
3
Operator Overloading

3.1 Introduction

Not just syntactic sugar

Data members should be private. Theinternals of an object should be accessible only through its
public member functions and friends. Our paradigm examples are in column 1.

But column 2 offers a more familiar notation for these interactions. The operators that we routinely
apply to built-in types such asint andchar would also be applied to user-defined types such as classes
and enumerations. Extending an operator to accept operands of a user-defined type is calledoperator over-
loading.

When we write the expressions in column 2, the computer will behave as if we had written the corre-
sponding ones in column 3. These expressions call member functions and friends with the admittedly
bizarre namesoperator++ , operator+= , etc. Theoperators in column 2 are overloaded by defining
theoperator functions in column 3.

For the present, we adopt the fiction that operator overloading is intended to provide aconvenient
notation for all data types, including classes and enumerations. Its real purpose, however, is to provide the
samenotation for all data types.Convenience has nothing to do with it. And the purpose of a uniform
notation is to permit us to plug these data types into a ‘‘template’’. Take a peek at p. 634 and bear in mind
that not until then will the real purpose of operator overloading be revealed.

Coming back to earth, column 2 also gives us a more flexible notation for input and output.The
print in line 15 of column 1 is hardwired to output tocout , while the<< in column 2 will let us specify
any destination:cout , cerr , clog , an output file, etc.

1 /* c olumn 1 */ /* column 2 */ /* column 3 */
2 date d; date d; date d;
3
4 d.next(); ++d; d.operator++();
5
6 d.next(280); d += 280; d.operator+=(280);
7
8 date e = d; date e = d + 10; date e = operator+(d, 10);
9 e.next(10);

10
11 int n = dist(d, e); int n = d - e; int n = operator-(d, e);
12
13 if (equals(d, e)) { if (d == e) { if (operator==(d, e)) {
14
15 d.print(); cout << d; operator<<(cout, d);

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

272 OperatorOverloading Chapter 3

16
17 d.next(); cout << ++d; operator<<(cout, d.operator++());
18 d.print();
19
20 d.print(); cout << d << "\n"; operator<<(
21 cout << "\n"; operator<<(cout, d), "\n");
22
23 d.next(); cout << ++d << "\n"; operator<<(
24 d.print(); operator<<(cout,
25 cout << "\n"; d.operator++()), "\n");

What we can’t do with operator overloading

(1) The following six operators can never be overloaded. For example,sizeof always yields the
number of bytes in its operand no matter what its data type is.It never calls anoperator function that
does something else.

sizeof x
typeid(x)
b ? x : y
c::m
o.m
o.*pm

(2) We can define anoperator function for an operator that has at least one operand of a user-
defined data type: a class or an enumeration.But we can’t define anoperator function for an operator
whose operands are all of the built-in data types. The expressioncout << d might perform output, but
10 << 2 will always perform left shift.

(3) We cannot change an operator’s precedence, associativity, or arity (number of operands, pp. 2−3).
We cannot change whether a unary operator is prefixed or postfixed to its operand.For example, we can
make it possible to apply the negation operator (minus sign) to an object, but it must remain prefix.

1 date d;
2
3 / /Change AD to BC.
4 d = - d; //can make prefix compile: d = d.operator-();
5 d = d-; //but can’t make postfix compile

(4) We cannot create new operators. For example, we cannot define anoperator** function to
implement an exponentiation operator.

x = b ase ** power; //won’t compile

A monolithic example

read the value change the value construct and return
of existing object(s) of existing object(s) a new object

operator== operator+= operator+(obj, int)
operator-(const obj&, const obj&) operator>> operator-(obj, int)
operator<<

binary

operator! operator++ (prefix) operator-
operator int operator++ (postfix) operator++ (postfix)

unary

Let’s overload the familiar operators to accept operands of classdate . For this purpose, the sim-
plest implementation of the class is the one with one non-static data member, the int day in line 7 of
date.h on p. 273.The two constructors in lines 26 and 27 call the common subroutine in line to perform

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

error checking and install a value into the data member. Thenext member function has been renamed
operator++ in line 47. It will be replaced by lines 48 and 79.The superseded lines are commented out
but remain in the source code for pedagogical reasons.We didn’t bother with anoperator-- to replace
prev .

Since many of the operator functions call each other, we present them in a single monolithic
example. Inorder of increasing invasiveness, we will see functions that examine an existing object; ones
that change the value of an existing object; and ones that construct a new object. Thepostfix
operator++ is a special case: it will construct a new objectandchange

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5
6 c lass date {
7 i nt day; //number of days before or after Jan 1, 0 AD
8 s tatic const int length[];
9 s tatic const int pre[];

10 public:
11 enum month_type { //indices into the length array
12 january = 1,
13 february,
14 march,
15 april,
16 may,
17 june,
18 july,
19 august,
20 september,
21 october,
22 november,
23 december
24 };
25
26 date(int month, int d, int year) {install(month, d, year);}
27 date(); //initialize to the current date
28 bool install(int month, int d, int year);
29
30 int julian() const;
31 void print() const; //output the date to cout
32
33 // bool operator==(const date& another) const {return day == another.day;}
34 friend bool operator==(const date& d1, const date& d2){return d1.day==d2.day;}
35 friend int operator- (const date& d1, const date& d2){return d1.day-d2.day;}
36
37 // friend bool operator!=(const date& d1, const date& d2){return d1.day!=d2.day;}
38 // friend bool operator!=(const date& d1, const date& d2) {return !(d1 == d2);}
39
40 date& operator+=(int count) {day += count; return *this;}
41 // friend date& operator+=(date& d, int count) {d.day += count; return d;}
42 date& operator-=(int count) {day -= count; return *this;}
43

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.1 Intr oduction 273

274 OperatorOverloading Chapter 3

44 // const date operator+(int count) const {date d=*this; d.day+=count; return d;}
45 // const date operator+(int count) const {date d = *this; return d += count;}
46
47 // date& operator++() {++day; return *this;} //prefix
48 // date& operator++() {return *this += 1;} //prefix
49
50 // const date operator++(int) { //postfix
51 // const date old = *this;
52 // ++day;
53 // return old;
54 // }
55
56 // const date operator++(int) { //postfix
57 // const date old = *this;
58 // ++*this; //(*this).operator++();
59 // return old;
60 // }
61
62 const date operator-() {date d = *this; d.day=-d.day; return d;} //unary
63
64 operator int() const {return julian();}
65 operator long() const {return day;}
66 operator bool() const {return abs(day) < 4000 * 365;}
67
68 friend ostream& operator<<(ostream& ost, const date& d);
69 friend istream& operator>>(istream& ost, date& d);
70 };
71
72 inline bool operator!=(const date& d1, const date& d2) {return !(d1 == d2);}
73 inline bool operator!(const date& d) {return !static_cast<bool>(d);}//call l. 64
74
75 inline const date operator+(date d, int count) {return d += count;}
76 inline const date operator+(int count, date d) {return d += count;}
77 inline const date operator-(date d, int count) {return d -= count;}
78
79 inline date& operator++(date& d) {return d += 1;} //prefix
80
81 inline const date operator++(date& d, int) //postfix
82 {
83 const date old = d;
84 ++d; //d.operator++();
85 return old;
86 }
87
88 inline date::month_type& operator++(date::month_type& m) //prefix
89 {
90 if (m == date::december) {
91 m = date::january;
92 } else {
93 m = static_cast<date::month_type>(m + 1);
94 }
95 return m;
96 }
97

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

98 inline const date::month_type operator++(date::month_type& m, int) //postfix
99 {

100 const date::month_type old = m;
101 ++m; //operator++(m);
102 return old;
103 }
104 #endif

The above lines 90−95 can be written as a single expression with only one assignment and one
return . The ?: executes before the= because of their equal precedence and right-to-left associativity.
This is much harder to read.

105 return m = m == date::december ? date::january :
106 static_cast<date::month_type>(m + 1);

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 #include "date.h"
5 using namespace std;
6
7 c onst int date::length[] = {
8 0, / /dummy element to give january subscript 1
9 31, //january

10 28, //february
11 31, //march
12 30, //april
13 31, //may
14 30, //june
15 31, //july
16 31, //august
17 30, //september
18 31, //october
19 30, //november
20 31 //december
21 };
22
23 const int date::pre[] = {
24 0, //dummy element to give january subscript 1
25 0, //january
26 pre[1] + length[1], //february
27 pre[2] + length[2], //march
28 pre[3] + length[3], //april
29 pre[4] + length[4], //may
30 pre[5] + length[5], //june
31 pre[6] + length[6], //july
32 pre[7] + length[7], //august
33 pre[8] + length[8], //september
34 pre[9] + length[9], //october
35 pre[10] + l ength[10], //november
36 pre[11] + l ength[11] //december
37 };
38

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.1 Intr oduction 275

276 OperatorOverloading Chapter 3

39 date::date() //Initialize to the current date.
40 {
41 const time_t t = time(0);
42 if (t == static_cast<time_t>(-1)) {
43 cerr << "time failed\n";
44 exit(EXIT_FAILURE);
45 }
46 const tm *const p = localtime(&t);
47 install(p->tm_mon + 1, p ->tm_mday, p->tm_year + 1900);
48 }
49
50 bool date::install(int month, int d, int year)
51 {
52 if (month < january || month > december) {
53 cerr << "bad month "
54 << month << "/" << d << "/" << year << "\n";
55 return false;
56 }
57
58 if (d < 1 || d > length[month]) {
59 cerr << "bad day "
60 << month << "/" << d << "/" << year << "\n";
61 return false;
62 }
63
64 day = 365 * year + pre[month] + d - 1;
65 return true;
66 }
67
68 int date::julian() const
69 {
70 int j = d ay % 365;
71
72 if (j < 0) {
73 j += 365;
74 }
75
76 return j + 1 ;
77 }
78
79 void date::print() const
80 {
81 div_t divide = div(day, 365);
82 if (divide.rem < 0) {
83 divide.rem += 365;
84 --divide.quot;
85 }
86
87 int d = divide.rem + 1; //Julian date (1 to 365)
88 int month; //uninitialized variable
89
90 for (month = january; d > length[month]; ++month) {
91 d -= length[month];
92 }

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

93
94 cout << month << "/" << d << "/" << divide.quot;
95 }
96
97 ostream& operator<<(ostream& ost, const date& d)
98 {
99 div_t divide = div(d.day, 365);

100 if (divide.rem < 0) {
101 divide.rem += 365;
102 --divide.quot;
103 }
104
105 int day = divide.rem + 1; //Julian date (1 to 365)
106 int month; //uninitialized variable
107
108 for (month = date::january; day > date::length[month]; ++month) {
109 day -= date::length[month];
110 }
111
112 return ost << month << "/" << day << "/" << divide.quot;
113 }
114
115 istream& operator>>(istream& ist, date& d)
116 {
117 int month;
118 if (!(ist >> month)) { //if (ist.operator>>(month).operator!()) {
119 return ist;
120 }
121
122 char c;
123 if (!(ist >> c)) {
124 return ist;
125 }
126 if (c != ’/’) {
127 ist.setstate(ios_base::failbit);
128 return ist;
129 }
130
131 int day;
132 if (!(ist >> day)) {
133 return ist;
134 }
135
136 if (!(ist >> c)) {
137 return ist;
138 }
139 if (c != ’/’) {
140 ist.setstate(ios_base::failbit);
141 return ist;
142 }
143
144 int year;
145 if (!(ist >> year)) {
146 return ist;

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.1 Intr oduction 277

278 OperatorOverloading Chapter 3

147 }
148
149 if (!d.install(month, day, year)) {
150 ist.setstate(ios_base::failbit);
151 }
152
153 return ist;
154 }

3.2 Anoperator that examines an object

Apply the == operator to two date’s

The first operator that we will apply to adate object will be==. We chose it because it does not
create any new object, or even change the value of an existing object. It merely examines the value of
existing objects.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/equals.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d1; //Initialize to today’s date.
9 date d2;

10
11 if (d1 == d2) {
12 cout << "They’re the same date.\n";
13 } else {
14 cout << "Midnight occurred between lines 8 and 9.\n";
15 }
16
17 return EXIT_SUCCESS;
18 }

They’re the same date.

To use date objects as the operands of an==, we must define a function namedoperator== .
One advantage of operator overloading is that it offers standard names for the most common functions.
Instead ofequal , is_equal , or theequals we had on p. 211, we can simply name our function
operator== .

The return value of theoperator== will be the value of the expression d1 == d2 .
operator== will therefore returnbool .

Since ouroperator== will need access to the private members of classdate , it will have to be a
member function or a friend of that class.Any function that accesses the private members of any class
would have to be a member function or a friend, and theoperator functions obey the same rules.

Deciding between a member function or a friend (or neither) is the first big decision we have to make
when defining anoperator function. Fortunately, the rules are the same as for a normal function.For
pedagogical purposes we will try it both ways. Thealternatives are equally correct and efficient; our choice
can be based purely on æsthetics.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

operator== as a member function

In the expressiond1 == d2 in the above line 11,d1 andd2 are called theleft andright operands
of the==. If we define anoperator function for a binary operator as a member function, the language
says that the function must be a member function of the left operand and must receive the right operand as
its argument. Inthis case, line 11 would behave as if we had written

19 if (d1.operator==(d2)) {

Compare p. 282.

The definition of thisoperator== is in line 33 ofdate.h on p. 273.To ensure that the function
cannot change or damaged1 , we made it aconst member function.To avoid copying d2 , we passed it
by reference.To ensure that the function cannot change or damaged2 , we passed it as a read-only refer-
ence.

But the function definition in line 33 is commented out because we can do it better. The problem is
that the notation is lopsided. The function deals with two objects, but only one of them has a name.

The advantage of a member function is that it can refer to the members of an object by means of the
simplest possible notation: no notation at all.But this simplicity becomes a liability when we have two
objects. How can we provide names for both?

operator== as a friend

We saw the solution back on pp. 204−206. Instead of the asymmetrical member function in line 33
of date.h , we can define the perfectly balanced friend in line 34.Now thatoperator== is a free func-
tion (i.e., not a member function, p. 113), the above line 11 will now behave as if we had written

20 if (operator==(d1, d2)) {

This change makes the function body more symmetrical, but does not increase its speed. Deep down
in the machine, both versions take the same two arguments. Onlythe surface notation is different: one
explicit and one implicit argument for the member function; two explicit arguments for the friend.

But notation is important.The friend definition acts as documentation, announcing that we will be
dealing evenhandedly with more than one object. The member function in line 33 is for demo purposes
only, and is commented out to avoid a name collision with 34.

We motivated our decision carefully because it will almost always go the same way. Operator over-
loading is mostly uniform boilerplate.operator== will almost always be a friend, not a member func-
tion, for all classes.(For a pathological example of anoperator== that has to be a member function, see
line 302 ofterminal.h on p. 976.)

Apart from the strange name, the only special feature of anoperator function is the shorthand
notation with which it can be called. Instead of the above lines 19 or 20, we can write line 11.

An operator− that occupies the same ecological niche

Theoperator- in line 35 ofdate.h is a friend for the same reason as theoperator== in 34.
It supersedes thedist function on p. 211.We can now see why the return value ofdist was positive
when its left argument was a date that was later than its right argument: we wanted to make it compatible
with theoperator- that would replace it.

There is anotheroperator- in line 77 ofdate.h . As usual, we can have two functions with the
same name as long as their arguments are different. Thisfunction is more complicated because it con-
structs a new object; we will talk about it on p. 286.

An operator== that doesn’t necessarily compare all the data members

Why do we hav eto defineoperator== at all? Why isn’t it just built into the language that two
objects are equal if their corresponding data members are equal?Well, often we want to provide our own
definition for equality. For example, two objects in an engineering application might be considered equal if

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.2 An operator that examines an object 279

280 OperatorOverloading Chapter 3

they are within 5% of each other. Two objects in the federal budget might be considered equal if they are
within a billion dollars of each other: ‘‘close enough for government work’’.

Consider thestack objects on pp. 149−154. When deciding if two are equal, only the firstn ele-
ments of theira data members should be examined. Andif both stacks are empty they should be consid-
ered equal without comparing thea’s at all.

1 / /Excerpt from stack.C showing a friend of class stack.
2
3 bool operator==(const stack& s1, const stack& s2)
4 {
5 i f (s1.n != s2.n) {
6 r eturn false;
7 }
8
9 f or (size_t i = 0; i < s1.n; ++i) {

10 if (s1.a[i] != s2.a[i]) {
11 return false;
12 }
13 }
14
15 return true;
16 }

Apply the != operator to two date’s

Theoperator!= in line 37 ofdate.h on p. 273 is a friend, like theoperator== in line 34. It
has to be a member function or a friend, because it mentions the private memberday .

But a class should have no unnecessary members or friends: we want to minimize the number of sus-
pects when the data members are found to have the wrong values. Accordingly, line 38 rewrites
operator!= so that it no longer mentions any private member. Note that the!= in the{ body} of line 37
compares two integers; it is built into the language.The == in the body of 38 compares two date ’s; we
created it ourselves in line 34. The parentheses in 38 force the== to execute before the! .

Line 38 is merely acall-through, a function that calls another to do most of its work. But the extra
call and return do not exist at the machine level. Theexpression

1 ! (d1 == d2)

in 38 behaves as if we had written

2 ! operator==(d1, d2);

Thisoperator== is an inline function, so any call to it is replaced by a copy of its body in line 34. The
!(d1 == d2) therefore behaves as if we had written a direct comparison of the two integers

3 ! (d1.day == d2.day)

and the compiler will optimize this to

4 d1.day != d2.day

It is no sin for oneoperator function to call another if the first is inline.

The advantage of line 38 is that it mentions no private member of classdate . It therefore no longer
needs to be a member function or a friend of the classdate , and has been moved down to line 72. The
definitions in 37 and 38 were for pedagogical purposes only.

To keep theoperator!= inline it must be defined indate.h , not date.C . But now that it is
defined outside the curly braces of the class definition fordate (lines 6 and 70), the function requires the
keyword inline . This makes it static in the C sense: visible only in this header file and the.C files that
include it. Were it not static, the function would be ‘‘multiply defined’’ if t he header file were included in

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

more than one.C file of a program. See p. 99.

▼ Homework 3.2a: define the four other comparison operators

We write y ≥ x in casex ≤ y . . .

—Paul R. Halmos,Naïve Set Theory, §14

We hav edefinedoperator== andoperator!= for classdate . Define the four remaining com-
parison operators

operator<
operator>
operator<=
operator>=

Define operator< as a friend like operator== . Define the other three indate.h as inline
functions that are neither members nor friends.operator>= should calloperator< just like
operator!= calls operator== . operator> should calloperator< , and operator<= should
call operator>= , by rev ersing the operands:

1 i nline bool operator>(const date& d1, const date2 d2) {return d2 < d1;}

The functionequals that you wrote on p. 211 should be renamedoperator== . Simplify the
body of themin function in that homework to

2 { return d2 < d1 ? d2 : d1;}

Do not simplifymin to d1 < d2 ? d1 : d2 ; this would change the behavior ofmin whend1 == d2 .

For advanced applications, anoperator< must obey additional rules. See pp. 776−777.
▲

▼ Homework 3.2b: define an operator< for a class date with three data members

Define anoperator< friend for a classdate with the three private, non-static data members

1 i nt year;
2 i nt month; //date::january to date::december inclusive
3 i nt day; //1 to date::length[month] inclusive

One way to do this would be to compute eachdate ’s distance from January 1, 0A.D. (In other
words, compute the value that would be in the one-data-member version of the object.)We could the com-
pare the resulting numbers to find out if the first date is earlier than the second.

Another way would be to encode each date as an integer value in a format such as20141231 or
2014365 . We could then compare the two resulting numbers.A third approach would be to pass the two
date ’s to theoperator- that returns the distance between two date ’s. If the resulting number is neg-
ative, we could return true.

But all of the above strategies do more work than is necessary. Figure out whichdate is earlier by
comparing the data members of the two date ’s. Your operator< must not call any other function,
including julian . Demonstrate that youroperator< is correct by handing it in together with the out-
put ofhttp://i5.nyu.edu/ ∼ mm64/book/src/less/main.C .
▲

▼ Homework 3.2c: define an operator! for a class date with three data members

Define anoperator! that would test if the three integer data members of adate have a leg al
combination of values:

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.2 An operator that examines an object 281

282 OperatorOverloading Chapter 3

4 using namespace std;
5
6 date d;
7
8 / /Recklessly sabotage the date; see p. 133
9 i nt *const p = reinterpret_cast<int *>(&d);

10 p[1] = 100;
11
12 if (!d) { //if (d.operator!()) {
13 cerr << "d is in an inconsistent state.\n"
14 return EXIT_FAILURE;
15 }

operator! will be a publicconst member function returningbool . Since the! operator is
unary and theoperator! function is a member function, the language says that the function will be a
member of its operand. The above line 11 will behave as if we had written the comment alongside.Com-
pare p. 279.

operator!= will return true if themonth data member is betweenjanuary and december
inclusive and theday data member is between 1 andlength[month] inclusive; false otherwise.Note
that anoperator! for the one-data-member classdate would always returntrue , because any value
for the data member is legal.

cin andcout have an operator! that serves the same purpose; see pp. 319−320.
▲

3.3 Anoperator that changes an object
More invasive thanoperator== is operator+= , which changes the value of an object.

Always defineoperator+= beforeoperator+ . C programmers find this surprising because they
consider+= more exotic than+. But += merely changes the value of an existing variable, while+ con-
structs a whole new variable. For example, the+= in the following line 4 deposits a sum into the existing
variablea, while the+ in line 5 constructs ananonymous temporary variable to hold the sum:

1 i nt a = 10;
2 i nt b = 20;
3
4 a += b; //Change value of the existing variable a.
5 c out << a + b << "\n"; //Construct a new variable.
6 c out << (a += b) << "\n"; //The value of a += b is the new value of a.

Note also that the expressiona += b does more than change the value ofa. The expession also
produces a value of its own, which is the new value assigned toa. Line 4 never uses the value ofa += b
for anything, but line 6 uses the value ofa += b as an operand in a larger expression.

To agree with everyone’s expectations, ouroperator+= will have to behave the same way. The
following line 13 shows that the expressiontoday += 7 changes the value oftoday . Lines 16, 19, and
20 show that the value of the expression is the new value oftoday . To make this happen,operator+=
will have to return the new value of the object.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/plusequals.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

6 v oid f(const date& d);
7
8 i nt main()
9 {

10 date today;
11 f(today);
12
13 today += 7; //changes the value of today
14 f(today);
15
16 f(today += 7);
17
18 cout << "The julian date that is 7 days after ";
19 (today += 7).print();
20 cout << " is " << (today += 7).julian() << ".\n";
21
22 f((today += 7) += 365);
23 return EXIT_SUCCESS;
24 }
25
26 void f(const date& d)
27 {
28 d.print();
29 cout << " has julian date " << d.julian() << ".\n";
30 }

Member function or friend?

operator+= needs to mention the private memberday , so it will have to be a member function or
friend of classdate . If it is a member function, the above line 13 will behave as if we had written

1 t oday.operator+=(7);

If it is a free function, line 13 will behave as

2 operator+=(today, 7);

Lines 40 and 41 ofdate.h on p. 273 defineoperator+= as a member function and friend.Line
41 requires us to define a referenced. Line 40 is simpler and better. For an unusualoperator+= that
does not need to be a member function or a friend, see line 49 ofprintable.h on p. 736.For an off the
grid operator+= that can’t be a member function or a friend, see p. 903.

Return by value or by reference?

The+= operator always returns the new value of its left operand.In the above line 16, the left oper-
and is an object.Should it be returned by value or by reference? This is the second big decision we have to
make when defining anoperator function. Again, the rules are the same as for a normal function.

Recall thatreturn by valueconstructs and returns a copy of an object; return by referencemerely
returns the address of the object. Return by value is slower and might have side effects, so we return by ref-
erence whenever possible. Thelatter is always possible except for one case: when the returned object is
destructed by the very act of being returned. This happens when the returned object is automatically allo-
cated in the function from which we are returning.

In line 40 of date.h , operator+= is a member function.The returned object is the object
*this to which the member function belongs.*this is not an automatic variable inoperator+= , so
there is nothing to prevent a return by reference.Line 40 specifies the return by reference by declaring a
return type ofdate& .

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.3 An operator that changes an object 283

284 OperatorOverloading Chapter 3

In line 41 ofdate.h , operator+= is a friend. The returned object is the one to whichd refers.
Although the referenced is automatically allocated, the object to which it refers is not, thus allowing a
return by reference. But we have already rejected 41 as inferior to 40.

Assignment operators such asoperator+= , operator-= , and operator= always return the
new value of their object (*this) so that it can be used in a larger expression. Examplesare in lines 16,
19, and 20 above. For a pathalogical case where they do not return*this , see p. 903.

Dereference and re-reference

Despite the star, the return *this; in line 40 ofdate.h returns the object’s address. Thestar
dereferences the pointerthis ; the return by reference ‘‘re-references’’ i t. Sincethe star and the return by
reference cancel each other out, couldn’t we return the object’s address more simply by getting rid of both
of them?

1 date operator+=(int count) {day += count; return this;} //doesn’t compile

The new function seems plausible, but it will make it harder to use the return value. Firstof all, we
have to get it to compile. Sinceoperator+= now returnsthis , we would have to change the return
type to ‘‘pointer todate ’’ :

2 date *operator+=(int count) {day += count; return this;} //does compile

When we use the return value, we would always have to remember to write a star in front of it. The above
line 16 would become

3 f (*(today += 7));

with an extra pair of parentheses. It would be simpler to banish the star in the above line 3 to line 40 of
date.h , where it can be written once and for all. This, by the way, is exactly why Stroustrup introduced
references into C++.

Return an lvalue or an rvalue?

Return by reference is faster than return by value. Moreimportantly, return by reference is necessary
to make our operator+= behave like the built-in +=. Consider the following expression, which adds 10
to anint i and then knocks the sum down to the range 0 to 19 inclusive. It demonstrates that the value of
i += 1 0 is anlvalue, an expression that can be assigned to (pp. 12−13).A realistic example is in line 20
of main.C on p. 998.

1 (i += 1 0) %= 20;

To permit ouroperator+= to return an lvalue, it must return by reference and the reference must
be read/write.The above line 22 shows that the value oftoday += 7 is an lvalue. (Theinner parenthe-
ses override the right-to-left associativity of+=.) Of course the example could be written more simply as

2 f (today += 372);

but for the time being the extra+= is our only way to demonstrate thattoday += 7 is an lvalue.

We hav emotivated our decisions carefully because they will almost always go the same way. For all
normal clases,operator+= will be a public, non-static member function that returns*this as a
read/write reference.

An operator−= that occupies the same ecological niche

Line 42 ofdate.h shows the correct way to implementoperator-= . Resist the temptation to
implement it indate.h as neither a member function nor a friend:

1 / /return d.operator+=(-count);
2 date& operator-=(date& d, int count) {return d += -count;}

The problem in the above line is that the negation could overflow. For example, if our integers are 32-bit

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

two’s complement, their values will be limited to the slightly lopsided range −2,147,483,648 to
2,147,483,647 inclusive. If count were −2,147,483,648, the integer expression-count could not possi-
bly hold the correct value of 2,147,483,648.

4/8/2014 has julian date 98. lines 10−11
4/15/2014 has julian date 105. lines 13−14
4/22/2014 has julian date 112. line 16
The julian date that is 7 days after 4/29/2014 is 126. lines 18−20
5/13/2015 has julian date 133. line-22

3.4 Anoperator that constructs an object
operator+ computes a sum and constructs a new object to hold it. The sum does not go into any

previously existing object. Thetoday in the following line 13, for example, remainsunchanged.

The value of the expressiontoday + 7 is the new object. To make this happen,operator+
must return the new object that it constructs.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/plus.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 v oid f(const date& d);
7
8 i nt main()
9 {

10 date today;
11 f(today);
12
13 f(today + 7); //does not change the value of today
14 f(today);
15
16 (today + 7).print();
17 cout << " has julian date " << (today + 7).julian() << ".\n";
18
19 return EXIT_SUCCESS;
20 }
21
22 void f(const date& d)
23 {
24 d.print();
25 cout << " has julian date " << d.julian() << ".\n";
26 }

Return by value or by reference?

If operator+ were a member function of classdate , the above line 13 would behave as if we had
written

27 f(today.operator+(10));

This member function is defined in line 44 ofdate.h on p. 274, where the new object is namedd. The
new object begins its life as a copy of the existing object, but is immediately increased. Since it is

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.4 An operator that constructs an object 285

286 OperatorOverloading Chapter 3

automatically allocated, it cannot be returned by reference. It must be returned by value.

Return an lvalue or an rvalue?

Return by value is not sufficient: the new object must be returned as aconst value. Surprisingly,
it’s up to us to ensure that the expressiontoday + 7 is not an lvalue:

28 //Must not be allowed to compile.
29 (today + 7) = t omorrow; //today.operator+(7) = t omorrow;

The way to prevent today + 7 from being an lvalue is to make the value of the expression aconst . We
accomplish this by havingoperator+ return aconst date .

Member function or friend?

The operator+ in line 44 ofdate.h has to be a member function or friend because it mentions
the private memberday . But we can easily rewrite it in line 45 without any mention ofday . The+= in 45
that allows us to do this is theoperator+= we defined in 40.Now that day is unmentioned, we can
redefineoperator+= in line 75 as neither a member function nor a friend. This function creates the new
object by receiving its first argument by value. Asabove, the new object begins its life as a copy of an
existing object, and the most natural way to do this is via pass by value.

Of lines 44, 45, and 75 ofdate.h , the last is the simplest.For every class,operator+ will be
neither a member function nor a friend. It will be a call-through tooperator+= . The first argument will
by passed by value; the return value will be passed as aconst value. Whenwe call thisoperator+ , the
above line 13 will behave as if we had written

30 f(operator+(today, 7));

operator+ and operator−

We also need lines 76 and 77 ofdate.h to allow us to say 10 + today andtoday - 10 . We
now hav etwo differentoperator- functions:

1 date today;
2 date d = today - 10; //date d = operator-(today, 10); line 77 of date.h
3 i nt dist = today - d; //int dist = operator-(today, d); line 35 of date.h

4/8/2014 has julian date 98. lines 10−11: the original value
4/15/2014 has julian date 105. line 13: print the value of the expressiontoday + 10
4/8/2014 has julian date 98. line 14: demonstrate that line 13’s+ had no effect ontoday
4/15/2014 has julian date 105. lines 16−17

▼ Homework 3.4a:

Use theoperator+ that creates a newdate to simplify employee::retire in line 17 of
employee.h on p. 259.
▲

3.5 MemberFunctions vs. Friends
Not every operator function needs to mention the private members of the object(s) passed to it.

But if it does need to mention them, anoperator function (or indeed any function) must be either a
member function or afriend .

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

When do we have no choice of member function vs. friend vs. neither?

In four cases, we have no choice:

(1) If the operator function must be private, it must be a member function. The terms ‘‘public’’
and ‘‘private’’ apply only to members, not to friends.operator= is the one that is most frequently pri-
vate.

(2) The following operator ’s must be member functions of their left operand.*They must there-
fore be member functions, and non-static ones to boot.

operator=
operator[]
operator()
operator->

Oddly,operator+= and the other reassignment operators do not have to be member functions.

(3) If anoperator function is a member function, it must be a member function of its left or only
operand. The+ in line 2 could be a member function of its left operandtoday , or it could be a non-mem-
ber function. But the+ in line 4 could not be a member function of its left operand. Only objects have
member functions, and7 is not an object. The+ in line 4 is the non-member function in line ofdate.h .

1 date today;
2 date e = today + 7; //could be date e = today.operator+(7);
3 / /or date e = operator+(today, 7);
4 date e = 7 + today; //must be e = operator+(7, today);

Similarly, the ++ and-- operators (prefix and postfix) whose operands are enumerations cannot be mem-
ber functions. Only objects have member functions, and an enumeration is not an object. The following
increments are the non-member functions defined in lines 88 of date.h and 98 of date.h ofdate.h .

5 date::month_type m = date::january; //m is an enumeration
6 ++m; //must be operator++(m);
7 m++; //must be operator++(m, 0);

(4) An operator function can never be a member function of its right operand. If it needs to men-
tion a private member of its right operand, it must be afriend of the operand.For example, we will see
later that theoperator<< function

8 date today;
9 c out << today; //operator<<(cout, today);

must be afriend of classdate . Of course, anoperator function could also be a member of its left
operand. Afunction can be afriend of many classes as well as a member of one class.

What should we do when we do have a choice?

When not constrained by the above four cases, anoperator function that needs to mention a pri-
vate member can be either a member function or afriend , whichever is more natural.

(1) If theoperator function does not need to mention any private member, make it neither a mem-
ber function nor afriend . Examples we have seen includeoperator!= and the binaryoperator+ .

The remaining cases assume that theoperator function does need to mention a private member.

(2) An operator function for a unary operator should be a member function of the operator’s oper-
and. Any function that does something to one object should be a member function of that object:

* This requirement will cramp our style on p. 903.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.5 Member Functions vs. Friends 287

288 OperatorOverloading Chapter 3

if (!d) { //if (d.operator!()) {
d = - d; //d = d.operator-();

(3) If the operator is binary and theoperator function treats the operands the same way, make it a
friend.

a == b / /operator==(a, b)
a < b / /operator<(a, b)
a + b / /operator+(a, b)
a - b / /operator-(a, b)

(4) If the operator is binary and the left operand plays the starring rôle, make the operator func-
tion a member function of the left operand.For example, many operator functions change the value of
their left operand but not their right:

a += b / /a is affected, b remains untouched: a.operator+=(b)
a - = b / /a is affected, b remains untouched: a.operator-=(b)

3.6 operator++, Prefix and Postfix

Prefix operator++ changes the value of an existing object

The prefix++ operator occupies the same ecological niche as+=. In the following line 13, the++
changes the value of its operand. The value of the expression++today is the new value of the object.
And the value of the expression++today is an lvalue, allowing it to be subjected to another++ in line 17
and to+= in line 18.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/prefix.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 v oid f(const date& d);
7
8 i nt main()
9 {

10 date today;
11 f(today);
12
13 ++today; //operator++(today);
14 f(today);
15
16 f(++today); //f(operator++(today));
17 f(++++today); //f(operator++(operator++(today)));
18 f(++today += 365); //f(operator++(today).operator+=(365));
19
20 cout << "The julian date of the day after ";
21 (++today).print(); //operator++(today).print()
22 cout << " is " << (++today).julian() << ".\n";
23
24 return EXIT_SUCCESS;
25 }
26

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

27 void f(const date& d)
28 {
29 d.print();
30 cout << " has julian date " << d.julian() << ".\n";
31 }

Line 47 ofdate.h on p. 274 definesoperator++ as a member function in the mold of the
operator+= in line 40. (An operator++ with no arguments is the prefix operator.) It returns*this
as a read/write reference to allow the above lines 17 and 18 to give the object an even newer value.

Theoperator++ in line 47 ofdate.h must be a member function because it mentions the private
memberday . But we can easily rewrite it in line 48 without any mention ofday . The+= in line 48 that
allows us to do this is theoperator+= we defined in 40. Now thatday is unmentioned, we can redefine
operator++ in line 79 as neither a member function nor a friend.

4/8/2014 has julian date 98. lines 10−11: the original value
4/9/2014 has julian date 99. lines 13−14
4/10/2014 has julian date 100. line 16
4/12/2014 has julian date 102. line 17
4/13/2015 has julian date 103. line 18
The julian date of the day after 4/14/2015 is 105. lines 20−22

Postfix operator++ constructs a new object

The postfix++ operator constructs a new objectand changes the value of an existing object. In the
following line 16, for example, three actions are performed.

(1) The++ constructs a copy of today .

(2) Thenit changes the value oftoday , but this has no effect on the copy of the original value.

(3) Finally, it returns the copy.

The value of the expressiontoday++ is therefore not the current value oftoday . It is a copy of the value
that was intoday before it was incremented.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/postfix.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 v oid f(const date& d);
7
8 i nt main()
9 {

10 date today;
11 f(today);
12
13 today++; //operator++(today, 0);
14 f(today);
15
16 f(today++); //f(operator++(today, 0));
17
18 cout << "The julian date that is 1 day after ";
19 today++.print(); //operator++(today, 0).print();
20 cout << " is " << today++.julian() << ".\n";
21

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.6 operator++, Prefix and Postfix 289

290 OperatorOverloading Chapter 3

22 //today++ += 365; //won’t compile: today++ is not an lvalue
23 return EXIT_SUCCESS;
24 }
25
26 void f(const date& d)
27 {
28 d.print();
29 cout << " has julian date " << d.julian() << ".\n";
30 }

Line 50 of date.h on p. 274 shows the three actions.As in line 44, the automatically allocated
variable must be returned by value. Anit must be returned as aconst value to prevent the above line 22
from compiling.

The value of theint argument of postfixoperator++ is never used. It’s just a kludge to let us
have two different member functions with the same name.Don’t even giv e it a name: if we did, we would
get the ‘‘unused argument’’ warning. For another argument whose value is unused, see p. 756.

Line 50 ofdate.h has to be a member function or friend because it mentions the private member
day . But we can easily rewrite it in line 56 without any mention ofday . The++ in line 58 that allows us
to do this is the prefixoperator++ we defined in 79. Now thatday is unmentioned, we can redefine
operator++ in line 81 as neither a member function nor a friend.Note that the argument in line 81 must
be pased as a read/write reference,

4/8/2014 has julian date 98. lines 10−11: the original value
4/9/2014 has julian date 99. lines 13−14
4/9/2014 has julian date 99. line 16
The julian date that is 1 day after 4/10/2014 is 101. lines 18−20

At last we have a reason to prefer

31 for (int i = 0; i < 10; ++i) { //fast

to

32 for (int i = 0; i < 10; i++) { //slow

Postfixoperator++ for an object is much slower than prefix. The above i is not an object, but it may
become one in the future. Get into the habit of using prefix whenever possible.

Increment an enumeration

Line 88 ofdate.h on p. 274 is a prefix that increments an enumeration.It cannot be a member
function or friend of the enumeration. The reason is simple: an enumeration can have no members or
friends. Onlyan object can have them.

Our operator++ wraps around fromdecember to january . Most of the time, however, it
merely does the arithmetic in line 93date.h . This line converts the enumeration toint , does some
arithmetic, and converts theint result back to an enumeration. As we saw on p. 223, enumeration-to-int
conversion can be implicit, but the conversion back requires a cast.

Since theoperator++ functions change the value of their enumeration arguments, the arguments
must be passed as read/write references. As usual, the postfixoperator++ in line 98 ofdate.h does
its work by calling the prefixoperator++ in line 88.

33 #include <iostream>
34 #include "date.h"
35 using namespace std;
36
37 date::month_type m = date::january;
38 cout << ++m << "\n"; //cout << operator++(m) << "\n";

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

39 cout << m++ << "\n"; //cout << operator++(m, 0) << "\n";

▼ Homework 3.6a: define operators for class life

(1) Change the name oflife::next to life::operator++ . Giv e it no arguments, so it will
be the prefixoperator++ . Change its return type fromvoid to life& and have it return *this; .

(2) Define a postfixoperator++ for classlife , which will call the prefixoperator++ to do
most of its work. Donot defineoperator-- ’s for classlife : there is no way to work backwards to the
previous generation.

(3) Createlife::operator+= . If i ts right operand is negative, write an error message (including
the negative value) tocerr and callexit(EXIT_FAILURE) . Otherwise go into a loop that repeatedly
calls the prefixoperator++ .

(4) Write twolife::operator+ ’s, just like the twodate::operator+ ’s in lines 58−59 of
date.h .

Test them with the following objectg. Line 4 shows that prefix++ returns a value; line 8 shows that
postfix++ returns a value. Line13 shows that+= returns a value; line 17 shows that+ returns a value.

1 l ife g = glider_matrix;
2 ++g; //g.operator++();
3 g.print();
4 (++g).print(); //g.operator++().print();
5
6 g++; //g.operator++(0);
7 g.print(); //Lines 7 and 8 should print the same picture.
8 g++.print(); //g.operator++(0).print();
9 g.print(); //Lines 8 and 9 should print different pictures.

10
11 g += 4; //g.operator+=(4);
12 g.print();
13 (g += 4).print(); //g.operator+=(4).print();
14
15 life g2 = g + 4; //life g2 = operator+(g, 4);
16 g2.print();
17 (g + 4).print(); //operator+(g, 4).print();
18
19 for (life g = glider_matrix;; g += 4) {
20 g.print();
21 ask the user if they want to fast-forward 4 generations;
22 }

(5) Define anoperator== friend of classlife that will compare thematrix data members of
the two life objects. Itshould ignore theg data members.We only want to know if the two objects con-
tain the same picture; we don’t care how many generations it took them to get there.

Define anoperator!= that is neither a member nor a friend of classlife . The operator!=
will call operator== .
▲

Operator overloading and operator precedence

We considered the expression*p++ on p. 7 when discussing operator precedence and associativity.
The two operators have equal precedence and right-to-left associativity. Why did p. 7 lavish so much effort
on establishing that the operator++, although postfix, will be executedbefore the* ?

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.6 operator++, Prefix and Postfix 291

292 OperatorOverloading Chapter 3

* p ++

If the operands are objects, the operators will trigger function calls.The functions will be called in
the same order as the operators were executed. Ifwe do not know the rules of precedence and associativity,
and the gaps in the rules, our programs will be impossible to debug.

If p is an object, everyone expects that its postfixoperator++ will return another oject of the same
class. Don’t disappoint them. This second object is an anonymous temporary, whoseoperator* is then
called. Thecomputer behaves as if we had written the following expression.

1 p.operator++(0).operator*()

For another example of a call to a member function of an anonymous temporary object returned by a func-
tion, see line 2 on pp. 137−138.

Of course,p might be a pointer. In this case the expression*p++ calls no functions.

Had the increment been prefix, it would still be executed before the* .

* ++ p

If p is an object,operator++ would still be called first. But it would be theoperator++ that takes no
arguments.

2 p.operator++().operator*();

If p is a pointer, the expression*++p would call no functions.

With parentheses, the* operator would be executed first.

* p() ++

This time there are four possibilities.If p and*p are objects, we would calloperator* before the
postfixoperator++ .

3 p.operator*().operator++(0);

If p is a pointer to an object, the* would be the built-in dereferencing operator.

4 (*p).operator++(0);

If p is an object whoseoperator* returns a non-const reference to a built-in, pointer, or enumeration,
the++ would be the built-in postincrement operator.

5 p.operator*()++;

If p is a pointer to a built-in, pointer, or enumeration, the expression(*p)++ would call no functions.

▼ Homework 3.6b: vector arithmetic

A vector is a point in three-dimensional space.You can also think of it as an arrow from the origin
to the point. Since the namevector is already used by the C++ Standard Library, we will name our class
vec .* Definethe class in avec.h file. All of the followng functions will be inline, so there will be no

* We actually could name our classvector while also including the standard library headers. There are two ways to
do this. If we sayusing namespace std; , we can refer to the standard library vector asvector and to our vector as
::vector . Otherwise, we can refer to the standard library vector asstd::vector and to ours asvector .

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

vec.C .

Give the class three private, non-staticdouble data members namedx , y , and z , and no other data
members. Give it a public, three-argument constructor with a default value of zero for each argument.

Give it a public, non-static,const member function namedprint that will take no explicit argu-
ments and return no value.print will output the object tocout with commas and parentheses:
(x, y, z) . vec.h will have to include<iostream> and sayusing namespace std for cout
and<<.

Give it a public, non-static,const member function namedlength that will return the length of

thevec : √  x2 + y2 + z2. vec.h will have to include<cmath> and sayusing namespace std for the
sqrt function.

Defineoperator functions for the following. Imitatewhat we did for classdate .

(1) Make it possible to compare two vec objects: v1 == v2 . Two vec ’s are equal if
v1.x == v2.x , v1.y == v2.y , etc. Also make it possible to sayv1 != v2 , but do not define the
other four comparison operators.

(2) Make it possible to add onevec to another:v1 += v2 . This will have the effect of adding
v2.x ontov1.x ; v2.y ontov1.y ; etc. operator+= must return the new value of the left operand of
the+= operator. Also make it possible to sayv1 + v2 , v1 -= v2 , andv1 - v2 .

operator+ will take two vec ’s as arguments, the first passed by value. Thefunction must con-
struct a newvec , and pass-by-value is the easiest way to do this.

(3) Make it possible to negate avec : -v . This will construct and return a new vec whosex is the
negative of v.x ; whosey is the negative of v.y ; etc.

(4) Make it possible to multiply avec by adouble : v *= d . This will have the effect of multi-
plying v.x by d; multiplying v.y by d; etc. operator*= must return the new value of the left operand
of the *= operator. Also make it possible to sayv * d , d * v , v /= d (check for division by zero),
andv / d .

(5) Thedot product of two vec ’s v1 andv2 is adouble whose value is

v1.x * v2.x + v1.y * v2.y + v1.z * v2.z

Make it possible to compute the dot productv1 * v2 . (If the data members were one array of three
double ’s rather than three separatedouble ’s, operator* could have called the algorithm
inner_product in the standard library.) Donot define anoperator*= for dot product.

(6) Thecross product of two vec ’s v1 andv2 is avec whosex is v1.y*v2.z - v1.z*v2.y ,
and whosey is v1.z*v2.x - v1.x*v2.z , and whosez is v1.x*v2.y - v1.y*v2.x . The usual
symbol for cross product is×, but we will have to write a caret:v1 ˆ v2 . First define anoperatorˆ to
construct and return the cross product. Then define anoperatorˆ= that will do its work by calling
operatorˆ . operatorˆ= will be neither a member function nor a friend. Its first argument will be a
read/write reference; its second will be a read-only reference. What would have gone wrong had we writ-
tenoperatorˆ= first and hadoperatorˆ call it?

operatorˆ and the unaryoperator- will construct and return a newvec by sayingreturn
vec(three arguments); . The binary versions ofoperator+ , operator- , operator* , and
operator/ will construct a new vec by copying an existing one. In each case, the new vec will auto-
matically allocated, so it must be returned by value.

Demonstrate that youroperator functions are correct by handing in yourvec.h file together with
the output ofhttp://i5.nyu.edu/ ∼ mm64/book/src/vec/main.C .

Extra credit: invent amatrix class and multiply avec and amatrix ; theoperator* will be a
friend of both classes.For space cadets only: invent aquaternion class and multiply avec and a
quaternion .
▲

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.6 operator++, Prefix and Postfix 293

294 OperatorOverloading Chapter 3

▼ Homework 3.6c: midpoint between two point’s

A andB are vectors coming out of the origin. Their sum isA+B. Their average,(A+B)/2 , extends
only half as far from the origin as the sum, and is the midpoint ofA andB.

x

y

A

B

A+B

(A+B)/2

Themidpoint member function of classpoint was in lines 19−21 ofpoint.h on pp. 201−202.
Change it to the following function by writing anoperator+ andoperator/ that returnconst
point . operator/ will be a const member function of classpoint ; operator+ will be a friend.
Now that midpoint no longer mentions any private members of classpoint , it does not need to be a
member function or friend.Keep its definition in thepoint.h file, though, and keep it inline.

1 i nline const point midpoint(const point& A, const point& B)
2 {
3 / /Return the average.
4 r eturn (A + B) / 2; //return operator+(A, B).operator/(2);
5 }

▲

▼ Homework 3.6d: fanciful operator/ and operator% member function for class date

Imagine two member functions of classdate that would return thedate ’s year and day of the year
in the range 0 to 264 inclusive. Why not name themoperator/ andoperator% ? With the argument
7, operator% could also return thedate ’s day of the week: 0 for Sunday, 1 for Monday, etc.

If the argument is any number other than 7 or 365,operator% will output an error message to
cerr andexit .

1 c onst char *const name[] = {
2 " Sunday",
3 " Monday",
4 " Tuesday",
5 " Wednesday",
6 " Thursday",
7 " Friday",
8 " Saturday"
9 } ;

10
11 date today;
12
13 cout << "Current year: " << today / 365 << "\n" //today.operator/(365)
14 << "Julian date: " << today % 365 + 1 << "\n" //today.operator%(365)

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

15 << "Day of week: " << name[today % 7] << "\n";

▲

▼ Homework 3.6e: midpoint between twodate’s

Change your definition ofmidpoint in Homework 2.11b ¶ (4) on pp. 211−212 to the following.
Now that midpoint no longer mentions any private members of classpoint , it does not need to be a
member function or friend of the class.

Both operands of the- in line 7 aredate ’s, so this - calls theoperator- friend defined in line 32
of date.h rather than the neither-member-nor-friend in line 54.

1 / /Declared in date.h, defined in date.C
2
3 c onst date midpoint(const date& d1, const date& d2)
4 {
5 / /return (d1 + d2) / 2; //average of two dates
6
7 div_t d = div(d1 - d2, 2);
8 i f (d.rem < 0) {
9 - -d.quot;

10 }
11 return d2 + d.quot;
12 }

I wish the body of this function could simply be the above line 5. But this line will not compile,
because we have written nooperator+ that will accept two date ’s, To do so would expose the values of
the private data member(s).For example, assume thatd1 andd2 weredate ’s early in the year 2014.If
eachdate had one private data memberday giving the number of days since January 1, 0A.D. thend1 +
d2 would be adate in the year 4028. But if eachdate had one private data memberday giving the
number of days since January 1, 1970A.D. thend1 + d2 would be adate in the year 2058.
▲

A fictitious but useful intermediate result

When a newcomer enters the field and finds himeself confronted by the nuances of
international questions, he becomes an easy target for the military-CIA-paramili-
tarry-type answers which can be added, subtracted, multiplied, or divided.

—Chester Bowles,Promises to Keep,p. 330

Adding the two date ’s in the above line 5 would be so useful that I am tempted to make it possible.
But we must take care that the sum of two date ’s is nev er output to the user. It will be strictly an interme-
diate result, like the unsightly infinities that are ‘‘renormalized’’ away in quantum theory.

We will use the classdate with one non-static data member, the int day in line 27 of the follow-
ing date.h .

The sum of two date objects will be atimebomb object. A timebomb must eventually be
defused by dividing it by 2, i.e., by calling itsoperator/ member function. If we do not, the
timebomb ’s destructor will give us an error message.We saw similar error checking in the destructor for
classstack in lines 6−13 ofstack.C on p. 150.Remember the warning about not incinerating aerosol
cans that still have pressure?

Classesdate andtimebomb will always be used together, so they share the same header file.The
forward declaration in line 6 allows 19 and 20 to mention the namedate ; see pp. 465−466.

To ensure that atimebomb can be constructed only by adding together two date ’s, its constructor
is private in line 11. Only the member functions and friends of classtimebomb will be able to call this
constructor. And the only friend of this class is theoperator+ that adds together twodate ’s (line 20).

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.6 operator++, Prefix and Postfix 295

296 OperatorOverloading Chapter 3

This operator+ must also be a friend of classdate , since it mentions a private member ofdate
(line 43). It is our first example of a friend of more than one class.

Human beings will construct adate by calling the three-argument constructor in line 35. The
operator/ will construct adate by calling the one-argument constructor in line 28.To ensure that this
constructor will be called only byoperator/ , the constructor is private and theoperator/ is a friend
of classdate . It is our first example of a function that is a member of one class and a friend of another.

Classtimebomb had to be defined before classdate , since classdate mentions a member of
timebomb (line 39). If both classes had mentioned a member of the other, we would have been forced to
throw in the towel and letevery member function of both classes be a friend of the other class. This can be
done without mentioning the names of the individual member functions; see p. 467.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/timebomb/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5
6 c lass date;
7
8 c lass timebomb {
9 i nt sum;

10 bool ticking; //true if this timebomb is still ticking
11 timebomb(int initial_sum): sum(initial_sum), ticking(true) {}
12 public:
13 ˜timebomb() {
14 if (ticking) {
15 cerr << "forgot to divide the sum of two dates by 2\n";
16 }
17 }
18
19 const date operator/(int n);
20 friend timebomb operator+(const date& d1, const date& d2);
21 };
22
23 class date {
24 static const int length[];
25 static const int pre[];
26
27 int day;
28 date(int initial_day): day(initial_day) {}
29 public:
30 enum month_type {
31 january = 1, f ebruary, march, april, may, june,
32 july, august, september, october, november, december
33 };
34
35 date(int month, int day, int year);
36 void print() const;
37
38 friend timebomb operator+(const date& d1, const date& d2);
39 friend const date timebomb::operator/(int n);
40 };
41

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

42 inline timebomb operator+(const date& d1, const date& d2) {
43 return d1.day + d2.day;
44 }
45
46 inline date midpoint(const date& d1, const date& d2) {
47 return (d1 + d2) / 2; //return operator+(d1, d2).operator/(2);
48 }
49 #endif

The above line 43 calls the constructor for classtimebomb , behaving as if we had said the follow-
ing.

50 return timebomb(d1.day + d2.day);

Another example of an implicit constructor call is in line 20 of the followingtimebomb.C . See p. 138.

The operator+ could have been defined within the{ curly braces} of classdate . We simply
replace the declaration in line 38 with the definition in lines 42−44, changing the keyword inline to
friend . But we left the definition where it is, since the function is a friend of more than one class.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/timebomb/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 #include "date.h"
5 using namespace std;
6
7 c onst int date::length[] = {
8 0, / /dummy element to give january subscript 1
9 31, 28, 31, 30, 31, 30,

10 31, 31, 30, 31, 30, 31
11 };
12
13 const int date::pre[] = {
14 0, //dummy element to give january subscript 1
15 0, //january
16 pre[1] + length[1], //february
17 pre[2] + length[2], //march
18 pre[3] + length[3], //april
19 pre[4] + length[4], //may
20 pre[5] + length[5], //june
21 pre[6] + length[6], //july
22 pre[7] + length[7], //august
23 pre[8] + length[8], //september
24 pre[9] + length[9], //october
25 pre[10] + l ength[10], //november
26 pre[11] + l ength[11] //december
27 };
28
29 date::date(int month, int d, int year)
30 {
31 //Error checking omitted for brevity.
32 day = 365 * year + pre[month] + d - 1;
33 }
34
35 void date::print() const

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.6 operator++, Prefix and Postfix 297

298 OperatorOverloading Chapter 3

36 {
37 div_t divide = div(day, 365);
38 if (divide.rem < 0) {
39 divide.rem += 365;
40 --divide.quot;
41 }
42
43 int d = divide.rem + 1; //Julian date (1 to 365)
44 int month; //uninitialized variable
45
46 for (month = january; d > length[month]; ++month) {
47 d -= length[month];
48 }
49
50 cout << month << "/" << d << "/" << divide.quot;
51 }

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/timebomb/timebomb.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 c onst date timebomb::operator/(int n)
7 {
8 i f (n != 2) {
9 c err << "sum of 2 dates must be divided by 2, not by "

10 << n << " \n";
11 exit (EXIT_FAILURE);
12 }
13
14 ticking = f alse;
15
16 div_t d = div(sum, 2);
17 if (d.rem < 0) {
18 --d.quot;
19 }
20 return d.quot;
21 }

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/timebomb/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c onst date d1(date::january, 1, 2014);
9 c onst date d2(date::january, 3, 2014);

10 const date d3(date::january, 4, 2014);
11

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

12 midpoint(d1, d2).print(); cout << "\n"; //even distance
13 midpoint(d2, d1).print(); cout << "\n";
14
15 midpoint(d1, d3).print(); cout << "\n"; //odd distance
16 midpoint(d3, d1).print(); cout << "\n";
17
18 return EXIT_SUCCESS;
19 }

1/2/2014 line 12: left operand is the earlier date, even distance
1/2/2014 line 13: right operand is the earlier date
1/2/2014 line 15: left operand is the earlier date, odd distance
1/2/2014 line 16: right operand is the earlier date

3.7 operator() for an Object that Does Only One Thing
An object with only one public member function, not counting the constructor and destructor, does

only one thing for us.For example, the classmyrandom had only one member function, therand in lines
3−8 ofmyrandom.C on p. 176.

When an object does only one thing, give the member function the admittedly strange name
operator() . The parentheses are part of the function name.Change line 10 ofmyrandom.h on p. 176
to

1 i nt operator()();

The first pair of parentheses are part of the function name; the second pair surround the empty argument
list. Changeline 3 ofmyrandom.C on p. 176 to

2 i nt myrandom::operator()()

We can then call this member function simply by applying the() operator to its object. When we write the
expressionr1() in line 7, the computer will behave as if we had written the expression
r1.operator()() in the comment.The first pair of parentheses is part of the name of the member
functionoperator() ; the second pair is the empty argument list.

3 myrandom r1;
4 myrandom r2(2014);
5
6 f or (int i = 0; i < 3; ++i) {
7 c out << r1() << "\n" //cout << r1.operator()() << "\n"
8 << r 2() << "\n"; // << r2.operator()() << "\n";
9 }

r1 andr2 look like functions. Butthey are really objects, and we can construct as many of them as
we need. An object endowed with anoperator() to make it look like a function is called afunction
object. Such objects can be used to customize the ‘‘algorithms’’ in the C++ Standard Library; our first
example will be on pp. 764−770.

3.8 Initialization vs. Assignment: a Constructor vs. operator=
Initialization puts the first value into a new variable. Assignmentputs a new value into an existing

variable. We saw on p. 262 that for a variable of a built-in data type, a pointer, or an enumeration, there is
little difference between these two operations.

But for an object, initialization and assignment may do very different jobs even though they may still
be written with the same symbol.We will begin with classesdate andstack , where initialization and

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 299

300 OperatorOverloading Chapter 3

assignment just happen to do the same job. But this will be the exception rather than the rule.

An object is initialized by calling its constructor; for an object,initialization andconstructionmean
the same thing.In a declaration, a constructor with one argument can be called with an equal sign.A copy
constructor, for example, always has one argument as in line 2.

The symbol= is also used for assignment to an object. But this= calls a different member function,
one namedoperator= . When we write line 3, for example, the computer behaves as if we had written
the corresponding comment. The right operandd1 is passed tooperator= by reference to avoid con-
structing an unnecessary copy of it; the reference is read-only to ensure thatd1 cannot be damaged by the
operator= .

1 date d1(date::april, 8, 2014); //initialization: call 3-arg constructor
2 date d2 = d1; //initialization: call copy constructor
3 d2 = d1; //assignment: d2.operator=(d1);

Tw o member functions defined for us implicitly

An added complication (or simplification, depending on you point of view) is that the computer will
define these two member functions for us if we have not defined them ourselves. Thefirst is the constructor
whose argument is another object of the same class, i.e., the copy constructor. The second is the
operator= whose argument is another object of the same class.A class may have sev eral
operator= ’s, each with an argument of a different type.

For example, we never defined a copy constructor for classdate since we were satisfied with the
computer’s. But the above line 2 compiles anyway. When it calls the copy constructor, the computer
behaves as if we had defined and called the following public copy constructor. Assume that the class has
the three original data membersyear , month , andday .

1 / /Copy the non-static data members from the other object to this one,
2 / /in the order in which they were declared.
3
4 date::date(const date& another)
5 : year(another.year), month(another.month), day(another.day)
6 {
7 }

Similarly, we nev er defined a member functionoperator= for classdate since we were satisfied
with the one the computer provided for us. But line 3 of the previous fragment compiles anyway. When it
callsoperator= , the computer behaves as if we had defined and called the following public
operator= . It returns*this by reference, just like the operator+= and prefixoperator++ for
classdate in lines 40 and 47. ofdate.h on pp. 273−274.

8 date& date::operator=(const date& another)
9 {

10 //Copy the non-static data members from the other object to this one,
11 //in the order in which they were declared.
12
13 year = another.year;
14 month = another.month;
15 day = another.day;
16
17 return *this;
18 }

The operator= in line 3 of the previous fragment is a member function of the objectd2 , so the
value returned by thereturn *this in the above line 17 is the new value ofd2 . This is used as the
value of the expressiond2 = d1 . Since this expression has a value, we could use it as the right operand
of another assignment expression. Andsince that expression has a value, we could use it as the right

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

operand of yet another.

19 d2 = d1; // d2.operator=(d1);
20 d3 = d2 = d 1; // d3.operator=(d2.operator=(d1));
21 d4 = d3 = d2 = d 1; //d4.operator=(d3.operator=(d2.operator=(d1)));

Operator overloading gives us a nice, linear notation that hides the nested function calls.The = operator
has right-to-left associativity, so the first function to be called is the one that implements the rightmost=.

Compare the hidden nesting of theoperator<< ’s on p. 340.

For classdate , the implicitly defined copy constructor andoperator= are good enough for us.
But for more complicated classes we will have to write them ourselves.

Our copy constructor andoperator= can be faster than the computer’s

Here is a class where the implicitly defined copy constructor andoperator= are not good enough
for us. We will have to write them ourselves. Inthis simple class, the two functions will still do the same
job.

We did not define a copy constructor andoperator= for the classstack on pp. 149−154, so they
were defined implicitly.

1 s tack s1; //initialization: call the default constructor
2 s 1.push(10);
3 c out << s1.pop() << "\n";
4
5 s tack s2 = s1; //initialization: call the copy constructor
6 s 2 = s 1; //assignment: s2.operator=(s1);

Assume that classstack has the two original non-static data members,a andn. The constant
stack_max_size was renamedmax_size when it became a static data member in Homework
2.14.1b, ¶ (3) on p. 239.max_size and n have been given their correct data type,size_t . And we
have followed the C++ convention of creating avalue_type typedef (pp. 153−154).

7 t ypedef int value_type;
8
9 c lass stack {

10 static const size_t max_size = 100;
11 value_type a[max_size];
12 size_t n;
13 //etc.

The= in the above line 5 will call the following copy constructor, which was defined implicitly.

14 stack::stack(const stack& another)
15 : n(another.n)
16 {
17 for (size_t i = 0; i < max_size; ++i) {
18 a[i] = another.a[i];
19 }
20 }

And the= in the above line 6 will call the following operator= member function, also defined implicitly.

21 stack& stack::operator=(const stack& another)
22 {
23 n = another.n;
24
25 for (size_t i = 0; i < max_size; ++i) {
26 a[i] = another.a[i];

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 301

302 OperatorOverloading Chapter 3

27 }
28
29 return *this;
30 }

But both of these functions have a performance bug: they do more copying than is necessary. We can
define faster ones that loop only as far as they hav eto.

31 //Excerpt from stack.C.
32
33 stack::stack(const stack& another)
34 : n(0)
35 {
36 for (; n < another.n; ++n) {
37 a[n] = another.a[n];
38 }
39 }
40
41 stack& stack::operator=(const stack& another)
42 {
43 if (&another != this) {
44 for (n = 0; n < another.n; ++n) {
45 a[n] = another.a[n];
46 }
47 }
48
49 return *this;
50 }

The two objects in the following assignment are the same object.

51 stack s;
52 s.push(10);
53 s = s; / /self-assignment: s.operator=(s);

In this case, we must not execute then = 0 in the above line 44. Fortunately, our operator= will do
nothing thanks to theif in the above line 43.

Admittedly, no one will write the self-assignment in the above line 53. But there are less obvious
ways in which the same object might be used as both operands of an assignment. If, for example,p andq
are pointers to objects, we might accidentally say

54 *p = * q; //(*p).operator=(*q);

whenp andq point to the same object.

A constructor and operator= that must do different jobs

For classesdate and the originalstack , the copy constructor andoperator= did the same job:
they merely copied the data from one object to another. (operator= also returned*this by reference).
Now we will see a class whose constructor andoperator= must do different jobs.

Imagine a classoutputfile whose constructor opens an output file (line 3) and whose destructor
closes it (line 8).In between, there are member functions such aswriteline for writing to the file (line
4). TheC++ Standard Library has a similar class namedofstream (‘‘output file stream’’).

When line 3 initializes an object, we are calling its constructor. The constructor called in line 3 does
only one job: it opensoutfile1 .

When line 6 assigns to the object, we are calling itsoperator= . But theoperator= called in
line 6 doestwo jobs: it closesoutfile1 and opensoutfile2 . outfile2 will eventually be closed

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

by the destructor in line 8.

1 v oid f()
2 {
3 outputfile out = "outfile1"; //Initialization: call a constructor.
4 out.writeline("hello"); //Write one line to outfile1.
5
6 out = "outfile2"; //Assignment: out.operator=("outfile2");
7 out.writeline("goodbye"); //Write one line to outfile2.
8 } / /Destruction.

Assignment is usually more expensive than initialization because it does more work. For class
outputfile , theoperator= did the work of the destructor, followed by the work of a constructor.

A class for which we must write our own copy constructor and operator=

To show how to write a class whose constructors andoperator= must do different jobs, we will
invent our own class of string objects. In real life, though, we would never write this class.We would just
use the classstring in the C++ Standard Library.

A C program would store a string of characters into an array ofchar . But there are two drawbacks
to this approach: an array cannot grow and shrink as the program runs, and its subscripts are not range
checked.

Our string objects will be free from these flaws. To permit a string to grow without bounds, we will
not attempt to store the characters in the object itself.They will be stored offshore, in a dynamically allo-
cated buffer. Each object will have its own buffer, and will contain a pointer to the start of its buffer. For
the present, the buffer will be allocated with the C functionsmalloc andfree . Later we will use the cor-
responding C++ operatorsnew anddelete .

We must initialize the data membern beforep, since the value ofn is used in the initial value ofp in
lines 8 and 19 ofmystring.C below. See pp. 113−114 for the order of initialization for data members.

We will talk about theoperator[] and operator<< functions in lines 19−26 later. First we
will demonstrate why we had to write our own copy constructor andoperator= for this class.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/mystring/mystring.h

1 #ifndef MYSTRINGH
2 #define MYSTRINGH
3 #include <iostream> //for ostream and <<
4 #include <cstddef> //for size_t
5 #include <cstdlib> //for free
6 using namespace std;
7
8 c lass mystring {
9 s ize_t n; //number of characters, not counting the terminating ’\0’

10 char *p; //pointer to the 1st character; must be constructed after n
11 public:
12 mystring(const mystring& another); //the copy constructor
13 mystring(const char *s = "");
14 ˜mystring() {free(p);}
15
16 mystring& operator=(const mystring& another);
17 mystring& operator=(const char *s);
18
19 char& operator[](size_t i);
20 const char& operator[](size_t i) const;
21

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 303

304 OperatorOverloading Chapter 3

22 void print() const {cout << p;}
23
24 friend ostream& operator<<(ostream& ost, const mystring& m) {
25 return ost << m.p;
26 }
27 };
28 #endif

malloc is called whenever we put a value into amystring , in lines 8, 19, 34, and 51.We always
allocate one extra byte for the’\0’ at the end of a string of characters.malloc returns avoid * ,
which we store into thechar * data memberp. C would let us implicitly convert avoid * to a pointer
to a variable, but C++ requires an explicit static_cast . The conversions and casts will disappear on p.
395, when we switch frommalloc to new.

A bug lurks in theoperator= in line 47−60.Try to find it before we fix it on pp. 314−315.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/mystring/mystring.C

1 #include <iostream>
2 #include <cstdlib> //for malloc, size_t, exit, EXIT_FAILURE
3 #include <cstring> //for strcpy, strlen
4 #include "mystring.h"
5 using namespace std;
6
7 mystring::mystring(const mystring& another) //the copy constructor
8 : n(another.n), p(static_cast<char *>(malloc(n + 1)))
9 {

10 if (p == 0) {
11 cerr << "couldn’t allocate " << n + 1 << " bytes\n";
12 exit(EXIT_FAILURE);
13 }
14
15 strcpy(p, another.p);
16 }
17
18 mystring::mystring(const char *s)
19 : n(strlen(s)), p(static_cast<char *>(malloc(n + 1)))
20 {
21 if (p == 0) {
22 cerr << "couldn’t allocate " << n + 1 << " bytes\n";
23 exit(EXIT_FAILURE);
24 }
25
26 strcpy(p, s);
27 }
28
29 mystring& mystring::operator=(const mystring& another)
30 {
31 if (&another != this) {
32 free(p);
33 n = another.n;
34 p = static_cast<char *>(malloc(n + 1));
35
36 if (p == 0) {
37 cerr << "couldn’t allocate " << n + 1 << " bytes\n";
38 exit(EXIT_FAILURE);

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

39 }
40
41 strcpy(p, another.p);
42 }
43
44 return *this;
45 }
46
47 mystring& mystring::operator=(const char *s)
48 {
49 free(p);
50 n = strlen(s);
51 p = static_cast<char *>(malloc(n + 1));
52
53 if (p == 0) {
54 cerr << "couldn’t allocate " << n + 1 << " bytes\n";
55 exit(EXIT_FAILURE);
56 }
57
58 strcpy(p, s);
59 return *this;
60 }
61
62 char& mystring::operator[](size_t i)
63 {
64 if (i > n) {
65 cerr << "Subscript " << i << " must be in range 0 to " << n
66 << " i nclusive.\n";
67 exit(EXIT_FAILURE);
68 }
69
70 return p[i];
71 }
72
73 const char& mystring::operator[](size_t i) const
74 {
75 if (i > n) {
76 cerr << "Subscript " << i << " must be in range 0 to " << n
77 << " i nclusive.\n";
78 exit(EXIT_FAILURE);
79 }
80
81 return p[i];
82 }

The above lines 33−36 may be combined to

83 if ((p = static_cast<char *>(malloc((n = another.n) + 1))) == 0) {

and lines 50−53 may be combined to

84 if ((p = static_cast<char *>(malloc((n = strlen(s)) + 1))) == 0) {

But don’t do it. C++does not share C’s rage to cram as much code as possible into a single expression.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/mystring/main1.C

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 305

306 OperatorOverloading Chapter 3

1 #include <iostream>
2 #include <cstdlib>
3 #include "mystring.h"
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 mystring s = "hello"; //initialization: constructor, mystring.C l. 18
9 mystring t = s; //initialization: copy constructor, mystring.C l.7

10
11 cout << "s and t were initialized to the values \"";
12 s.print();
13 cout << "\" and \"";
14 t.print();
15 cout << "\".\n";
16
17 s = " goodbye"; //assignment: s.operator=("goodbye"); mystring.C l. 47
18 t = s ; / /assignment: t.operator=(s); mystring.C l. 29
19
20 cout << "s and t were assigned the values \"";
21 s.print();
22 cout << "\" and \"";
23 t.print();
24 cout << "\".\n";
25
26 return EXIT_SUCCESS;
27 }

s a nd t were initialized to the values "hello" and "hello".
s a nd t were assigned the values "goodbye" and "goodbye".

We must write our own copy constructor to avoid Siamese twins

s andt start with the same value ("hello"), but line 11 changes one of them.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/mystring/main2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "mystring.h"
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 mystring s = "hello"; //the constructor that takes a const char *
9 c onst mystring t = s; //the copy constructor of t

10
11 s[0] = ’ H’; //s.operator[](0) = ’ H’; in mystring.C line 62
12
13 cout << "s == \"";
14 s.print();
15 cout << "\"\n";
16
17 cout << "t == \"";

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

18 t.print();
19 cout << "\"\n";
20
21 return EXIT_SUCCESS; //Call the destructors for t and s.
22 }

After the above line 9 finishes calling the copy constructor in line 7 ofmystring.C , we hav etwo
cleanly separated objects.

5

s

n

p

5

t

n

p

’h’ ’e’ ’l’ ’l’ ’o’ ’\0’ ’h’ ’e’ ’l’ ’l’ ’o’ ’\0’

The above line 21 will call the destructors fort ands , in that order. Whent ’s destructor frees the block of
memory pointed to byt.p , it will have no effect on the block of memory pointed to bys.p . They are two
different blocks.

s == " Hello"
t == " hello"

Had we not written the copy constructor in line 7 ofmystring.C , the above line 9 would behave as
if we had written the following copy constructor.

23 mystring::mystring(const mystring& another)
24 : n(another.n), p(another.p)
25 {
26 }

It is okay for the above line 24 to copy the n data member from one object to another. But when the line
does the same forp, it turnss andt into Siamese twins.

5

s

n

p

5

t

n

p

’h’ ’e’ ’l’ ’l’ ’o’ ’\0’

Any change to the characters ofs would therefore have the same effect ont . For example, the above line
11 would also changet to "Hello" .

s == " Hello"
t == " Hello"

When the above line 21 destructst , something much worse would happen:t would drag down s
with it. The destructor fort frees the block of memory pointed to byt.p , but this would be the same
block as the one that is pointed to bys.p . Then when line 21 tries to destructs , it would free the same
block of memory again, corrupting the heap of memory doled out bymalloc . If we are lucky, there might
be an error message about the twice-freed block.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 307

308 OperatorOverloading Chapter 3

We must write our own operator= to avoid Siamese twins

Lines 10 and 11 change the original values ofs andt .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/mystring/main3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "mystring.h"
4
5 i nt main()
6 {
7 mystring s = "hello";
8 mystring t = "goodbye";
9

10 s = t ; / /s.operator=(t); in line 29 of mystring.C
11 t = " Hello"; //t.operator=("Hello"); in line 47 of mystring.C
12
13 cout << "s == \"";
14 s.print();
15 cout << "\"\n";
16
17 cout << "t == \"";
18 t.print();
19 cout << "\"\n";
20
21 return EXIT_SUCCESS;
22 }

After the above line 10 finishes calling theoperator= in line 29 ofmystring.C , we hav etwo cleanly
separated objects. Line 11 changes one of them.

s == " goodbye"
t == " Hello"

Had we not written theoperator= in line 29 ofmystring.C , the above line 10 would behave as
if we had written the followingoperator= :

23 mystring& mystring::operator=(const mystring& another)
24 {
25 n = another.n;
26 p = another.p;
27
28 return *this;
29 }

At line 11 the pointerss.p and t.p would then both point to"goodbye" and we would again have
Siamese twins. No pointer would point to"hello" . "hello" would never be freed, leaving us with a
memory leak. Meanwhile, line 11 would damage the value ofs . Finally, when line 21 destructst , t
would once again drags down with it.

s == " Hello"
t == " Hello"

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

The difference between a copy constructor and operator=

An operator= must do three things over and above what a copy constructor does:

(1) operator= must destruct the old value of the object that is receiving the new value; see the
free in line 32 of themystring.C on pp. 304−305.But there is no old value for a constructor to
destruct, since a constructor is erecting a new value on virgin territory.

(2) No one will ever say

1 mystring a = a;

or if they do, they deserve to be punished. Acopy constructor can safely assume that the old and new
objects are not the same object. But we might say

2 * p = * q; //(*p).operator=(*q);

whenp andq point to the same object.An operator= must therefore check that the object of which it is
a member, and the object that it receives as an argument, are indeed two different objects. This is done by
checking that the two objects occupy different addresses; see theif (&another != this) in line 31 of
mystring.C . Were thefree in line 32 ofmystring.C not inside theif in line 31, the expression
*p = *q would destroy the object thatp andq point to.

On the other hand, anoperator= does not need thisif when the data type of the argument differs
from that of the object to which it belongs.For example, theoperator= in line 47 ofmystring.C has
an argument that is not an object. In this case, there is no possibility that the object of which the
operator= is a member, and the argument of theoperator= , are the same object. The argument of the
operator= is not an object at all; another example is on p. 735. (There is still a bug in thisoperator= ;
see pp. 314−315.)

(3) operator= must return (by reference) the new value of the object that received the new value;
see the declaration in line 47 and thereturn *this; in line 59 ofmystring.C . The last statement of
an operator= must always bereturn *this; , just like the last statement of anoperator+= or a
prefixoperator++ .

The big three

If we need to write any one of the following member functions, we probably need to write all three:

(1) destructor

(2) copy constructor

(3) operator=

Here are examples of classes which need two or more of the above member functions.

(1) Classcounted on pp. 241−244 has a static data member that needs to be updated whenever an
object is constructed or destructed.We had to write a copy constructor and a destructor for this class, but
not anoperator= .

(2) Classmystring on pp. 303−308 has a non-static data member pointing to data located outside
the object but which is owned by the object.We had to write a copy constructor andoperator= to avoid
Siamese twins, and a destructor to avoid memory leaks.

(3) Classesrabbit andwolf on pp. 194−197 and 197−199 have constructors and destructors that
must call member functions of other objects.We deliberately declared undefined private copy constructors
for these classes. Ditto for classnode on pp. 212−217, whose constructor and destructor change the data
members of other objects.

Four public member functions implicitly defined

Here are the four public member functions that will be implicitly defined for us if we don’t write
them ourselves. If we’re not satisfied with them, we can define different versions explicitly. We demon-
strate with classmystring on pp. 303−308.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 309

310 OperatorOverloading Chapter 3

(1) The copy constructor. The computer will write a public copy constructor that simply calls the
copy constructor of each non-static data member. The data members will be copied in the order in which
they were declared.The data members will be constructed in the order in which they were declared. If a
data member is a built-in type, pointer, or enumeration, we can program as if it has a public copy construc-
tor. For example,

1 mystring::mystring(const mystring& another)
2 : n(another.n), p(another.p) //bug: Siamese twins
3 {
4 }

The computer will not write a copy constructor for a class that has a non-static data member with no public
copy constructor of its own.

(2) The default constructor. If we hav ewritten no other constructor, the computer will write a public
default constructor that simply calls the default constructor of each non-static data member. The data mem-
bers will be constructed in the order in which they were declared. If a data member is a built-in type,
pointer, or enumeration, we can program as if it has a public default constructor that leaves it full of
garbage. For example,

5 / /n is built-in, p is pointer.
6 / /Bug: their default constructors leave them full of garbage.
7
8 mystring::mystring()
9 {

10 }

The computer will not write a default constructor for a class that has a non-static data member with no pub-
lic default constructor of its own.

(3) The destructor. The computer will write a public destructor that simply calls the destructor of
each non-static data member. The data members will be destructed in the opposite order from that in which
they were declared. If a data member is a built-in type, pointer, or enumeration, we can program as if it has
a public destructor that does nothing.For example,

11 //n is built-in, p is pointer.
12 //Bug: memory leak.
13
14 mystring::˜mystring()
15 {
16 }

The computer will not write a destructor for a class that has a non-static data member with no public
destructor of its own.

(4) Theoperator= member function whose argument is a constant reference to another object of
the same class as this one. The computer will write a publicoperator= that simply calls the
operator= of each non-static data member. The data members will be assigned to in the order in which
they were declared.Finally, the operator= will return *this . If a data member is a built-in type,
pointer, or enumeration, we can program as if it has a publicoperator= taking an argument of the same
type. For example,

17 mystring& mystring::operator=(const mystring& another)
18 {
19 n = another.n;
20 p = another.p; //bug: Siamese twins
21
22 return *this;
23 }

The computer will not write aoperator= for a class that has a non-static data member with no public

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

operator= of its own.

The onlyoperator= that the computer will write for us is one whose argument is aconst refer-
ence to another object of the same class. If we want a different argument, we must always write the
operator= ourselves. For example, the computer would gladly have written us a(n incorrect)
mystring::operator= taking aconst mystring& , but we had to write the
mystring::operator= taking aconst char * .

▼ Homework 3.8a: define anoperator= for t he pointer version of classstack

Write anoperator= for the classstack with a pointer data member on pp. 152−153.Return
*this by reference.

This operator= is long overdue. Let’s hope no one has attempted to assign onestack to another.
▲

▼ Homework 3.8b: rewrite point::assign as anoperator=

Classpoint has a member function namedassign in line 21 ofpoint.h on p. 207. Rename it
operator= . Theoperator= does not need theif that ensures that the two point ’s are two different
objects. Return*this by reference.
▲

▼ Homework 3.8c: define anoperator= for classobj

Write anoperator= for classobj on pp. 179−180 that will output the string"operator= "
and the value of the data memberi . Output another message if the object of which it is a member, and the
object that it receives as an argument, are the same object. Return*this by reference.

Theoperator= will be too long to be inline. But make it inline anyway so we won’t hav eto create
anobj.C file.
▲

▼ Homework 3.8d: make it impossible to assign one animal to another

We hav ealready made it impossible to create an animal that is a copy of another (p. 200).Let’s also
ensure that no animal can be assigned to another:

1 r abbit r1(argument(s) for constructor);
2 r abbit r2(argument(s) for constructor);
3
4 r 1 = r 2; //Let’s make this illegal.

A C++ object can be assigned to only by itsoperator= member functions.To make it impossible
to assign one object to another of the same class, all we have to do is make sure that it has nooperator=
whose argument is another object of the same class. In fact, we wrote no suchoperator= for classes
rabbit andwolf . But for that very reason, the computer wrote them for us. See p. 300.

To prevent the computer from doing this, declare a private operator= for classrabbit whose
argument is a read-only reference to arabbit , and one for classwolf whose argument is a read-only ref-
erence to awolf , but do not define them. If a member function or friend of one of these classes tries to
call theoperator= for that class, the program will not link because theoperator= was nev er defined.
And if any other function tries to call theoperator= , the program will not even compile because the
operator= is private. In either case, it will be impossible to assign one animal to another of the same
class.

1 c lass rabbit {
2 s tatic const char c = ’r’;
3 c onst terminal *t;
4 unsigned x, y;
5

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.8 Initialization vs. Assignment: a Constructor vs. operator= 311

312 OperatorOverloading Chapter 3

6 r abbit& operator=(const rabbit& another); //deliberately undefined
7 public:

While you’re at it, go to classnode on pp. 212−217 and declare a private, undefinedoperator=
whose argument is a read-only reference to anode .
▲

An implicit call to a constructor

Line 2 calls theoperator= in line 47 of the abovemystring.C :

1 mystring s = "hello";
2 s = " goodbye"; //s.operator=("goodbye");

But even if we had never written this function, line 2 would still work. Thecomputer would behave
as if we had written

3 mystring s = "hello";
4 s = mystring("goodbye"); //s.operator=(mystring("goodbye"));

In other words, it would call the constructor in line 18 ofmystring.C , and then pass the newly-con-
structed object to theoperator= in line 29 ofmystring.C . We wrote theoperator= in line 47 to
avoid the construction of this extra object in the above line 2.

Had we not written theoperator= , the above line 2 would have contained animplicit call to the
constructor. Line 4 contains anexplicit call to the constructor.

To prevent an implicit constructor call from compiling, add the keyword explicit to the start of
the declaration for the constructor in line 13 ofmystring.h . We would do this to make sure that the
above line 2 never constructs the unwanted object.

3.9 operator[] Returns a Reference
When we apply a subscript in[square brackets] to an object, the computer behaves as if we had

called theoperator[] member function of that object. The subscript that we wrote in the square brack-
ets is passed to theoperator[] function as its argument.

The test in lines 64 and 75 of the above mystring.C will catch a subscript that is too large. Itwill
also catch a negative subscript, because it will have been converted to a large positive number when copied
into thesize_t argument ofoperator[] .

If your object contains many items of data, and each item has an identifying number (subscript), the
name you should use for the member function that accesses them isoperator[] . This dresses the object
up to look like an array.

Theoperator[] function needs to access the private members of classmystring . It must there-
fore be either a member function or a friend of that class.But we have no choice in this matter—by the
rule on p. 287, ¶ (2),operator[] must be a member function.

Why the operator[] in line 62 of mystring.C can return a reference

Recall that theoperator+ and the postfixoperator++ in lines 44 and 50 ofdate.h on p. 274
constructed new objects, which had to be returned by value. Buttheoperator[] in line 62 of
mystring.C on pp. 304−305 does not construct a new char . It returns an existing char , so thechar
can be returned by reference.

Why the operator[] in line 62 of mystring.C must return a reference

An expression that can be the left operand of the assignment operator= is called anlvalue; one that
can be the right operand is called anrvalue. For example, a variable could be an lvalue or an rvalue.

1 x = y;

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

A l iteral can be an rvalue but not an lvalue:

2 x = 10; //10 is a literal.

In C, the return value of a function can not be an lvalue:

3 y = sqrt(x); //sqrt(x) can be an rvalue.
4 s qrt(x) = y; //won’t compile: sqrt(x) can not be an lvalue.
5 c out << &sqrt(x); //won’t compile: sqrt(x) can not be an lvalue.

But that’s exactly what line 11main4.C is trying to do: use the return value of a function as an lvalue.
The comment beside line 11 exposes the misdeed. Is there any way to make this legal?

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/mystring/main4.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "mystring.h"
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 mystring s = "hello";
9 c out << s[0] << "\n"; //cout << s.operator[](0) << "\n";

10
11 s[0] = ’ H’; //s.operator[](0) = ’ H’;
12 cout << s[0] << "\n"; //cout << s.operator[](0) << "\n";
13
14 const mystring t = "goodbye";
15 cout << t[0] << "\n"; //cout << t.operator[](0) << "\n";
16 //t[0] = ’ G’; //won’t compile: t.operator[](0) = ’G’;
17
18 return EXIT_SUCCESS;
19 }

h
H
g

If a function returns a pointer, the return value with an asterisk in front of it can be an lvalue. See
line 18 ofreturn_int.C on p. 75. If a function returns a reference, the return value can be an lvalue,
ev en without an asterisk in front of it. See line 19 of the same program.

To be an lvalue, the return value ofmystring::operator[] must therefore be a reference.
This, in fact, is why Stroustrup decided that C++ needed references as well as pointers: to permit line 11 of
the above main4.C to use the return value ofoperator[] as an lvaluewithout an asterisk.See Strous-
trup,Design and Evolution,pp. 85−87.

Three operators that must return a reference

People expect to be able to use the value of the following three operators as the left operand of the
assignment operator=. Don’t disappoint them. The correspondingoperator functions must therefore
return a reference.

(1) If the object contains many items of data, dress it up to look like an array. The member function
that accesses the data should be namedoperator[] , and it should take one argument.

1 v [20] = 10; //v.operator[](20) = 10;

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.9 operator[] Returns a Reference 313

314 OperatorOverloading Chapter 3

(2) If the object contains only one item of data, or if it makes only one item available at a time, dress
it up to look like a pointer. The member function that accesses the item should be namedoperator* ,
and it should take no arguments.

2 * it = 10; //it.operator*() = 10;

(3) If the object contains only a few items of data, or if it makes only a few items available at a time,
dress it up to look like a pointer to a structure. This one is harder. Create a member function named
operator-> , taking no arguments, that will load the items into a structure and return a pointer to the
structure. Afterthe arrow, write the field of the structure that we wish to access.

3 p->f = 10; //p.operator->()->f = 10;

For example, imagine a database whose records contain three fields,f , g, and h. Our objectp con-
tains the identification number of a record on the disk. The member functionoperator-> reads the
record, deposits the three fields into the fields of a structure in memory, and returns the address of the struc-
ture. We can then sayp->f to get the value of thef field of the record identified byp.

What if we want to do more than get the value? Whatif we want tochange the field, and write the
new value back into the database as in the above line 3? For this we will need the elaborate machinery in
pp. 967−968.

Tw o member functions with the same name and arguments

A non-const mystring object has theoperator[] member function in line 62 of
mystring.C on pp. 304−305, but not the one in line 73. When we apply the subscript operator to one of
these objects, the computer behaves as if we had called theoperator[] in line 62. Examples of this are
in lines 9−12 of the abovemain4.C .

Conversely, aconst mystring object has theoperator[] member function in line 73 of
mystring.C , but not the one in line 62. When we apply the subscript operator to one oftheseobjects,
the computer behaves as if we had called (or tried to call) theoperator[] in line 73. Examples of this
are in lines 15−16 of the abovemain4.C .

It looks like the two functions have the same name and arguments. Butin reality they differ in the
data types of their invisible arguments. Theoperator[] in line 62 receives the read/write pointer
mystring *const , theoperator[] in line 73 receives the read-only pointerconst mystring
*const . It is these invisible arguments which permit us to have two functions with the same name.For
other examples, see pp. 641, 857, 896, and 900.

Why the operator[] in line 73 of mystring.C must construct and return a const

A const can never be an lvalue. Theoperator[] in line 73 ofmystring.C returns aconst
to prevent line 16 of the abovemain4.C from compiling. Recall that theoperator+ and the postfix
operator++ for classdate returned aconst for the same reason; see lines 44 and 50date.h on p.
274.

This is the first time we’ve seen a pair of member functions with the same name and the same argu-
ments. We can do this only if one function isconst and the other non-const . In other words, function
name overloading takes into account the invisible argument too.

▼ Homework 3.9a: fix the bug in mystring::operator=

Now that classmystring has anoperator[] that returns a reference to one of the characters in
the string, there’s a potential bug in theoperator= that takes a pointer to achar .

Suppose someone says the following line 1. Then line 2 is useless but harmless. Line 3 should be
equally useless but equally harmless.

1 mystring s = "hello"; //a non-const mystring
2 s = s; / /s.operator=(s);
3 s = &s[0]; //s.operator=(&s.operator[](0));

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Why will the operator= in the above line 3 probably destroy the contents ofs? Hav e the
operator= in line 47 ofmystring.C on pp. 304−305 check if its pointer argument points to one of the
characters in themystring to which theoperator= belongs.
▲

3.10 operator int Converts an Object to an Integer

Convert an object to another data type

We already know how to convert adouble to anint . Now we will convert adate to anint with
the same syntax.Using the same syntax for all data types, built-ins and objects, will make it easier to con-
vert our code to ‘‘templates’’; see p. 634.

One way to convert a double to an int is in line 9: we declare anint variable and copy the
double into theint . Thedouble -to-int compilation warning can be avoided by changingpi to
static_cast<int>(pi) . We can also cast thedouble to int without storing the result into a
named variable; see line 12.

Lines 16 and 23 show what we will do for classdate . Let’s decide that the resultingint should be
the number of days from January 1, 0A.D. to thatdate . One way to convert a date to anint is in line
16: we declare anint variable and copy thedate into theint . We can also cast thedate to int with-
out storing the result into a named variable; see line 23.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/convert/date_to_int.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 double pi = 3.14159265358979323846;
9 i nt i = pi; //convert double to int

10
11 cout << pi << " converted to int is " << i << "\n"
12 << pi << " converted to int is " << static_cast<int>(pi)
13 << "\n\n";
14
15 date d;
16 i = d; / /int i = d.operator int();
17
18 d.print();
19 cout << " converted to int is " << i << "\n";
20
21 d.print();
22 cout << " converted to int is "
23 << static_cast<int>(d) //<< d.operator int()
24 << "\n";
25
26 return EXIT_SUCCESS;
27 }

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.10 operator int Converts an Object to an Integer 315

316 OperatorOverloading Chapter 3

3.14159 converted to int is 3
3.14159 converted to int is 3

4/8/2014 converted to int is 735208
4/8/2014 converted to int is 735208

To make the above conversions compile, the following line 10 defines a member function with the
unusual nameoperator int . It will be called implicitly whenever we attempt to convert adate to an
int . Please use this conventional name for a conversion function. Do not invent your own
names—date_to_int , date2int , elapsed_time , etc.

A conversion function does not actually convert the object into anything. To ensure that the object
remains unchanged, a conversion function should be aconst member function. Our function merely
returns an integer representing the object’s value.

Give no arguments to a conversion function, and declare no data type for the return value. Thedata
type is indicated by the name of the function itself. (In the same way, we declared no data type for the
return value of a constructor.)

1 / /Excerpt from date.h.
2 #ifndef DATEH
3 #define DATEH
4
5 c lass date {
6 s tatic const int length[];
7 s tatic const int pre[];
8 i nt day; //number of days before or after January 1, 0 A.D.
9 public:

10 operator int() const {return day;}
11 //etc.

We can now use adate object in any context in which anint would be accepted.*For example,
when used as the right operand of the assignment in the above line 16, theoperator int function will
be transparently called.

Ambiguous conversion

Here is a class ofdate objects that can be converted to eitherint or long . The comment in line
18 shows that thestatic_cast<int>() callsoperator int to do its work.

1 / /Excerpt from date.h.
2
3 c lass date {
4 s tatic const int length[];
5 s tatic const int pre[];
6
7 i nt year;
8 i nt month; //date::january to date::december inclusive
9 i nt day; //1 to date::length[month] inclusive

10
11 public:
12
13 //Return the Julian date of this date.
14 operator int() const {return pre[month] + day;}

* One exception: passing adate to a ‘‘template’’ that is unsure of whether it should accept anint or adate . See
pp. 652−653.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

15
16 //Return the number of days from January 1, 0 A.D. to this date.
17 operator long() const {
18 //return static_cast<long>(365) * year + operator int() - 1;
19 return static_cast<long>(365) * year
20 + static_cast<int>(*this) - 1;
21 }

There’s a problem with having two or more conversion functions. Line 24 is torn between converting
thedate to anint or to along . We hav eto make the decision for it, in lines 26 or 27.

22 date d;
23
24 if (d == 10) { //won’t compile
25
26 if (static_cast<int>(d) == 10) { //okay: if (d.operator int() == 10) {
27 if (static_cast<long>(d) == 10) { //okay: if (d.operator long() == 10) {

It is awkward for a class to have more than one conversion function to types that can be converted to
each other. Most classes have only one. The following classistream will be an example.

Check for error with a conversion function

A conversion function gives us a convenient notation for checking the health of an object.We will
demonstrate with adate and with the objectcin .

We often speak of the ‘‘logical’’ expression of anif , while , do-while , or for statement:

1 i f (a == b) {

But the expression is actually of typebool or any type that can be converted thereto. This includesint ,
double , enumerations, pointers, etc. And now that we have conversion functions, it also includes any
object with anoperator function that converts to bool , int , double , any enumeration type, or any
pointer type.

In class date , let’s replace the operator int and operator long with an
operator bool that would be useful in anif statement. We also switch to the three-data-member
implementation of classdate .

2 / /Excerpt from date.h.
3
4 c lass date {
5 s tatic const int length[];
6 i nt year;
7 i nt month; //date::january to date::december inclusive
8 i nt day; //1 to date::length[month] inclusive
9

10 public:
11
12 //Return true if this object is internally consistent.
13
14 operator bool() const {
15 return january <= month && month <= december &&
16 1 <= day && day <= length[month];
17 }

We can now write the tests in lines 20 and 24.

18 date d;
19

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.10 operator int Converts an Object to an Integer 317

318 OperatorOverloading Chapter 3

20 if (d) { //if (d.operator bool()) {
21 cout << "d is healthy.\n";
22 }
23
24 if (!d) { //if (!d.operator bool()) {
25 cout << "d is unhealthy.\n";
26 }

Of course, theif ’s in the above lines 20 and 24 can be combined into a singleif-else .

27 date d;
28
29 if (d) { //if (d.operator bool()) {
30 cout << "d is healthy.\n";
31 } else {
32 cout << "d is unhealthy.\n";
33 }

The operator void * member function of cin and cout

The familiar cin is actually an object; its class is namedistream . This class has a member func-
tion namedoperator void * , similar to theoperator bool we wrote for classdate . It returns a
non-zero pointer if theistream ’s most recent attempt at input was successful; a zero pointer if the
istream encountered end-of-input or an i/o error.

It would have been simpler to indicate success or failure with anoperator bool , in addition to
whatever other conversion function(s) the class may have. But we have just seen why it is awkward for a
class to have more than one function that converts to types that can be converted to each other. If a stream
object is to have only one such function, they wanted it to be the one with the maximum bandwidth; it will
be our only opportunity to get the stream’s contents in the form of another data type. The non-zero pointer
returned by a stream’s operator void * is the address of the stream.With this pointer, the entire con-
tents of the stream could be recovered. (Thefunction actually belongs to a smaller object of class
basic_ios<char> within the stream, and it returns the address of this object.A class whose name con-
tains<angle brackets> is called a ‘‘template class’’; the smaller object was placed into the larger one by
means of ‘‘inheritance’’. Theseare imposing topics; we’ll do them later.)

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/void_star.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 c out << "Please type an integer: ";
8 i nt i;
9 c in >> i;

10
11 cout << "cin.operator void * returns " << cin.operator void *() << ".\n"
12 << "The address of cin is " << &cin << ".\n"
13 << "The address of the basic_ios<char> object within cin is "
14 << static_cast<const basic_ios<char> *>(&cin) << ".\n";
15
16 return EXIT_SUCCESS;
17 }

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Please type an integer: 10
cin.operator void * returns 0x213d8.
The address of cin is 0x213d0.
The address of the basic_ios<char> object within cin is 0x213d8.

We can now write the test in line 21.

18 int i; //uninitialized variable
19
20 cin >> i; //cin.operator>>(i);
21 if (cin) { //if (cin.operator void *()) {
22 cout << "The integer input succeeded.\n";
23 }

The expressioncin >> i in the above line 20 has the valuecin ; we saw this on pp. 30−31.The
above lines 20−21 may therefore be combined to the single line 26.It calls theoperator void *
member function of the return value ofoperator>> .

24 int i; //uninitialized variable
25
26 if (cin >> i) { //if (cin.operator>>(i).operator void *()) {
27 cout << "The integer input succeeded.\n";
28 }

Classistream has another member functionoperator! , which returns abool . It is the oppo-
site ofoperator void * , returning false if theistream is healthy, true if unhealthy. This lets us say
line 32:

29 int i;
30
31 cin >> i;
32 if (!cin) { //if (cin.operator!()) {
33 cerr << "The attempt at integer input failed.\n":
34 }

Incidentally, the above line 32 would have worked even if cin had nooperator! function. Inthis case,
the line would have calledoperator void * and applied the unary! operator to the return value.

35 if (!cin) { //if (!cin.operator void *()) {

The above lines 31−32 can be combined to the single line 38. It calls theoperator! member function of
the return value ofoperator>> .

36 int i;
37
38 if (!(cin >> i)) { //if (cin.operator>>(i).operator!()) {
39 cerr << "The attempt at integer input failed.\n":
40 }

Without the parentheses, the above line 38 would have begun by callingoperator! , which returns a
bool . The>> would then have right-shifted thebool .

41 if (!cin >> i) { //won’t compile: if (cin.operator!() >> i) {

Of course, theif ’s in the above lines 26 and 38 can be combined into a singleif-else .

42 int i;
43
44 if (cin >> i) { //if (cin.operator>>(i).operator void *()) {
45 cout << "The integer input succeeded.\n";
46 } else {

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.10 operator int Converts an Object to an Integer 319

320 OperatorOverloading Chapter 3

47 cerr << "The attempt at integer input failed.\n":
48 }

If the follow-up if in the above lines 44−48 is too much trouble to write around every attempt at input, the
conscientious programmer could also perform the error checking by throwing exceptions. Seepp.
623−625.

▼ Homework 3.10a: which conversion function will be called?

Give class date the following two conversion functions. operator void * must be a
non-const member function in order to returnthis . In aconst member function,this would be a
const date * , which could not be implicitly converted to avoid * .

1 c lass date {
2 / /etc.
3 public:
4 / /etc.
5 operator bool() const { //implicit argument is read-only pointer
6 c out << "operator bool\n";
7 r eturn true if the date is healthy, false otherwise;
8 }
9

10 operator void *() { //implicit argument is read/write pointer
11 cout << "operator void *\n";
12 return this if the date is healthy, 0 otherwise;
13 }

Which function is called when you say

14 date d(date::january, 1, 2014);
15 if (d) {

Is this disconcerting?

Which function is called when you say

16 const date d(date::january, 1, 2014);
17 if (d) {

Is this more disconcerting?

The computer picks the conversion function whose (implicit) argument best matches the objectd; it’s
just like function name overloading. We can level the playing field by giving operator void * the
same implicit argument asoperator bool . To get it to compile, we will have to convert this from a
read-only pointer to a read/write pointer. The cast that does this conversion isconst_cast .

18 operator void *() const {
19 cout << "operator void *\n";
20 return const_cast<date *>(this) if the date is healthy,
21 0 otherwise;
22 }

Which function is now called in the above lines 15 and 17? The moral is that we shouldn’t hav ean
operator bool and anoperator void * in the same class.
▲

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

The computer will not apply more than one implicit conversion

HENRY V [to PRINCESSKATHERINE].
If thou would have such a one, take me;
and take me, take a soldier;
take a soldier, take a king.

—Henry V, V i 163−164

When you’re a Jet, you’re the swingin’est thing—
Little boy, you’re a man,
Little man, you’re a king!

—West Side Story

Theoperator gas member function of classliquid will be our first example of a function that
converts one type of object to another: aliquid to agas . Its return value is the anonymous temporary
gas object constructed in line 11 ofliquid.h , when the return statement passesliquid::n to the
constructor for classgas . (See p. 138, ¶ (4), for a call to a constructor in a return statement.) Since this
return value is an automatic variable, ouroperator gas must return via pass-by-value, not pass-by-ref-
erence.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/convert/gas.h

1 #ifndef GASH
2 #define GASH
3 #include <iostream>
4 using namespace std;
5
6 c lass gas { //Mason Williams
7 i nt n;
8 public:
9 gas(int initial_n): n(initial_n) {}

10 };
11 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/convert/liquid.h

1 #ifndef LIQUIDH
2 #define LIQUIDH
3 #include <iostream>
4 #include "gas.h"
5 using namespace std;
6
7 c lass liquid {
8 i nt n;
9 public:

10 liquid(int initial_n): n(initial_n) {}
11 operator gas() const {cout << "liquid to gas\n"; return n;} //return gas(n);
12 };
13 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/convert/solid.h

1 #ifndef SOLIDH
2 #define SOLIDH
3 #include <iostream>

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.10 operator int Converts an Object to an Integer 321

322 OperatorOverloading Chapter 3

4 #include "liquid.h"
5 using namespace std;
6
7 c lass solid {
8 i nt n;
9 public:

10 solid(int initial_n): n(initial_n) {}
11 operator liquid() const {cout << "solid to liquid\n"; return n;}
12 };
13 #endif

Lines 15−16 need no casts.Their comments show what’s going on: the compiler is willing to apply
an implicit conversion.

I wanted line 18 to convert thesolid to a liquid , and then theliquid to agas . But the com-
puter will not apply more than one implicit user-defined conversion, so line 18 did not compile.I tried to
help it along with the cast in line 19, but that wouldn’t compile either.

The path fromsolid to gas is more than one step.We must therefore spell out the intermediate
stepliquid in line 20. The comment shows what’s going on: theoperator liquid member func-
tion of thesolid returns an anonymousliquid , and then theoperator gas member function of the
anonymousliquid returns an anonymousgas . Our first example of calling a member function of an
anonymous temporary object returned by a function was in line 2 on pp. 137−138.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/convert/path.C

1 #include <iostream>
2 #include <cstdlib>
3
4 #include "gas.h"
5 #include "liquid.h"
6 #include "solid.h"
7 using namespace std;
8
9 i nt main()

10 {
11 solid ice = 10;
12 liquid water = 20;
13 gas steam = 30;
14
15 water = i ce; //convert solid to liquid: water = ice.operator liquid();
16 steam = water; //convert liquid to gas: steam = water.operator gas();
17
18 //steam = i ce; //won’t compile
19 //steam = static_cast<gas>(ice); //won’t compile
20 steam = static_cast<liquid>(ice); //ice.operator liquid().operator gas();
21
22 return EXIT_SUCCESS;
23 }

solid to liquid line 15
liquid to gas line 16
solid to liquid line 20
liquid to gas line 20

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Convert a built-in to an object

Now that we have converteddate to int , let’s convert int to date . We can’t do this with an
operator date member function of classint . The reason is simple: there is no classint .

But we already know how to perform this conversion. Simplydefine a constructor for classdate
taking oneint in line 36. The resultingdate will be the specified number of days before or after January
1, 0A.D. The cast in line 21 calls this constructor, as shown in the comment. Of course, the constructor can
also be called explicitly in line 25; see pp. 137−138, ¶ (1).

A constructor that can be called with one argument is called aconverting constructor. It might have
only one argument, or it may have a default value for every additional argument. Oneexample of a con-
verting constructor is the copy constructor, although it does not perform any conversion. To permit line 14
to compile, the converting constructor must not beexplicit (p. 137). If it was explicit , line 14
would have to be changed to

1 date d(i);

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/convert/int_to_date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date today;
9 i nt i = today; //int i = today.operator int();

10 cout << "The original date ";
11 today.print();
12 cout << " converted to int is " << i << ".\n\n";
13
14 date d = i ;
15
16 cout << i << " converted back to date is ";
17 d.print();
18 cout << "\n";
19
20 cout << i << " converted back to date is ";
21 static_cast<date>(i).print(); //date(i).print();
22 cout << "\n";
23
24 cout << i << " converted back to date is ";
25 date(i).print();
26 cout << "\n";
27
28 return EXIT_SUCCESS;
29 }

We’l l switch back to the classdate with one data member:

30 //Excerpt from date.h.
31
32 class date {
33 static const int length[];
34 int day; //number of days before or after January 1, 0 A.D.
35 public:

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.10 operator int Converts an Object to an Integer 323

324 OperatorOverloading Chapter 3

36 date(int initial_day): day(initial_day) {}
37 operator int() const {return day;}

It is pleasant that theint in the above line 12 contains enough information for lines 14, 21, and 25
to reconstruct the value of the originaldate object. Thisis another reason why the conversion function for
classistream returns avoid * . The return value could be the address of theistream , from which
the entire value of theistream could be recovered.

The original date 4/8/2014 converted to int is 735208.

735208 converted back to date is 4/8/2014
735208 converted back to date is 4/8/2014
735208 converted back to date is 4/8/2014

3.11 operator<< and operator>> Perform I/O

Stream objects are impossible to copy

The conventional way to input and output a C++ object is by overloading the operators>> and<<.
Doing it this way will let us use the same syntax for i/o with all data types, built-ins and objects. The pay-
off will come when we do templates; see p. 634.

1 date d;
2
3 c in >> d; //operator>>(cin, d);
4
5 c out << d; //operator<<(cout, d); No more d.print();

Before we define anoperator>> andoperator<< for classdate , we will examinecin andcout
more closely by doing i/o with integers.

cin , cout , cerr , and clog are actually objects.cin is of classistream , and cout , cerr ,
andclog are of classostream . They are calledstream objectsbecause an i/o channel carries a stream
of characters.

The c stands for ‘‘character’’, since they perform i/o one character at a time.There are alsowcin ,
wcout , etc., which perform i/o one wide character at a time.

clog is just like cerr , except thatclog is buffered andcerr is not. clog is intended for large-
volume logging and tracing output;cerr for shorter error messages.

Lines 10 and 11 show two ways of trying to call the copy constructor forcout . But the copy con-
structors for classesistream andostream are private, like those for classeswolf andnode , so they
cannot be called from outside the bodies of the member functions or friends of their classes.We therefore
have no way to construct a copy of an istream or ostream .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/copy.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f(ostream ost);
6
7 i nt main()
8 {
9 c out << "hello";

10 ostream another = cout; //won’t compile

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

11 f(cout); //won’t compile: attempt to pass cout by value
12 return EXIT_SUCCESS;
13 }
14
15 void f(ostream ost)
16 {
17 ost << "goodbye";
18 }

My compiler complained only about line 10, but when I comment out that line it complains about 11.
The cryptic error message says that the copy constructor for classostream calls the one for class
basic_ios<char> , which in turn calls the one for classios_base , which is the copy constructor that
is private. We will see why one copy constructor calls another when we do inheritance on p. 476.For now,
take a peek at the relationships between the classes in the diagrams that accompany pp. 383−385.

In file included from
/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/i
os:39:0,

from
/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/o
stream:40,

from
/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/i
ostream:40,

from copy.C:1:
/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/b
its/ios_base.h: In copy constructor ’std::basic_ios<char>::basic_ios(const
std::basic_ios<char>&)’:
/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/b
its/ios_base.h:785:5: error: ’std::ios_base::ios_base(const std::ios_base&)’ is
private
/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/i
osfwd:77:11: error: within this context
/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/i
osfwd: In copy constructor ’std::basic_ostream<char>::basic_ostream(const
std::basic_ostream<char>&)’:
/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/../../../../include/c++/4.5.2/i
osfwd:86:11: note: synthesized method ’std::basic_ios<char>::basic_ios(const
std::basic_ios<char>&)’ first required here
copy.C: In function ’int main()’:
copy.C:10:20: note: synthesized method
’std::basic_ostream<char>::basic_ostream(const std::basic_ostream<char>&)’
first required here

Why are we forbidden to construct a copy of cout ? Well, if cout is copied in lines 10 or 11, it
might still contain buffered data that has not yet been output to the outside world. Thenew objects
another in line 10 andost in line 15 would then be constructed pregnant with their own copies of the
string "hello" . All three objects,cout , another , and ost , would eventually outputhello , and the
user would see the word three times.

To avoid line 11’s attempt to copy cout , we must pass the argument off by reference. See pp.
185−189. Thereference must be read/write because the i/o operation in line 21 changes the stream object.
Any istream or ostream passed to or from a function must be passed as a read/write reference.For the
rarity and danger of a read/write reference argument, see pp. 73−74, 158.

19 void f(ostream& ost)

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.11 operator<< and operator>> Perform I/O 325

326 OperatorOverloading Chapter 3

20 {
21 ost << "goodbye";
22 }

Perform input with operator>>

When we write the expressioncin >> i in line 2, the computer behaves as if we had written the call
to the member functionoperator>> in the comment beside it.This operator>> performs integer
input.

1 i nt i; //uninitialized variable
2 c in >> i; //cin.operator>>(i);

The argumenti is passed as a read/write reference, allowing operator>> to install a new value into it.
For the same reason, the variables passed to the C functionscanf are passed by reference.

There is a similar member function for every built-in data type exceptchar . For example, this
operator>> performsdouble input.

3 double d; //uninitialized variable
4 c in >> d; //cin.operator>>(d);

For reasons too trivial to go into now, theoperator>> ’s that input achar and an array ofchar ’s hap-
pen not to be member functions.We’l l see why on p. 330. Thishas no effect on the code you write; only
the expansion in the comments is slightly different.

5 c har c; //uninitialized variable
6 c in >> c; //operator>>(cin, c), not cin.operator>>(c)
7
8 c har s[10]; //uninitialized variable
9 c in >> s; //operator>>(cin, s), not cin.operator>>(s)

Call operator>> and operator void * in an if statement

The expressioncin >> i in line 3 gives a new value to i . But we also know that the expression has
a value of its own. We even know what this value is:cin , the left operand of the>>. This value is used
whenever we input two or more values in the same expression (cin >> i >> j ; see p. 31). And now
that we’ve done operator overloading, we know where the value came from: it is the return value of the
operator>> function.

The operator>> ’s that are member functions (for every built-in type except char) return the
istream to which they belong. For example, the call tocin.operator>>(i) in the above line 2
returnscin . Similarly, theoperator>> ’s that are not member functions (forchar andchar *) return
the istream that was passed to them.For example, the call tooperator>>(cin, c) in the above
line 6 also returnscin .

Since the value ofcin >> i is cin , we can combine lines 3−4 to the single line 8. The comment in
that line shows what’s really going on: we’re calling a member function (operator void *) of an
anonymous temporary object returned by another function (operator>>). Ourfirst example of this was
in line 2 on pp. 137−138.

1 i nt i;
2
3 c in >> i; //cin.operator>>(i);
4 i f (cin) { //if (cin.operator void *()) {
5 c out << "The integer input succeeded.\n";
6 }
7
8 i f (cin >> i) { //if (cin.operator>>(i).operator void *()) {
9 c out << "The integer input succeeded.\n";

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

10 }

We can also combine lines 13−14 to line 18.The inner parentheses in line 18 are necessary to make the>>
execute before the! .

11 int i;
12
13 cin >> i; //cin.operator>>(i);
14 if (!cin) { //if (cin.operator!()) {
15 cerr << "The attempt at integer input failed.\n";
16 }
17
18 if (!(cin >> i)) { //if (cin.operator>>(i).operator!()) {
19 cerr << "The attempt at integer input failed.\n";
20 }

Of course, we can write a singleif-else :

21 int i;
22
23 if (cin >> i) { //if (cin.operator>>(i).operator void *()) {
24 cout << "The integer input succeeded.\n";
25 } else {
26 cerr << "The attempt at integer input failed.\n";
27 }

With data typechar , the corresponding expressions have slightly different expansions in the com-
ments in lines 30−32, since theoperator>> for char happens not to be a member function.

28 char c;
29
30 cin >> c; //operator>>(cin, c);
31 if (cin >> c) { //if (operator>>(cin, c).operator void *()) {
32 if (!(cin >> c)) { //if (operator>>(cin, c).operator!()) {

Call operator>> in a while loop

Here’s awhile loop that inputs integers until the input is exhausted or an error is encountered.(On
my platform, the end-of-input keystroke is control-d .) Line 9 calls theoperator void * member
function of the return value of theoperator>> member function ofcin , which keeps returning non-zero
as long as healthy integers are still coming in.

We break out of the loop whenoperator void * returns zero. This tells us that an attempt at
input has failed, but it doesn’t tell uswhy the attempt failed. We can get more detailed information from
the member functions in lines 13−15.eof returns true if the most recent attempt at input encounted end-
of-file. bad returns true if the most recent attempt was unable to read characters (or the end-of-file indica-
tion) from the outside world. fail returns true if the most recent attempt failed for any reason, including
the two above. Another possible cause offail is if the characters that were read do not spell out a legal
value for the receiving variable, in this case the integer in line 9.

It is to be hoped that we broke out of thewhile loop because of end-of-input. In this case, theeof
andfail bits will be on, and thebad bit will be off. All three bits are available in the bit pattern returned
by therdstate member function in line 17.For convenience, there is an enumeration corresponding to
each bit. The enumerations can be ‘‘bitwise or’ed’’ together to form a desired bit pattern. Just remember to
do the ‘‘or’’ w ithin parentheses, since it has lower precedence than==. See p. 9.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/while_int.C

1 #include <iostream>

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.11 operator<< and operator>> Perform I/O 327

328 OperatorOverloading Chapter 3

2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt i;
8
9 while (cin >> i) { //while (cin.operator>>(i).operator void *()) {

10 cout << i << "\n"; //operator<<(cout.operator<<(i), "\n");
11 }
12
13 cout << "cin.eof() == " << cin.eof() << "\n"
14 << "cin.bad() == " << cin.bad() << "\n"
15 << "cin.fail() == " << cin.fail() << "\n";
16
17 return cin.rdstate() == (ios_base::eofbit | ios_base::failbit)
18 ? EXIT_SUCCESS : EXIT_FAILURE;
19 }

The exit status isEXIT_SUCCESSif we broke out of the loop because of end-of-input.

10 20 30 You type this input and pressRETURN.
10
20
30 After seeing these three lines of output, you press the end-of-input keystroke.
cin.eof() == 1
cin.bad() == 0
cin.fail() == 1
control-d You type the end-of-file keystroke, and the exit status isEXIT_SUCCESS.

The exit status isEXIT_FAILURE if we broke out of the loop for any other reason, e.g., invalid
input.

10 20 abc You type this input and pressRETURN,
10
20 and before you even type the end-of-file keystroke, the program terminates.
cin.eof() == 0
cin.bad() == 0
cin.fail() == 1

The loop in the above line 9 can read a series of values of any data type, or at least any data type that
has anoperator>> . The corresponding expression with achar has a slightly different expansion in the
comment in line 9, since thechar operator>> is not a member function.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/while_char.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 c har c;
8
9 while (cin >> c) { //while (operator>>(cin, c).operator void *()) {

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

10 cout << c; //operator<<(cout, c);
11 }
12
13 return cin.rdstate() == (ios_base::eofbit | ios_base::failbit)
14 ? EXIT_SUCCESS : EXIT_FAILURE;
15 }

a b c You type this input and pressRETURN.
abc It echoes only the non-whitespace characters.
control-d You type the end-of-file keystroke, and the exit status isEXIT_SUCCESS.

The C++ equivalent of the while-getchar loop

As the above output shows, theoperator>> for char discards the whitespace characters that it
inputs. Sometimes,this is what we want. Oneway to avoid this would be to use thenoskipws i/o
manipulator on p. 359.

Another way would be to call the member functionget instead ofoperator>> . get reads one
character from itsistream without skipping whitespace. Like thechar operator>> , get accepts its
char argument as a read/write reference and returns theistream .

Theput member function in line 10was inv ented only for symmetry withget ; sayingcout << c
would have worked just as well. See p. 854 for another way to copy every character.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/get.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 c har c;
8
9 while (cin.get(c)) { //while (cin.get(c).operator void *()) {

10 cout.put(c);
11 }
12
13 return cin.rdstate() == (ios_base::eofbit | ios_base::failbit)
14 ? EXIT_SUCCESS : EXIT_FAILURE;
15 }

a b c You type this input and pressRETURN.
a b c It now echoes every character of input, including the spaces.
control-d You type the end-of-file keystroke, and the exit status isEXIT_SUCCESS.

The above loop is the C++ equivalent of the classicwhile-getchar loop in C. The return value
of getchar must not be stored in achar . Let’s assume that achar is eight bits. Then there are 256
possiblechar values. Butgetchar will return one of 257 possible values, a range that will not fit in a
char .

If getchar andputchar are macros, we cannot take their addresses.putchar may be a macro
that evaluates its argument more than once.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/getchar.c

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.11 operator<< and operator>> Perform I/O 329

330 OperatorOverloading Chapter 3

1 #include "stdio.h"
2 #include "stdlib.h"
3
4 i nt main()
5 {
6 i nt c; /* must be int, not char, for getchar */
7
8 while ((c = getchar()) != EOF) {
9 putchar(c);

10 }
11
12 return ferror(stdin) ? EXIT_FAILURE : EXIT_SUCCESS;
13 }

a b c You type this input and pressRETURN.
a b c It echoes every character of input, including the spaces.
control-d You type the end-of-file keystroke, and the exit status isEXIT_SUCCESS.

Incidentally, we can now explain why thechar operator>> , unlike the other ones, is not a mem-
ber function of classistream . The char operator>> calls the member functionget to do most of
its work, so it needs no access to the private members of classistream . (Similarly, thechar
operator<< is not a member function of classostream . It calls the member functionput to do its
work.)

Discover why an attempt at input failed

In addition toeof , classistream has two other member functions that return true or false to indi-
cate why the most recent attempt at input failed. Lines11−32 show the complete incantation that the con-
scientious programmer will write after anif .

We must testeof beforefail (lines 12 and 21), becausefail would be true if we encountered
end-of-inputor if the first non-whitespace character was wrong. If we testedfail first, we would be
unable to distinguish between these two causes of failure.

We must testbad beforefail (lines 16 and 21), becausefail would be true if we could not input
charactersor if the first non-whitespace character was wrong. If we testedfail first, we would be unable
to distinguish between these two causes of failure.

We testeof beforebad becauseeof is the more common occurrence.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/why.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main(int argc, char **argv)
6 {
7 c out << "Please type an integer: ";
8 i nt i; //uninitialized variable
9 c in >> i; //cin.operator>>(i);

10
11 if (!cin) { //if (cin.operator!()) {
12 if (cin.eof()) {
13 cerr << argv[0] << ": end of input\n";
14 }
15

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

16 else if (cin.bad()) {
17 cerr << argv[0] << ": can’t input characters "
18 "from the outside world\n";
19 }
20
21 else if (cin.fail()) {
22 cerr << argv[0] << ": first non-whitepace character "
23 << "encountered was neither a digit,\n"
24 << "nor a minus sign followed by a digit.\n";
25 }
26
27 else {
28 cerr << argv[0] << ": unknown input error\n";
29 }
30
31 return EXIT_FAILURE;
32 }
33
34 cout << "The integer was " << i << ".\n";
35 return EXIT_SUCCESS;
36 }

We can combine the above lines 9−11 to

37 if (!(cin >> i)) { //if (cin.operator>>(i).operator!()) {

Please type an integer: 10
The integer was 10.

Please type an integer: control-d (the end-of-file keystroke)
why: end of input

Please type an integer: abc
why: first non-whitepace character encountered was neither a digit,
nor a minus sign followed by a digit.

If we sabotagecin by insertingcin.rdbuf(0); at the above line 8½ (equivalent in its destruc-
tive effect tostdin->_base = stdin->_ptr = garbage; in C),bad would return true in line 17.

Please type an integer:
why: can’t input characters from the outside world before I have time to type anything

Taint cin by hand

The following program makes istream::fail return true ev en though nothing has failed.
We’l l need to do this when we write our ownoperator>> functions.

The functions in the previous section returned values that are determined by the settings of three bits
inside theistream . These bits are turned on automatically when anything goes wrong. When we
encounter end-of-file, the ‘‘eof ’’ and ‘‘fail’ ’ bits are turned on. When some other reason prevents us from
reading characters, the ‘‘bad’’ and ‘‘fail’ ’ bits are turned on.When we have read characters that do not spell
out a legal value, the ‘‘fail’’ bit is turned on.

The bits can also be turned on manually by calling thesetstate member function of the
istream (line 10). It turns on the specified bit(s), leaving the others unchanged. The argument is any

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.11 operator<< and operator>> Perform I/O 331

332 OperatorOverloading Chapter 3

combination of three enumeration values that are members of classios_base , bitwise-or’ed together.
These values correspond to the three bits in theistream : eofbit , badbit , or failbit ,

Now that we know about the bits, let’s see all six of theconst member functions that return them.
The rdstate in line 17 returns a bit pattern of typeiostate ; we examine the individual; bits in lines
21, 24, and 27. The next four functions returnbool . The functiongood returnstrue if all three bits are
off. Thefunctionseof andbad returntrue if the corresponding bit is on. The functionfail returns
true if either one of thebad or fail bits is on. The functionoperator! returns the same value as
fail . Finally, the operator void * function returns exactly the opposite: zero ifoperator!
returnstrue , non-zero otherwise.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/fail.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid health(const istream& is);
6
7 i nt main()
8 {
9 health(cin);

10 cin.setstate(ios_base::failbit);
11 health(cin);
12 return EXIT_SUCCESS;
13 }
14
15 void health(const istream& is)
16 {
17 const ios_base::iostate state = is.rdstate();
18
19 cout
20 << "eof returns " << is.eof() << ", eofbit is "
21 << static_cast<bool>(state & ios_base::eofbit) << "\n"
22
23 << "bad returns " << is.bad() << ", badbit is "
24 << static_cast<bool>(state & ios_base::badbit) << "\n"
25
26 << "fail returns " << is.fail() << ", failbit is "
27 << static_cast<bool>(state & ios_base::failbit) << "\n"
28
29 << "good returns " << is.good() << "\n"
30 << "operator void * returns " << is.operator void *() << "\n"
31 << "operator! returns " << is.operator!() << "\n\n";
32 }

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

eof returns 0, eofbit is 0
bad returns 0, badbit is 0
fail returns 0, failbit is 0
good returns 1
operator void * returns 0x21a38
operator! returns 0

eof returns 0, eofbit is 0
bad returns 0, badbit is 0
fail returns 1, failbit is 1
good returns 0
operator void * returns 0
operator! returns 1

When will an operator>> stop reading characters?

Let’s examine the fine points of theoperator>> functions that input the built-in data typeint and
the standard library data typecomplex<double> (a complex number whose two data members are
double ’s). We will then make our operator>> for classdate follow the same conventions.

First, let’s see when theint operator>> will stop inputting characters, especially when unsuc-
cessful. We will feed the following program one line of input, ending with a newline. Mostof these char-
acters will be input by theoperator>> in line 11. The remaining characters will be input and output by
the loop in lines 34−36. (Line 34 is expanded in the comment in 32.)We hav eto useget to input these
characters, sinceoperator>> would discard whitespace.

Before line 34 callsget , howev er, wene 29 must callclear . It does the opposite of the
setstate in line 10 of the previous program, restoringcin to health by turning off eofbit , badbit ,
and failbit . This permitscin to attempt further input after a failure. TheC Standard Library has a
similar function namedclearerr .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/eat.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main(int argc, char **argv)
6 {
7 i nt status = EXIT_FAILURE; //guilty until proven innocent
8 c out << "Please input an integer: ";
9

10 int i; //uninitialized variable
11 if (cin >> i) { //if (cin.operator>>(i).operator void *()) {
12 cout << "The integer is " << i << ".\n";
13 status = EXIT_SUCCESS;
14 } else {
15 cout << argv[0] << ": integer input failed, ";
16 if (cin.eof()) {
17 cout << "eof\n";
18 } else if (cin.bad()) {
19 cout << "bad\n";
20 } else if (cin.fail()) {
21 cout << "fail\n";
22 } else {

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.11 operator<< and operator>> Perform I/O 333

334 OperatorOverloading Chapter 3

23 cout << "unknown\n";
24 }
25 }
26
27 cout << "operator>> did not eat the following characters: \"";
28
29 cin.clear();
30 char c;
31
32 //while (cin.get(c).operator void *() && c != ’\n’) {
33
34 while (cin.get(c) && c != ’\n’) {
35 cout.put(c);
36 }
37
38 cout << "\".\n";
39 return status;
40 }

(1) The following line of input has three blanks before the number. The operator>> for int
inputs and ignores this whitespace. Ouroperator>> for date will do the same thing.

Please input an integer: 10
The integer is 10.
operator>> did not eat the following characters: "".

(2) This line of input has three blanks after the number. operator>> for int stops inputting char-
acters as soon as it encounters one that could not legally be part of theint . Our operator>> for date
will do the same thing.

Please input an integer: 10
The integer is 10.
operator>> did not eat the following characters: " ".

(3) This line of input hasabc after the number. Once again, theoperator>> for int stops
inputting characters as soon as it encounters one that could not legally be part of theint . Our
operator>> for date will do the same thing.

Please input an integer: 10abc
The integer is 10.
operator>> did not eat the following characters: "abc".

(4) On my platform, anint is 32 bits. The largest number that will fit in it is 2,147,483,647; the
smallest is −2,147,483,648. (Look up these numbers in the header file<climits> in the macros
INT_MIN andINT_MAX; they will be used on p. 539).Theoperator>> for int keeps inputting char-
acters as long as they are syntactically legal; it then rejects a value that is out of range.Our operator>>
for date will do the same thing.

Please input an integer: 2147483647000abc
eat: integer input failed, fail
operator>> did not eat the following characters: "abc".

(5) Here is a case where theoperator>> for int inputs at least one character that could be part of
an integer, an then fails when it does not find the rest of the integer. It inputs the negative sign but no addi-
tional characters, and makes no attempt to regurgitate (ungetc , as we would say in C) the negative sign.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Ouroperator>> for date will do the same thing.

Please input an integer: −abc
eat: integer input failed, fail
operator>> did not eat the following characters: "abc".

(6) Finally, the operator>> for class complex<double> permits whitespace between the
tokens of a value read from input. Ouroperator>> for date will do the same thing.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/complex.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <complex>
4 using namespace std;
5
6 i nt main()
7 {
8 c omplex<double> c;
9 c out << "Please input a complex number: ";

10 cin >> c;
11 cout << "The number was " << c << ".\n";
12 return EXIT_SUCCESS;
13 }

Please input a complex number: (10 , 20)
The number was (10,20).

To be consistent withint andcomplex<double> , our operator>> for classdate will do the
following.

(1) Inputand discard leading whitespace.

(2) Not input trailing whitespace or any other character after thedate that is not part of the
date .

(3) Keep inputting characters as long as they could be part of a syntactically legal date
(12/31/2014), even if the numbers are out of range (12/310/2014).

(4) Setthe istream ’s failbit if the date is out of range.

(5) Make no attempt to regurgitate the leading part of adate when it discovers that the rest of the
date is not there (12/31/abc). It will set theistream ’s failbit .

(6) Permitwhitespace before each slash:12 / 31 / 2014 .

Input and output a date

Until now we hav eoutput our objects by calling ad hoc member function such as.print() . We
will now input and output an object with the conventional C++ operators<< and>>.

1 date d;
2
3 c out << "Today is ";
4 d.print(); //The old way is bad.
5 c out << ".\n";
6
7 c out << "Today is ";
8 c out << d; //The new way is good.
9 c out << ".\n";

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.11 operator<< and operator>> Perform I/O 335

336 OperatorOverloading Chapter 3

One advantage of the above lines 7−9 is that they may be combined to one statement.

10 cout << "Today is " << d << ".\n";

Another is that we can specify any destination for the output:

11 cout << "Today is " << d << ".\n";
12 cerr << "Today is " << d << ".\n";
13 clog << "Today is " << d << ".\n";

The same advantages will accrue to our our operator>>. Using the same syntax to perform i/o with all data
types, built-ins and objects, will make it easy to rewrite our code in the form of ‘‘templates’’. Seep. 634.

There is no way we could have inv ented a new printf format for outputting adate . printf is
not extensible. Seepp. 29−30, ¶ (3).

14 date d;
15 scanf("%D", &d); //Can’t invent a %D for scanf.
16 printf("Today’s date is %D.\n", d); //Can’t invent a %D for printf.

As in every language, much more can go wrong during input (lines 10−23) than output (lines 25−26).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 date d;
9

10 cout << "Please input a date in the format m/d/y and press RETURN: ";
11 cin >> d; //operator>>(cin, d);
12
13 if (!cin) { //if (cin.operator!()) {
14 if (cin.eof()) {
15 cerr << argv[0] << ": end of file\n";
16 } else if (cin.bad()) {
17 cerr << argv[0] << ": can’t hear from outside world\n";
18 } else if (cin.fail()) {
19 cerr << argv[0] << ": input not in the format m/d/y\n";
20 } else {
21 cerr << argv[0] << ": don’t know why input failed\n";
22 }
23 }
24
25 //operator<<(operator<<(operator<<(cout, "The date was "), d), ".\n");
26 cout << "The date was " << d << ".\n";
27
28 return cin ? EXIT_SUCCESS : EXIT_FAILURE;
29 }

The above lines 11−13 may be combined to

30 if (!(cin >> d)) { //if (operator>>(cin, d).operator!()) {

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Member functions or friends?

Theoperator<< andoperator>> functions for most of the built-in types needed to use the pri-
vate members of classesostream and istream . That’s why they were member functions of these
classes. Butour operator<< andoperator>> for classdate can be written without any mention of
the private members of the streams. They will not be member functions or friends of those classes.

On the other hand, ouroperator<< andoperator>> will need to use the private members of
classdate . They must therefore be either members or friends of that class. But by p. 287, ¶ (4), they
can’t be member functions.Were they member functions, they would be member functions of their left op-
erand, and the left operand of<< and>> is always a stream (as in the above lines 25−26 and 11).They
must therefore be friends of classdate .

Pass by value or pass by reference?

The date argument ofoperator<< in line 14 does not have to be a reference. We made it one
only to avoid constructing and destructing an unnecessary copy of thedate . It is a read-only reference to
ensure that theoperator<< cannot damage thedate . On the other hand, thedate argument of
operator>> in line 15 must be a reference, and a read/write one to boot, so that theoperator>> can
install a new value into it. For the same reason, the arguments of the C functionscanf had to be pointers.

The stream argument and the return value ofoperator<< andoperator>> must be passed by
reference, since we’re not allowed to copy an ostream or istream . The argument and return value are
therefore the same object. The references must be read/write, because output and input change the
ostream andistream objects. For functions that return a reference, see line 19 ofreturn_int.C on
p. 75.

1 #ifndef DATEH //Excerpt from date.h.
2 #define DATEH
3 #include <iostream> //for ostream
4 using namespace std;
5
6 c lass date {
7 s tatic const int length[];
8 s tatic const int pre[];
9 i nt year;

10 int month; //1 to 12 inclusive
11 int day; //1 to length[month] inclusive
12 //etc.
13
14 friend ostream& operator<<(ostream& ost, const date& d);
15 friend istream& operator>>(istream& ist, date& d);
16 //etc.

Error detection

To read a date in the format12/31/2014 , operator>> must perform five separate input opera-
tions:

(1) line10, int

(2) line16,char

(3) line26, int

(4) line31,char

(5) line41, int

If any operation fails, theoperator>> returns the failed stream (lines 12, 18, 28, 33, 43), and line 13 of
the abovemain.C will detect the failure.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.11 operator<< and operator>> Perform I/O 337

338 OperatorOverloading Chapter 3

Even if one of the five input operations is successful, the value that was input may be invalid. Line
16 may have read a character successfully, leaving us with a healthy input stream. But if that character is
anything other than a slash, line 21 taints the stream and once again line 13 ofmain.C detects the failure.

Themain function is interested in knowing about these failures because it may want to make a sec-
ond attempt at inputting thedate . To do this, it will have to read and discard the remaining characters of
the invalid date from the input stream. There is no reliable way to recognize the last of these characters;
usually the best we can do is read and discard up to the next blank or newline.

operator>> must put no values into thedate unless all three integers are valid. Onceagain, an
invalid value makes us return prematurely (lines 51 and 57).

Note that ouroperator>> and theoperator>> ’s for the built-in types respond to the different
kinds of invalid input in the same way. The ‘‘integer’’ abc or the ‘‘date’’ 12-31-2014 (without the req-
uisite slashes) will cause the member functionsoperator! andfail of the input stream to return true.
The syntactically legal but out-of-range integer2147483648 or date12/32/2014 will also cause these
member functions to return true.Later, our operator>> will also be able to ‘‘throw an exception’’; see
pp. 624−625.

Our operator>> also agrees with the others in consuming only as much input as is syntactically
legal. For example, if we try to feed the characters-abc into the integer operator>> , it will input the
minus sign but not the letters. The letters can be read by a subsequent input operation after the input stream
has beenclear ’ed. Similarly, if we try to feed the characters12/31-2014 into ouroperator>> for
classdate , it will input the12/31 but not the-2014 .

An object should be constructed only once, sooperator>> can not install a new value into adate
object by calling its constructor. For example, thedate object in line 11 of the above main.C was
already constructed in line 8.To avoid writing the same code in a constructor and in theoperator>> ,
both functions can call a common subroutine, which should be a private member function.

Theoperator<< andoperator>> functions are sometimes calledinsertersandextractors. We
will improve theoperator<< on pp. 460−461.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/state/date.C

1 ostream& operator<<(ostream& ost, const date &d)
2 {
3 ost << d.month << "/" << d.day << "/" << d.year;
4 r eturn ost;
5 }
6
7 i stream& operator>>(istream& ist, date& d)
8 {
9 i nt month; //uninitialized variable

10 ist >> month;
11 if (!ist) { //if (ist.operator!()) {
12 return ist;
13 }
14
15 char c; //uninitialized variable
16 ist >> c;
17 if (!ist) {
18 return ist;
19 }
20 if (c != ’/’) {
21 ist.setstate(ios_base::failbit);
22 return ist;
23 }
24

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

25 int day; //uninitialized variable
26 ist >> day;
27 if (!ist) {
28 return ist;
29 }
30
31 ist >> c;
32 if (!ist) {
33 return ist;
34 }
35 if (c != ’/’) {
36 ist.setstate(ios_base::failbit);
37 return ist;
38 }
39
40 int year; //uninitialized variable
41 ist >> year;
42 if (!ist) {
43 return ist;
44 }
45
46 //Put no values into d until we’ve verified that all three are valid.
47
48 if (month < date::january || month > date::december) {
49 cerr << "bad month " << month << "\n";
50 ist.setstate(ios_base::failbit);
51 return ist;
52 }
53
54 if (day < 1 || day > date::length[month]) {
55 cerr << "bad day " << day << " of month " << month << "\n";
56 ist.setstate(ios_base::failbit);
57 return ist;
58 }
59
60 d.year = year;
61 d.month = month;
62 d.day = day;
63
64 return ist; //as in the above line 4
65 }

The above lines 3−4 should be combined to to

66 return ost << d.month << "/" << d.day << "/" << d.year;

since the value of the whole expression isost .

The above lines 10−11 may be combined to

67 if (!(ist >> month)) { //if (ist.operator>>(month).operator!()) {

Ditto for lines 16−17, 26−27, 31−32, and 41−42.

Please input a date in the format m/d/y and press RETURN: 4/8/2014
The date was 4/8/2014.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.11 operator<< and operator>> Perform I/O 339

340 OperatorOverloading Chapter 3

Please input a date in the format m/d/y and press RETURN: abc/8/2014
progname: input not in the format m/d/y line 19 ofmain.C
The date was 4/8/2014.

Please input a date in the format m/d/y and press RETURN: 4/8-2014
progname: input not in the format m/d/y line 19 ofmain.C
The date was 4/8/2014.

Please input a date in the format m/d/y and press RETURN: 12/32/2014
bad day 32 of month 12 line 55 ofdate.C
progname: input not in the format m/d/y line 19 ofmain.C
The date was 4/8/2014.

The hidden nesting

Operator overloading gives us a nice, linear notation to hide a series of nested function calls.When
we write lines 1−3, the computer behaves as if we had written lines 5−7; when we write lines 9−11, the
computer behaves as if we had written 13−15.The<< and>> operators have left-to-right associativity, so
the first function called is the one that corresponds to the leftmost operator.

Compare the hidden nesting of theoperator= ’s on pp. 300−301.

1 c out << "Today is ";
2 c out << "Today is " << d;
3 c out << "Today is " << d << "\n";
4
5 operator<<(cout, "Today is ");
6 operator<<(operator<<(cout, "Today is "), d);
7 operator<<(operator<<(operator<<(cout, "Today is "), d), "\n");
8
9 c in >> d1;

10 cin >> d1 >> d2;
11 cin >> d1 >> d2 >> d3;
12
13 operator>>(cin, d1);
14 operator>>(operator>>(cin, d1), d2);
15 operator>>(operator>>(operator>>(cin, d1), d2), d3);

▼ Homework 3.11a: call the operator<< we just wrote

In the constructors andprint member function of classemployee , take advantage of the
operator<< we just wrote for classdate . Write theemployee error messages tocerr , not tocout .
Consolidate consecutive output statements into a single statement in theemployee constructors.

1 c out << "birth date: " << birth
2 << " hired on: " << hired
3 << " ss #: " << ss;

▲

▼ Homework 3.11b: define anoperator<< friend for classes life, point, and employee

Define anoperator<< friend for classeslife (pp. 145−146),point (pp. 201−204), and
employee (pp. 257−262). Remove theirprint member functions.

For classpoint , our operator<< will eventually let us produce output in either Cartesian or
polar coördinates (pp. 362−366). And for all classes, converting from print to operator<< will let us

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

direct output to any destination, not merely to thecout hardwired into theprint functions.

But there is one place where we lose functionality. The print function of classlife took argu-
ments letting us specify the two characters with which to draw the picture (p. 146).We even provided
default values for them. But anoperator<< function has no room for extra arguments. Italways takes
the same pair: a read/write reference to anostream and a read-only reference to the object being printed.

We hasten to assure the reader that this loss is only temporary. We will regain it with the same
machinery that lets us format apoint in Cartesian or polar. See pp. 367−371.
▲

▼ Homework 3.11c: what functions are called by these expressions?

If a, b, and c were objects, what functions would be called by the following expressions and in what
order? Assumethat theoperator* andoperator+ are not member functions. Write an expansion for
each expression as in the above lines 5−7, 13−15.

1 a + b + c
2 a * b + c * d

▲

3.12 Putit All Together: A Constrained Class

Look and feel

An SAT score (‘‘Scholastic Aptitude Test’’) is an integer that is a multiple of 10 in the range 200 to
800 inclusive. An sat object has the look and feel of anint , except that its value must be a legal SAT
score. Whenever we use the value of ansat , we are actually using the return value of its member function
operator int in line 23 ofsat.h .

1 s at s = 700;
2
3 c out << s << "\n"; //cout << s.operator int() << "\n";
4 i nt i = s; //int i = s.operator int();
5 i f (s <= 7 00) { //if (s.operator int() <= 700) {

But whenever we change the value of ansat , we are calling thesat ’s operator= member function in
line 5 ofsat.C , or another member function that ultimately calls this one.Theoperator= does bounds
checking, allowing ansat object to police itself.

6 s = 600; //s.operator=(600);
7 s += 20; //s.operator+=(20);
8 ++s; //s.operator++();
9 i f (++s <= 700) { //if (s.operator++().operator int() <= 700) {

10 cin >> s; //operator>>(cin, s);

Most of the functions that would normally need to be members or friends are neither. Only one
member function is non-inline, theoperator= in line 9 of the followingsat.h .

The prefix operators in lines 19−20 return*this . *this is not going to evaporate when they
return, so it can be returned by reference. But the postfix operators in lines 23−24 return a local variable.
The local variable will evaporate when they return, so it must be returned by value.

It is no sin for one member function to call another member function of the same class.The member
functions are all inline, so we waste no time. Ditto for the friends.

(1) In lines 15 and 16 ofsat.h , the expressions that is an operand of the+ and- implicitly calls the
operator int in line 11. The+ and- do not call theoperator+ andoperator- in 26 and
28; these functions have not yet been seen.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.12 Put it All Together: A Constrained Class 341

342 OperatorOverloading Chapter 3

(2) Theassignment operator= in lines 10, 15, and 16 ofsat.h calls theoperator= in line 9: its left
operand is ansat . But the assignment in line 12 ofsat.C does not call this function: its left oper-
and is anint .

(3) Theoperator+= in lines 19, 26, and 27 ofsat.h calls theoperator+= in line 15.

(4) Theoperator-= in lines 16 and 28 ofsat.h calls theoperator-= in line 16.

(5) Theprefix++ in line 23 calls the prefixoperator++ in line 19.

(6) Theprefix -- in line 24 calls the prefixoperator-- in line 20.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/sat/sat.h

1 #ifndef SATH
2 #define SATH
3 #include <iostream>
4 using namespace std;
5
6 c lass sat {
7 i nt n;
8 public:
9 s at& operator=(int i);

10 sat(int new_n = 200) {*this = new_n;} //(*this).operator=(new_n);
11 operator int() const {return n;}
12 };
13
14 //Reference argument is read/write. return s.operator=(s.operator int() + i);
15 inline sat& operator+=(sat& s, int i) {return s = s + i;}
16 inline sat& operator-=(sat& s, int i) {return s = s - i;}
17
18 //Prefix operators
19 inline sat& operator++(sat& s) {return s += 10;}
20 inline sat& operator--(sat& s) {return s -= 10;}
21
22 //Postfix operators
23 inline const sat operator++(sat& s, int) {const sat old = s; ++s; return old;}
24 inline const sat operator--(sat& s, int) {const sat old = s; --s; return old;}
25
26 inline const sat operator+(sat s, int i) {return s += i;}
27 inline const sat operator+(int i, sat s) {return s += i;}
28 inline const sat operator-(sat s, int i) {return s -= i;}
29
30 istream& operator>>(istream& i, sat& s);
31 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/sat/sat.C

1 #include <cstdlib>
2 #include "sat.h"
3 using namespace std;
4
5 s at& sat::operator=(int i)
6 {
7 i f (i < 2 00 || i > 800 || i % 10 != 0) {
8 c err << "sat can’t contain " << i << ".\n";
9 exit(EXIT_FAILURE);

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

10 }
11
12 n = i ;
13 return *this;
14 }
15
16 istream& operator>>(istream& istr, sat& s)
17 {
18 int i; //uninitialized variable
19
20 if (istr >> i) { //if (istr.operator>>(i).operator void *()) {
21 s = i ; / /s.operator=(i);
22 }
23
24 return istr;
25 }

The following two public member functions are defined for us implicitly, so we do not have to write
them. Theargument of theoperator= has the same data type as the object that theoperator=
belongs to.If we want anoperator= with a different argument, we’ll have to write it ourselves as in the
above lines 5−14.

26 public:
27 sat(const sat& another) {n = another.n;}
28 sat& operator=(const sat& another) {n = another.n; return *this;}

▼ Homework 3.12a: create class printable

Create a classprintable having the look and feel of achar , except that it can hold only printable
values. Classprintable will have exactly one data member, a private, non-staticchar namedc . Imi-
tate classsat .

Define the following publicoperator= . For the single cast in line 7, see pp. 63−64; for the double
cast in 9, see p. 64.

1 #include <iostream>
2 #include <cctype> //for isprint
3 #include "printable.h"
4 using namespace std;
5
6 printable& printable::operator=(char new_c)
7 {
8 i f (isprint(static_cast<unsigned char>(new_c)) == 0) {
9 c err << "character code "

10 << static_cast<unsigned>(static_cast<unsigned char>(new_c))
11 << " is n ot printable\n";

The above operator= will detect the out-of-range value in the following line 17, but might miss
the one in 18.The rand function returns anint , converted tochar when passed to theoperator= .
At this point, there are two routes to failure on machines wherechar is narrower thanint . If char is
signed and too small to hold the random number, the result of this conversion will be ‘‘implementation
defined’’. If char is unsigned, the conversion might just happen to yield a printable character.

12 #include <cstdlib> //for rand
13 #include "printable.h"
14 using namespace std;
15

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.12 Put it All Together: A Constrained Class 343

344 OperatorOverloading Chapter 3

16 printable p(argument(s) for constructor);
17 p = ’ \a’; //p.operator(’\a’); alarm character is not printable
18 p = r and();

To avoid the conversion from int to char in line 18, define the additional publicoperator= in
line 22. To call isprint safely with an arbitraryint , we need the preliminary tests in line 24.The int
passed toisprint must be the valueEOF(‘‘end-of-file’’) or a number that can be held in anunsigned
char ; otherwiseisprint could crash the program with a clear conscience (pp. 63−64).

19 #include <climits> //for UCHAR_MAX, the maximum value for unsigned char
20 #include "printable.h"
21
22 printable& printable::operator=(int new_c)
23 {
24 if (new_c < 0 || new_c > UCHAR_MAX || isprint(new_c) == 0) {
25 cerr << "character code " << new_c << " is not printable\n";

The two operator= ’s will be the only member functions of classprintable that callisprint .
If desired, they can call a common subroutine, or one could call the other. Do not bother to define the
operator= that takes aconst printable& ; it has already been defined for you implicitly.

Give classprintable a public constructor that takes achar and passes it to theoperator= that
takes achar ; and a public constructor that takes anint and passes it to theoperator= that takes an
int . Also give classprintable a public operator char .

The following ten functions will be neither members nor friends. Declare all of them in the
printable.h file. operator>> is the only one too big to be inline; define it inprintable.C .
Define the others inprintable.h .

The operator>> that inputs aprintable should call theoperator>> that inputs achar .
Since the latter skips whitespace, the former will too.(To turn the skipping off, seenoskipws on p. 359.)
Theoperator>> that inputs aprintable will then pass thechar to the
printable::operator= that takes achar .

operator+= andoperator-= whose argument is anint
operator++ (prefix and postfix)
operator-- (prefix and postfix)
operator>> performchar input and then assign thechar to theprintable
operator+ add aprintable and anint , yielding aprintable
operator+ add anint and aprintable , yielding aprintable
operator- subtract anint from aprintable , yielding aprintable

We will turn printable into a ‘‘template class’’ on pp. 735−738, and incorporate it into the Rabbit
Game on pp. 740−745.
▲

3.13 AModel for Operator Overloading
Whenever we defineoperator functions for a class, we face the same four decisions.

(1) Musttheoperator be a member function or a friend? If so, which should it be?

(2) If theoperator is a member function, should it beconst ?

(3) If the operator takes an object as an explicit argument, must it be passed by value or can it be
passed by reference? If the later, should the reference be read-only or read/write?

(4) If theoperator function returns an object, must it be returned by value or can it be returned by ref-
erence? Ifthe later, should the reference be read-only or read/write?

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Fortunately, these issues will be decided the same way for almost every class. In fact, the
operator functions are so stereotyped that we can provide a copy-and-paste model for their declarations
and even for some of their definitions. Later we will see a similar model called a ‘‘template’’. The dummy
classnameT in line 6 will reappear in our templates as the conventional name for a dummy data type.

Defineoperator== or operator!= , whichever is easier. It should be a friend function, since
there are two objects. Theother one can be implemented as a call-through that is neither a member nor a
friend (lines 16 and 28).Similarly, operator> can be implemented as a call-through tooperator<
(lines 17 and 29), andoperator>= as a call-through tooperator<= (lines 18 and 30). The
operator- that takes two objects in line 19 should be a friend just like the functions in lines 16−18.

Objects are usually passed to anoperator function by reference to avoid the expense of copying
them. Plentifulexamples are in lines 16−19, 24−25, 28−30. The reference is always read-only, except for
the object passed tooperator>> in line 25. But the function in lines 32−34 must construct a new object,
one that is most easily constructed by starting with a copy of an argument. Inthis case the new object may
be constructed by passing the argument by value.

The member functions in lines 9−12 must return the object to which they belong. Thisis done by
sayingreturn *this; . The object will not evaporate as the member function returns, so the functions
can get away with return-by-reference.We return a read/write reference to permit the object to be modified
after it is returned. An example is in line 20 ofmain.C on p. 998.

1 ++ob %= 10; //modify ob after it is returned by operator++.

If a function constructs and returns a new object, it must return the new object by value. Seelines
32−34, 39−40. In the postfix functions (lines 39−40), the new object is constructed with a declaration
(const T old = t;). In lines 32−34, the new object is constructed by passing an existing object by value.
The new object must beconst to prevent it from being modified after it is returned.

2 (ob1 + 10) = 20; //don’t let this compile

The argument of theoperator= in line 9 does not necessarily have to be another object of the
same class. There can be several operator= ’s, each with an argument of a different data type.

The postfix operators in lines 39−40 shouldalways do their work by calling the prefix ones in lines
36−37. Thisensures that the increments and decrements will be identical, apart from the time at which
they are performed.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/T.h

1 #ifndef TH //This is not C++ code, just a model to copy and paste.
2 #define TH
3 #include <iostream> //for ostream and istream
4 #include <cstddef> //for size_t
5 using namespace std;
6
7 c lass T {
8 public:
9 T& operator=(const T& another);

10
11 T& operator+=(int i);
12 T& operator-=(int i);
13
14 operator int() const;
15
16 friend bool operator==(const T& t1, const T& t2);
17 friend bool operator< (const T& t1, const T& t2);
18 friend bool operator<=(const T& t1, const T& t2);
19 friend int operator- (const T& t1, const T& t2);

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.13 A M odel for Operator Overloading 345

346 OperatorOverloading Chapter 3

20
21 int& operator[](size_t i);
22 const int& operator[](size_t i) const;
23
24 friend ostream& operator<<(ostream& ost, const T& t);
25 friend istream& operator>>(istream& ist, T& t);
26 };
27
28 inline bool operator!=(const T& t1, const T& t2) {return !(t1 == t2);}
29 inline bool operator> (const T& t1, const T& t2) {return t2 < t1;}
30 inline bool operator>=(const T& t1, const T& t2) {return t2 <= t1;}
31
32 inline const T operator-(T t, int i) {return t -= i;}
33 inline const T operator+(T t, int i) {return t += i;}
34 inline const T operator+(int i, T t) {return t += i;}
35
36 inline T& operator++(T& t) {return t += 1;}
37 inline T& operator--(T& t) {return t -= 1;}
38
39 inline const T operator++(T& t, int) {const T old = t; ++t; return old;}
40 inline const T operator--(T& t, int) {const T old = t; --t; return old;}
41 #endif

For some classes, the prefixoperator++ in the above line 36 could be implemented most simply
by calling theoperator+= in line 11. Such was the case with the classdate with one data member
(day) and classsat (line 19 ofsat.h on p. 342.)

42 inline T& operator++(T& t) {return t += 1;} //return t.operator+=(1);

For other classes,operator+= could be implemented by calling the prefixoperator++ . Such was the
case with the original classdate with three data members (year , month , andday) and classlife .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/overload/T.C

1 / /Excerpt from T.C
2 #include "T.h"
3
4 T& T::operator+=(int i)
5 {
6 f or (; i > 0; --i) {
7 ++*this; //(*this).operator++();
8 }
9

10 for (; i < 0; ++i) {
11 --*this; //(*this).operator--();
12 }
13
14 return *this;
15 }

Other decisions may vary as well.The operator>> we wrote for classdate needed to mention
the private members of that class, so we made it a friend (pp. 338−339). But theoperator>> function
for classsat mentioned no private members, so it was neither a member function nor a friend (p. 343).
Ditto for theoperator>> for classprintable (p. 344).

The member functionoperator-> can often be implemented by callingoperator* ; see p. 823.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Our example uses the data typeint for two distinct purposes. It is used for numbers that are added
to or subtracted from aT object, and for numbers that represent the distance between two T objects. See
lines 11−12, 19, 32−34 of the above T.h . To show the intent of these numbers, we can make a typedef for
their data type. The C++ convention is to use the namedifference_type for the integral data type that
is added to or subtracted from an object or that measures the distance between two objects, at least when
the objects are ‘‘iterators’’.

1 t ypedef int difference_type;
2
3 c lass T {
4 public:
5 T& operator+=(difference_type d);
6 f riend difference_type operator-(const T& t1, const T& t2);
7 / /etc.
8 } ;
9

10 inline const T operator+(T t, difference_type d) {return t += d;}

Classesdate andlife could also benefit from adifference_type typedef.

The data typeint was also used for the little values that are contained in aT object; see lines 21−22
of the above T.h The C++ convention is to use the namevalue_type for the little values that are con-
tained in a larger object.

11 typedef int value_type;
12
13 class T {
14 public:
15 value_type& operator[](size_t i);
16 const value_type& operator[](size_t i) const;
17 //etc.
18 };

See thevalue_type in classstack on pp. 153−154.Eventually these typedefs will become members
of their classes; see the one in line 17 ofclinton.h on p. 420.

printed 4/8/14
8:43:46 AM

All rights
reserved ©2014 Mark Meretzky

Section 3.13 A M odel for Operator Overloading 347

