, which should b&aegmember function.

Theoperator<< andoperator>> functions are sometimes callatserters andexractors. We
will improve theoperator<< on pp. 460-461.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/state/date.C
ostream& operator<<(ostream& ost, const date &d)
{
ost << d.month << "/" << d.day << "/" << d.year;
r eturn ost;
}
i streamé& operator>>(istream& ist, date& d)
{
i nt month; /luninitialized variable
ist >>month;
if (list) { /fif (ist.operator!()) {
return ist;
}
char ¢; /luninitialized variable
ist >> c;
if (list) {
return ist;
}
if (c!="){
ist.setstate(ios_base::failbit);
return ist;
}

Fasae A hesenea ©2014 Mark Meretzky

Section 3.11 oper at or << and oper at or >> Peform I/O 339

25 int day; /luninitialized variable
26 ist >>day;

27 if (list) {

28 return ist;

29 }

30

31 ist >> c;

32 if (list) {

33 return ist;

34 }

35 if (c!=""){

36 ist.setstate(ios_base::failbit);

37 return ist;

38 }

39

40 int year; /luninitialized variable
41 ist >>year;

42 if (list) {

43 return ist;

44 }

45

46 /IPut no values into d until we've verified that all three are valid.
47

48 if ~ (month < date::january || month > date::december) {
49 cerr << "bad month " << month << "\n";

50 ist.setstate(ios_base::failbit);

51 return ist;

52 }

53

54 if (day <1 || day > date::length[month]) {

55 cerr << "bad day " << day << " of month " << month << "\n";
56 ist.setstate(ios_base::failbit);

57 return ist;

58 }

59

60 d.year = year;

61 d.month = nonth;

62 d.day = day;

63

64 return ist; /las in the above line 4
65}

The abee lines 3—-4 should be combined to to
66 return ost << d.month << "/" << d.day << "/" << d.year;

since the value of the whole expressionss .
The abee lines 10-11 may be combined to

67 if (!(ist >> month)) { /lif (ist.operator>>(month).operator!()) {
Ditto for lines 16-17, 26-27, 31-32, and 41-42.

Please input a date in the format m/d/y and press RETURN: 4/8/2014
The date was 4/8/2014.

as e A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTPA,WNPE

N -

340 OperatorOverloading

Chapter 3

Please input a date in the format m/d/y and press RETURN:
progname: input not in the format m/d/y
The date was 4/8/2014.

abc/8/2014
line 19 ofmain.C

Please input a date in the format m/d/y and press RETURN:
progname: input not in the format m/d/y
The date was 4/8/2014.

4/8-2014
line 19 ofmain.C

Please input a date in the format m/d/y and press RETURN:
bad day 32 of month 12

progname: input not in the format m/d/y

The date was 4/8/2014.

12/32/2014
line 55 ofdate.C
line 19 ofmain.C

The hidden nesting

Operator werloading gies us a iice, linear notation to hide a series of nested function céllsen
we write lines 1-3, the computer b&hsa as if we lad written lines 5-7; when we write lines 9-11, the
computer behzes as if we lad written 13-15.The << and>> operators hee left-to-right associatity, so
the first function called is the one that corresponds to the leftmost operator.

Compare the hidden nesting of thgerator= ’s on pp. 300-301.

cout << "Today is ";
cout << "Today is " << d;
cout << "Today is " << d << "\n";

operator<<(cout, "Today is ");
operator<<(operator<<(cout, "Today is "), d);

operator<<(operator<<(operator<<(cout, "Today is "), d), "\n");

cin>>d1;
cin >>dl1>>d2;
cin >>d1>>d2>>d3;

operator>>(cin, d1);
operator>>(operator>>(cin, dl), d2);
operator>>(operator>>(operator>>(cin, dl), d2),

v Homework 3.11a: call the operator<< we just wrote

d3);

In the constructors angrint member function of clasemployee , take alvantage of the
operator<< we just wrote for clasdate . Write theemployee error messages terr , not tocout .
Consolidate consecu# autput statements into a single statement irethployee constructors.

cout << "birth date: " << birth
<< "hired on: " << hired
<< "ss#:."<<ss;
A

v Homework 3.11b: define aroper at or << friend for classes life, point, and employee

Define anoperator<< friend for classedife (pp. 145-

employee (pp. 257-262). Reme theirprint member functions.

For classpoint , our operator<< will eventually let us produce output in either Cartesian or

146),point (pp. 201-204), and

polar codrdinates (pp. 362-366). And for all classesyating fromprint to operator<< will let us

printed 4/8/14
8:43:46 AM

hesenea ©2014 Mark Meretzky

=

ab~wNRE

(@ (o lNeBENNe)]

Section 3.12 Put it All Together: A Constrained Class 341

direct output to andestination, not merely to thmut hardwired into therint functions.

But there is one place where we lose functionalitiie print function of clasdife took agu-
ments letting us specify the dwcharacters with which to dnathe picture (p. 146)We even provided
default values for them. But amperator<< function has no room for extraguments. ltalways tales
the same pair: a read/write reference tosineam and a read-only reference to the object being printed.

We hasten to assure the reader that this loss is only tempodféeywill regan it with the same
machinery that lets us formapaint in Cartesian or polarSee pp. 367-371.
A

v Homework 3.11c: what functions ae called by these expressions?

If a, b, and c were objects, what functions would be called by the following expressions and in what
order? Assuméhat theoperator* andoperator+ are not member functions. Write axpansion for
each expression as in the abdines 5-7, 13-15.

a+b+c
a*b+c*d

3.12 Putit All Together: A Constrained Class

Look and feel

An SAT score (“Scholastic Aptitude 8st’) is an integer that is a multiple of 10 in the range 200 to
800 inclusve. An sat object has the look and feel of ant , except that its value must be ay# SAT
score. Whener we usethe value of asat , we ae actually using the returralie of its member function
operator int in line 23 ofsat.h

sat s =700;

cout << s <<"\n'"; /lcout << s.operator int() << "\n";
inti=s; /linti = s.operator int();

if (s <=7 00){ [fif (s.operator int() <= 700) {

But wheneer we change the value of arsat , we ae calling thesat 's operator= member function in
line 5 ofsat.C , or another member function that ultimately calls this omeoperator= does bounds
checking, allowing asat object to police itself.

s = 600; /Is.operator=(600);

s +=20; /Is.operator+=(20);

++s; /Is.operator++();

i f (++s<=700){ /lif (s.operator++().operator int() <= 700) {

cin >>s; /loperator>>(cin, s);

Most of the functions that would normally need to be members or friends are .n€tigrone
member function is non-inline, ttoperator= in line 9 of the followingsat.h

The prefix operators in lines 19-20 retuthis . *this is not going to eaporate when the
return, so it can be returned by reference. But the postfix operators in lines 23-24 return arikdual v
The local variable will eaporate when thereturn, so it must be returned by value.

It is no sin for one member function to call another member function of the sameTdlassmiember
functions are all inline, so we waste no time. Ditto for the friends.

(1) Inlines 15 and 16 cdat.h , the expression that is an operand of theand- implicitly calls the
operator int in line 11. The+ and- do not call theoperator+ andoperator- in 26 and
28; these functions ke rot yet been seen.

as e A hesenea ©2014 Mark Meretzky

342 Operator Overloading Chapter 3

(2) Theassignment operaterin lines 10, 15, and 16 afat.h calls theoperator= in line 9: its left
operand is asat . But the assignment in line 12 s4t.C does not call this function: its left oper
and is arint .
(3) Theoperator+=in lines 19, 26, and 27 ght.h calls theoperator+= in line 15.
(4) Theoperator= in lines 16 and 28 afat.h calls theoperator-= in line 16.
(5) Theprefix++ in line 23 calls the prefigperator++ in line 19.
(6) Theprefix-- in line 24 calls the prefimperator-- in line 20.
—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/sat/sat.h
1 #ifndef SATH
2 #define SATH
3 #include <iostream>
4 using namespace std,;
5
6 class sat {
7 i ntn;
8 public:
9 sat& operator=(int i);
10 sat(int new_n = 200) {*this = new_n;} //(*this).operator=(hew_n);
11 operator int() const {return n;}
12}
13

14 //IReference argument is read/write. return s.operator=(s.operator int() + i);
15 inline sat& operator+=(sat& s, inti) {return s =s +1i;}

16 inline sat& operator-=(sat& s, int i) {return s = s - i;}

17

18 //Prefix operators

19 inline sat& operator++(sat& s) {return s +=10;}

20 inline sat& operator--(sat& s) {return s -= 10;}

21

22 /IPostfix operators

23 inline const sat operator++(sat& s, int) {const sat old = s; ++s; return old;}
24 inline const sat operator--(sat& s, int) {const sat old = s; --s; return old;}
25

26 inline const sat operator+(sat s, int i) {return s +=i;}

27 inline const sat operator+(int i, sat s) {return s +=i;}

28 inline const sat operator-(sat s, int i) {return s -=i;}

29

30 istream& operator>>(istream& i, sat& s);

31 #endif

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/sat/sat.C

#include <cstdlib>
#include "sat.h"
using namespace std;

sat& sat::operator=(int i)
{
if(i<2 00]i>800]i%10!=0){
cerr << "sat can't contain " << i << "\n";
exit(EXIT_FAILURE);

©CoOo~NOOOUTA, WNPE

as e A hesenea ©2014 Mark Meretzky

Section 3.12 Put it All Together: A Constrained Class 343

10 }

11

12 n =i;

13 return *this;

14}

15

16 istream& operator>>(istream& istr, sat& s)

17 {

18 int i /luninitialized variable
19

20 if (istr >> i) { //if (istr.operator>>(i).operator void *()) {
21 s =i; | Is.operator=(i);

22 }

23

24 return istr;

25}

The following two public member functions are defined for us implicifly we do Bt have © write
them. Theargument of theoperator= has the same data type as the object thabpesator=
belongs to.If we want anoperator= with a different argument, we’ll va © write it ourselves as in the
above lines 5-14.

26 public:
27 sat(const sat& another) {n = another.n;}
28 sat& operator=(const sat& another) {n = another.n; return *this;}

v Homework 3.12a: create class printable

Create a claggrintable having the look and feel of ehar , except that it can hold only printable
vaues. Clasgrintable will have exactly one data memhea grivate, non-statichar namedc. Imi-
tate classat .

Define the following publioperator= . For the single cast in line 7, see pp. 63—-64; for the double
castin 9, see p. 64.

#include <iostream>

#include <cctype> //for isprint
#include "printable.h"

using namespace std;

printable& printable::operator=(char new_c)
{
i f (isprint(static_cast<unsigned char>(new_c)) == 0) {
cerr << "character code "
<< static_cast<unsigned>(static_cast<unsigned char>(new_c))
<< " is n ot printable\n";

PO OWoOoO~NOOUODWNLPE

B

The abee operator= will detect the out-of-rangealue in the following line 17, but might miss
the one in 18.Therand function returns amt , corverted tochar when passed to theperator=
At this point, there are twroutes to failure on machines whettgar is narrower tharint . If char is
signed and too small to hold the random numtter result of this cormrsion will be ‘implementation
defined'. If char is unsigned, the comrsion might just happen to yield a printable character.

12 #include <cstdlib> //for rand
13 #include "printable.h"

14 using namespace std;

15

Fasao A hesenea ©2014 Mark Meretzky

344 Operator Overloading Chapter 3

16 printable p(argument(s) for constructyyr
17 p ="'\a; /Ip.operator(\a’); alarm character is not printable
18 p = rand();

To avoid the comersion fromint to char in line 18, define the additional publiperator= in
line 22. To call isprint safely with an arbitrarint , we reed the preliminary tests in line 2Zheint
passed tasprint must be the valuEOF(“end-of-file”) or a number that can be held in ansigned
char ; otherwiseisprint could crash the program with a clear conscience (pp. 63-64).

19 #include <climits> //for UCHAR_MAX, the maximum value for unsigned char
20 #include "printable.h"

21

22 printable& printable::operator=(int new_c)

23{

24 if (new_c<0|| new_c>UCHAR_MAX || isprint(new_c) == 0) {
25 cerr << '"character code " << new_c << " is not printable\n";

The two operator= s will be the only member functions of clgssntable that callisprint
If desired, thg can call a common subroutine, or one could call the othemot bother to define the
operator= that takes @onstprintable& ; it has already been defined for you implicitly.

Give dassprintable a public constructor that takeschar and passes it to ttoperator= that
takes achar ; and a public constructor that takesiah and passes it to ttoperator= that takes an
int . Also give dassprintable a public operatorchar

The following ten functions will be neither members nor friends. Declare all of them in the
printable.h file. operator>> is the only one too big to be inline; define itprintable.C
Define the others iprintable.h

The operator>> that inputs gprintable should call theoperator>> that inputs achar .
Since the latter skips whitespace, the former will tfi@ turn the skipping off, seeoskipws on p. 359.)
Theoperator>> that inputs grintable will then pass thehar to the

printable::operator= that takes &har .
operator+= andoperator-= whose argument is dnt
operator++ (prefix and postfix)
operator-- (prefix and postfix)

operator>> performchar input and then assign ttehar to theprintable
operator+ add aprintable and anint , yielding aprintable
operator+ add anint and aprintable | yielding aprintable

operator- subtract anint from aprintable | yielding aprintable

We will turn printable into a “template classbn pp. 735-738, and incorporate it into the Rabbit
Game on pp. 740-745.
A

3.13 AModel for Operator Overloading

Wheneer we defineoperator functions for a class, we face the same four decisions.
(1) Musttheoperator be a member function or a friend? If so, which should it be?
(2) Iftheoperator is a member function, should it benst ?

(3) If theoperator takes an object as anxgicit argument, must it be passed by value or can it be
passed by reference? If the latmould the reference be read-only or read/write?

(4) Iftheoperator function returns an object, must it be returned by value or can it be returned by ref-

erence? Ithe latey should the reference be read-only or read/write?

Fasae A hesenea ©2014 Mark Meretzky

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Section 3.13 A M odel for Operator Overloading 345

Fortunately these issues will be decided the same way for almeast eclass. In fact, the
operator functions are so stereotyped that we can provide a copy-and-paste model for their declarations
and &en for some of their definitions. Later we will see a similar model call&édraplate’. The dummy
classnamd in line 6 will reappear in our templates as theventional name for a dummy data type.

Defineoperator== or operator!'= , whichever is easier It should be a friend function, since
there are tw objects. Theother one can be implemented as a call-through that is neither a member nor a
friend (lines 16 and 28)Similarly, operator> can be implemented as a call-throughoperator<
(lines 17 and 29), amaperator>= as a call-through toperator<= (lines 18 and 30). The
operator- that takes tw objects in line 19 should be a friend jus#like functions in lines 16-18.

Objects are usually passed toagperator function by reference tovaeid the expense of cgmg
them. Plentifulexamples are in lines 16-19, 24-25, 28-30. The referencevéysaread-onlyexcept for
the object passed tperator>> in line 25. But the function in lines 32-34 must constructva olgect,
one that is most easily constructed by starting with § obpan agument. Inthis case the meobject may
be constructed by passing the argument by value.

The member functions in lines 9-12 must return the object to whighbtieng. Thisis done by
sayingreturn*this; . The object will not eaporate as the member function returns, so the functions
can get way with return-by-referenceWe return a read/write reference to permit the object to be modified
after it is returned. An example is in line 20p&in.C on p. 998.

++0b %= 10; //modify ob after it is returned by operator++.

If a function constructs and returns avnabject, it must return the meobject by \alue. Sedines
32-34, 39-40. In the postfix functions (lines 39-40), the olg@ect is constructed with a declaration
(constTold=t;). Inlines 32-34, the e object is constructed by passing an existing objectalyev
The nev object must beonst to prevent it from being modified after it is returned.

(obl + 10) = 20; //[don’t let this compile

The argument of theperator= in line 9 does not necessarilyveato be aother object of the
same class. There can beaal operator= s, each with an argument of a different data type.

The postfix operators in lines 39-40 shoaldays do their work by calling the prefix ones in lines
36-37. Thisensures that the increments and decrements will be identical, apart from the time at which
they are performed.

—On the Web at

http://i5.nyu.edu/ Ommé64/book/src/overload/T.h
#ifndef TH //This is not C++ code, just a model to copy and paste.
#define TH
#include <iostream> //for ostream and istream
#include <cstddef> [[for size_t
using namespace std;
class T {
public:
T& operator=(const T& another);
T& operator+=(int i);
T& operator-=(int i);
operator int() const;
friend bool operator==(const T& t1, const T& t2);
friend bool operator< (const T& t1, const T& t2);
friend bool operator<=(const T& t1, const T& t2);
friend int operator- (const T& t1, const T& t2);

as e A hesenea ©2014 Mark Meretzky

346 Operator Overloading Chapter 3

20

21 int& operator[](size_ti);

22 const int& operator[](size_t i) const;

23

24 friend ostream& operator<<(ostream& ost, const T& t);
25 friend istream& operator>>(istream& ist, T& t);
26},

27

28 inline bool operator!=(const T& t1, const T& t2) {return !(t1 == t2);}
29 inline bool operator> (const T& t1, const T& t2) {return t2 < t1;}

30 inline bool operator>=(const T& t1, const T& t2) {return t2 <=t1;}
31

32 inline const T operator-(T t, int i) {return t -=i;}

33 inline const T operator+(T t, int i) {return t +=i;}

34 inline const T operator+(int i, T t) {return t +=i;}

35

36 inline T& operator++(T& t) {returnt +=1;}

37 inline T& operator--(T& t) {returnt -=1;}

38

39 inline const T operator++(T& t, int) {const T old = t; ++t; return old;}
40 inline const T operator--(T& t, int) {const T old = t; --t; return old;}
41 #endif

For some classes, the prefoperator++ in the abwe line 36 could be implemented most simply
by calling theoperator+= inline 11. Such was the case with the cl#s® with one data member
(day) and classsat (line 19 ofsat.h on p. 342))

42 inline T& operator++(T& t) {returnt +=1;} //return t.operator+=(1);

For other classegperator+= could be implemented by calling the prediperator++ . Such was the
case with the original claslate with three data memberggar , month , andday) and clasdife

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/overload/T.C
1 / /Excerpt from T.C
2 #include "T.h"
3
4 T& T:operator+=(int i)
5 {
6 for(;i>0;--i){
7 ++*this; //(*this).operator++();
8 }
9
10 for (i<O;++i){
11 --*this; //(*this).operator--();
12 }
13
14 return *this;
15}

Other decisions may vary as welthe operator>> we wrote for classlate needed to mention
the private members of that class, so we made it a friend (pp. 338-339). Baopehator>> function

for classsat mentioned no pvete members, so it was neither a member function nor a friend (p. 343).

Ditto for theoperator>> for classprintable (p. 344).
The member functiooperator-> can often be implemented by callingerator* ; see p. 823.

Fas e A hesenea ©2014 Mark Meretzky

Section 3.13 A M odel for Operator Overloading 347

Our example uses the data type for two distinct purposes. It is used for numbers that are added
to or subtracted from & object, and for numbers that represent the distance betweeh dbjects. See
lines 11-12, 19, 32-34 of the algol.h . To show the intent of these numbers, we can eakypedef for
their data type. The C++ ceention is to use the nankfference_type for the integral data type that
is added to or subtracted from an object or that measures the distance betwveagjedts, at least when
the objects are “iterators”.

t ypedef int difference_type;

class T {

public:
T& operator+=(difference_type d);
f riend difference_type operator-(const T& t1, const T& t2);
/ letc.

b

QOwo~NOOUOD WNPE

10 inline const T operator+(T t, difference_type d) {return t +=d;}

Classeglate andlife could also benefit from difference_type typedef.

The data typént was dso used for the littlealues that are contained ifmabject; see lines 21-22
of the abee T.h The C++ cowmention is to use the namalue_type for the little values that are con-
tained in a larger object.

11 typedef int value_type;

12

13 class T{

14 public:

15 value_type& operator[](size_ti);

16 const value_type& operator[](size_t i) const;
17 /letc.

18}

See thevalue_type in classstack on pp. 153-154 Eventually these typedefs will become members
of their classes; see the one in line 1¢€lwfton.h on p. 420.

s A hesenea ©2014 Mark Meretzky

