Objects Without Inheritance

2.1 Pass a Structue to a Function

A calendar computation

An “object” lets us package together a group afiables and the functions that operate on them.
We will present objects with a program that performs the calendar computation in the box on Pphéa08.
three versions of the program will perform the same computation and produce the sameMeutjori. 1
will have individual variables; Version 2, a structure; and Version 3, our first object.

Employing an object in such a simple program i€ liking a sledgehammer to kill ant&ven \er-
sion 1 has more machinery than is need&d:omputation this simple auld normally be done entirely in
themain function; it is split into four separate functions only to foreshatie object that will appear in
Version 3.

At this point we do not wish touoden the reader with a program complicated enough o siat
an object is good forFor now, we will just shav what an object isTo avoid issues that he rothing to do
with objects, we will mak three simplifying assumptions about our calendar system.

(1) Thereare no leap years, andvweewere.

(2) Therewas a Year Zero betweend.c.and 1A.D. We will refer toB.C. years as rgetive years: 18.C.
will be the year -1.

(3) Thecalendar has walys been Grgorian, neer Julian. Theswitch-over in September1752 never
happened.

September 1752
S| M|Tu|W|Th| F| S
1| 2(14| 1516
17118 19|20 21| 22/23
24| 25/26| 27/ 28| 29 30

2.1.1 \érsion 1: Pass Individual Variables to a Function

To do the computation, the program must knthe lengths of the twedvmonths. V¢ enbody this
knowledge as the array of twehntegers in lines 5-19(Thirteen, actually The subscripts start at zero, so
we added a dummy element to let January be subscri@idce an initial value was provided for each ele-
ment, there was no need to write the number of elements in the square brackets in line 5.

The main character of the program is the trio ofgateariablesyear , month , day in lines 27-29,
and the three functions in lines 21-23 that operate on them. When we ges$itn\8, all six will be pack-
aged as one unit. The language will help us think of them as a single entity.

PSs 5o A hesenea ©2014 Mark Meretzky

106 ObjectsWithout Inheritance Chapter 2

The simplest function idate_print , called in line 32 and defined in line 67. There was no need
to pass the trio tdate_print by reference.Pass-by-walue would hae been simpler than the pointer ar
guments in line 67.

1 void date_print(int year, int month, int day) //arguments passed by value

2 {

3 cout << month << "/" << day << "/" << year,

4}
But it will be easier for ¥rsion 3 to introduce objects if all the functionsetaiguments of the same type,
and the arguments of the other functions willho be minters.

To ensure thatlate_print does not change thalues of the trio, line 67 declares the pointer ar
guments to be read-onlyVe haveto write the leyword const three times; six times, if we include the
declaration in line 23.

Line 69 outputs the month before the dsgparated by slashes, to falldhe American covention;
we will internationalize on pp. 1031-1057.

The functiondate_next is called in line 38 and defined in 45. This time, the arguments must be
passed by reference to let the function change the values of our tddaifles. limakes repeated calls to
another function in line 51 to do the real work, passing along the first three arguments unchieged.
functions hae the same name; we can getag with this because their numbers ofaments are diérent.

The loop in line 50 will work correctly only ifount is initially non-neative; this will be fixed on
pp. 128-129. The increment in line 62 will work correctly only if the year does not alreessheamaxi-
mum value for an integeiVe will check for this when we W& “exceptions”, on pp. 599-600.

We oould have let the trio be global variables, making them accessible to the functions without the
need for pointer guments. Buglobals are cursed with immortalityrhey cannot be created, desyem,
and re-created while the program is running. See p. 464.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/version/versionl1.C
1 #include <iostream>
2 #include <cstdlib>
3 using nhamespace std;
4
5 constint date_length[] = {
6 0, [/dummy element so that January will have subscript 1
7 31, /[January
8 28, [/IFebruary, ignoring for now the possibility of leap year
9 31, //March
10 30, /[April
11 31, /IMay
12 30, /[June
13 31, /[July
14 31, /[August
15 30, /ISeptember
16 31, //October
17 30, /INovember
18 31 /IDecember
19}
20

21 void date_next(int *pyear, int *pmonth, int *pday, int count);
22 void date_next(int *pyear, int *pmonth, int *pday);
23 void date_print(const int *pyear, const int *pmonth, const int *pday);

24

25 int main()

PSsso A hesenea ©2014 Mark Meretzky

26 {
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43}
44

Section 2.1.1 Version 1: Pass Individual Variables to a Function 107

int year =2014;
int month = 1; //1 to 12 inclusive
int day=1, /11 to date_length[month] inclusive

cout << "How many days forward from ";
date_print(&year, &month, &day);
cout <<"doyouwanttogo?";

int count; [luninitialized variable
cin >>count;

date_next(&year, &month, &day, count);
cout <<"The new date is";
date_print(&year, &month, &day);

cout <<"\n"
return EXIT_SUCCESS;

45 void date_next(int *pyear, int *pmonth, int *pday, int count)

46 {
47
48
49
50
51
52
53}
54

/ICall the three-argument date_next (line 55) count times.
/IPass along the three pointers we received.

while (--count >=0) {
date_next(pyear, pmonth, pday);
}

55 void date_next(int *pyear, int *pmonth, int *pday)

56 {
57
58
59
60
61
62
63
64
65}
66

/IMove to the next date.
if (++*pday > date_length[*pmonth]) {

*pday = 1;

if (++*pmonth > 12) {
*pmonth = 1;
++*pyear,

}

67 void date_print(const int *pyear, const int *pmonth, const int *pday)

68 {
69
70}

cout << *pmonth <<"/" << *pday << "/" << *pyear;

Let's look at a representad expression in the body of one of the functions, ti¢pday in the
above line 58. The value of the subexpressipday is the variablalay in line 29, so the-+ adds 1 to
day .

It is good that the-+ does not add 1 tpday , which is a pointer talay . If we added 1 tgpday , it
would point somewhere else, probably &rlgage. Brtunately there is no way that the+ could possibly
accespday . Because of their equal precedence and right-to-left assttyigtie subgpressiorfpday is
evduated before the+ is executed. V¢ express this graphically by surrounding the sydessiortpday
with a box. An operator outside a box cannot reach into the box and single out a sytvesdien such as

PSsso A hesenea ©2014 Mark Meretzky

71
72

1
2
3
4
5

108 ObjectsWithout Inheritance Chapter 2

thepday in *pday . From the++’s point of view, the subexpressiofpday is a monolithic whole.

++| * |pday

Line 58 therefore does the work of the followingtlnes. Thinkof them as an exploded weof line 58.

*pday = *pday + 1;
if (*pday > date_length[*pmonth]) {

To um up, our major problem is twoto make the trio of \ariables wailable to the functions that
work on them. The main possibilities are pass-by-value, pass-by-reference (in read/write and read-only fla-
vors), and global ariables. V8 have settled on pass-by-reference, leaving our function bodies bristling
with asterisks.

How many days forward from 1/1/2014 do you want to go? 280
The new date is 10/8/2014.

2.1.2 \&rsion 2: Pass A Structue to a Function

Eachdate consists of a trio of intgers:year , month, day. A thousanddate ’s would be three
thousand separate igers. V& oould keep track of them more easily by clumping each trio into a structure.
The main character of the program iswihe single ariabled in line 33 and the three functions in lines
27-29 that operate on it.

Lines 21-25 are the definition for ameata type namedate . Despite being called &efinition”,
they do ot create ay variable of this type.They are merely the blueprint, describing what one of these
variables would contain if we went ahead and created one. This is done in line 33.

Of course, our little program has only one daféiting it as a structure isverkill, as was the di-
sion of the program into separate functions. The structure and functions are introduced only to prepare the
way for the object in Version 3.

In C a structure data type was a second-class citizen, and line 33 woeldekded the éyword
struct . This is unnecessary in C++.

struct date d ={2014, 1, 1}; /* line 33 written in C */

The simplest function iprint , called in line 36 and defined in line 7To use the pointer gument
p in line 73, we apply the dereferencing operdtpretrieving the pointed-to ariable. Sincehis variable
turns out to be a structure, we apply the dot operator and the name of ddiaecute the* before the
dot, line 73 needs the parentheses in ¥peassion*p).month ; without them, the dot would ka gpne
first because of its higher precedentée saw these parentheses on p. 48.

Line 73 will work, but is commented out because 74 is a simpgrtavdo the same thing. The ar
row operator-> does the work of the star and détnd now that there is only one operattite parentheses
are no longer needed.

To ensure thaprint does not change thalues of the fields of the structure, line 71 declares the
pointer argument to be read-onfyhis time, we hee o write the leyword const only once.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/version/version2.C

#include <iostream>
#include <cstdlib>
using namespace std;

const int date_length[] = {

P3s 5o A hesenea ©2014 Mark Meretzky

Section 2.1.2 Version 2: Pass A Structue to a Function 109

6 0, / /dummy element so that January will have subscript 1
7 31, /January
8 28, [/IFebruary
9 31, //March
10 30, /[April
11 31, /IMay
12 30, /lJune
13 31, /[July
14 31, /[August
15 30, /ISeptember
16 31, //October
17 30, /INovember
18 31 /IDecember
19}
20
21 struct date {
22 int year;
23 int month; //1 to 12 inclusive
24 int day; n to date_length[month] inclusive
25} /IVersion 3 will need this semicolon, too.
26

27 void next(date *p, int count);
28 void next(date *p);
29 void print(const date *p);

30

31 int main()

32

33 date d = {2014, 1, 1}, /lcurly braces around initial values
34

35 cout << "How many days forward from ";

36 print(&d);

37 cout <<"doyouwanttogo?";

38

39 int count; /luninitialized variable
40 cin >> count;

41

42 next(&d, count);

43 cout <<"The new date is";

44 print(&d);

45 cout <<"\n";

46 return EXIT_SUCCESS;

47}

48

49 void next(date *p, int count)

50 {

51 /ICall the one-argument next (line 59) count times.
52 /IPass along the pointer we received.

53

54 while (--count >=0) {

55 next(p);

56 }

57}

58

59 void next(date *p)

PSsso A hesenea ©2014 Mark Meretzky

110 ObjectsWithout Inheritance Chapter 2

60 {

61 //Move to the next date.

62 if (++p->day > date_length[p->month]) {

63 p->day = 1;

64 if (++p->month > 12) {

65 p->month = 1;

66 ++p->year;

67 }

68 }

69}

70

71 void print(const date *p)

72 {

73 /[cout << (*p).month << "/" << (*p).day << "/" << (*p).year;
74 cout << p->month <<"/" << p->day << "/" << p->year;
75}

Let’s look at the representedi expression in this version, thetp->day in the abwe line 62. The
value of the subexpressign>day is the fieldd.day in line 33, so the-+ adds 1 tal.day .

It is good that the-+ does not add 1 tp, which is a pointer tal. If we added 1 to, it would point
somavhere else, probably toaghage. Brtunately there is no way that the+ could possibly access.
Because the precedence-»f is higher than that of prefix+, the subgpressionp->day is evaluated be-
fore the++ is executed. V¢ express this graphically by surrounding the sqdsessionp->day with a
box. Anoperator outside a box cannot reach into the box and single out a sub-subexpression sych as the
in p->day . From the++'’s point of view, the subexpressign>day is a monolithic whole.

++|| p |-> |day

Line 62 therefore does the work of the followingtlnes. Thinkof them as an exploded weof line 62.

76 p->day = p->day + 1;
77 if (p->day > date_length[p->month]) {

Version 2 collected the trio of disparatariables into one structuré/ersion 2 also runs faster be-
cause it passesvier arguments to the functions. But the bodies of the functiores lgzome more com-
plicated: the arrows in Version 2 are more baroque than the stars in Version 1. What we want is the speed
of Version 2 with a notation as simple as Version 1. This is what Version 3 wiledetid more.

As a footnote, the function names in Version 2ehbeen simplified. The Version 1 function gu-
ments were of a plain vanilla data type: pointemto . We therefore had to addate_ to the name of
each function to allw for the possibility of other functions taking arguments of the same type.

78 void date_print(const int *pday, const int *pmonth, const int *pyear);
79 void time_print(const int *phour, const int *pminute, const int *psecond);

But the \érsion 2 function arguments are of a distwethta type: pointers to a very specific type of struc-
ture. W& ae naw in a position to awerload the function name.

80 void print(const date *p);
81 void print(const time *p);

In Version 1, we could easily passed a date to the function that prints a time:
82 time_print(&day, &month, &year);//bug not caught by compiler

In Version 2, the same error would require an explicit cast.

printed 4/8/14 All rights

8:38:59 AM reserved©2014 Mark MeretZky

83

Section 2.1.3 Version 3: Call Member Functions of an Object 111

print(reinterpret_cast<const time *>(&d));

In addition, we can no longer accidentally pass a date to the function that prints a time, or a time to the
function that prints a date. If we try to do this, the program will not compile.

The name of the array will also be reduced, frdamte length to length when we do‘static
data memberson pp. 238-239. In fact, gncompound name that wewvient is for temporary use only
Eventually we will use the language itself, rather than a compound name with an underscore, to indicate
what goes with what.

How many days forward from 1/1/2014 do you want to go? 280
The new date is 10/8/2014.

2.1.3 \érsion 3: Call Member Functions of an Object

An object is a structure passed to a function
| dislike inventing nev terminology . . .
—Bjarne StroustrupThe Design and Evolution of C+$. 3L

Our program has only three majariablesyear , month, andday. It is dmple enough to do all
its work inmain . But with more variables and greater conxile we would want to clump theariables
into structures and dde the program into functions. Our problem would then be to pass these structures
down to the functions where the work is done.

Objects will eentually be a n& “‘paradigm’ for programming (pp. 163-179). But we willdie
with a much more mundane definitioAn object is a structure that can be passed to a function as quickly
as the structures in Version 2, with a notatieenesmpler than that of Version 1.

Theclass of an object is its data type. The objdds of the classlate defined in line 37 of
version3.C on p. 115. As in the previous@&mnple, the class definition does not createvamiables. It
is merely a blueprint.

We sy “class of an objecttather than “data type of a structurdeécause the terminology of C++ is
borrowed from the language Simula67 rather than C.

Note that the wordstructure’ can mean tw things in C: a certain kind of data type, or a variable of
that type. In C++, these ideasvhaeparate words: “classAnd “object”.

Members of an object

In C, a structure hatelds, all of which must be ariables. InC++, a class hamemberswhich can
be variables or functions. From this difference will proceed all of object-oriented programming.

The first three members of cladate , declared in lines 22-24, aranables, lile the fields of a C
structure. The are calleddata membex. The last four members, declared in lines 26-29, are functions,
and h&e ro direct counterpart in CThey are calledmember functionsOur corvention will be to declare
the data members before the member functions; page 119 will exphithevheverse order would some-
times upset the human read@&hepublic: in line 25 will be explained on p. 114.

A data member is located ydically inside of the object to which it belongs, as a field is inside a
structure in C.But a member function has an entirely different relationship to the object to which it be-
longs. Wherwe say that we are calling a member function thalongs’ to a particular object, we mean
only that we are passing the address of that object to the function, using the special notation described be-
low. A member function is not located inside of an object, as a data membEmigmber function is
shared by all the objects of its cladde muld just as easily pass it the address of some other object of the
class.

Line 41 shows the special notation for calling a member function of an object, i.e., for passing the ad-
dress of the object to the member function. Ttiet” operator has the same operands it had in C: a struc-
ture or object on the left, and a field or member on the righten the right operand is a data memtier

PSsso A hesenea ©2014 Mark Meretzky

[

112 ObjectsWithout Inheritance Chapter 2

dot has the same meaning it had in C. (Line 40 isxample, although it will not compile.) But when the

right operand is a member function, it calls the member function and passes it the address of the object
which is the left operand of the dot. Line 41 callsghiet member function of the objedt i.e., it pass-

es the address of the objécto the member functioprint

Let's walk through the order in which the subexpressions of line 41valgated. D use the object
d we apply the dot operator and the name of a memilbéch delves into the object and accesses the mem-
ber Since the member turns out to be a member function, we then apply the function call operator (the
parentheses that surround the argument [igi)execute the dot before the function call operatar paren-
theses are neededhey haveequal precedence and left-to-right assoditgti so he dot goes first. See p.
48 for a similar sequence of subexpressions.

d|. |print 0

The functionprint in line 41 receies no aguments other than the addressdof The function
next in line 47 recaies the argumentount as well as the addressabf

The definition of the member functions

Theprint member function in line 99 has the simplest definititrmust name the class to which
the function belongs, since there could be a function with the same name belonging to another class.

void date::print() const /ffirst line of definition of our function
void time::print() const /ffirst line of definition of another function

The name of the class and the member function are pasted together with the scope:ppetttarper
ands are afays a last name and a first name. In tkygressiorstd::cout on p. 20, the operands were a
namespace and one of its members. Ird#te::print in line 99, thg are a class and one of its mem-
bers.

A member function avays receves the address of its object asiamplicit (invisible) agument. The
argument is not declared in the parentheses in line 99, and is usuadtynmentioned at all. If its alue
must be usedxglicitly, howeve, it is available as a pointer namekdis . Whenprint is called from line
41, for example, the value difis in lines 101-106 will be the address of the obpbctthis can be
mentioned only in the body of a member function.

There is nothing wrong with lines 101 and 10Zommented them out only to makll three \er-
sions of the program produce the same outfvlhenprint is called from line 41, the pointéhis in
line 102 is the address of the objd¢cend *this is the value ofl. Applying the dereferencing operator
to ary pointer in C or C++ will get us the value of the pointed-to variable.

Lines 104 and 105 are the same as lines 73 and 74 of the\ahygion2.C , with the pointerp
now namedthis . They are commented out because line 106 is a simpler way to do the same thing. In the
body of a member function of a class, a member of that class with no dotwiirafront of it is alvays a
member of the object to which the member function belongs, i.e., the object to which the member function
has receied the implicit pointer After all, the simplest notation is—no notation at &¥henprint is
called from line 41, thenonth in line 106 will be thanonth data member of the objedtin line 41.

A member function may also regeiexplicit (visible) aguments. Inthe next function called in
line 47 and defined in 74, weveame implicit and one explicit argument.

Lines 81-83 correspond to lines 104-106, but with a member function instead of a data.member
They demonstrate that a member function of an object can easily call another member function of the same
object. Linesl04 and 105 are commented out because 106 is a simpler way to do the same thing; 81 and
82 are commented out because 83 is a simpler way to do the same thing. In the body of a member function
of a class, a member of that class with no dot omamcfront of it is alvays a member of the object to
which the member function belongs, i.e., the object to which the member function heedréheeimplicit
pointer When the one@licit-argumentnext is called from line 47, the no«plicit-argumentnext in

PSsso A hesenea ©2014 Mark Meretzky

Section 2.1.3 Version 3: Call Member Functions of an Object 113

line 83 will be the no-explicit-argumenext member function of the objedtin line 47.

The member function namegxt , next , and print are only preisional. Whernwe do operator
overloading, we will give them their proper C++ namesperator+= (pp. 282-285)poperator++
(pp. 288-289), andperator<< (pp. 337-340). Some adjustment of their arguments and resluasy
will also be necessary.

const member functions

A const member function is one that cannot change #teevof ay data member of its objeciVe
declaredprint to beconst in lines 29 and 99A non-const member function is one that can change
the value of the data members of its object; that in fact isathen d’étreof thenext functions.

We havealready seen that one member function can call another member function of the same object
(line 83). A non-const member function can call gmember function of its object. Buta@nst mem-
ber function can call only theonst member functions of its object.

If a member function isonst , the pointer passed to it is read-only date::print , the pointer
is implicitly declared as

const date *const this;
But in thedate::next functions, it is implicitly declared as
date *const this;

Note that in both cases the pointetdenst

Member functions and free functions

For the time being, a member function is one that w@sean mplicit pointer agument. Afree func-
tion is one that recegs no mplicit pointer agument. Eery C function is free; and in both languages the
main function is alvays free.

It sounds lile every function is either a member or freejtimot both. We will see later that there is
one exceptional kind of member function that reegino implicit pointer It is a ree member and is called
a “static” member function. See pp. 242-247.

A constructor

The most important member functions of a class areomstructors.One of these functions is al-
ways called when we create amebject of the same class. In fact, we usualy speabastructingan ob-
ject rather than creating itA constructor has the same name as the class to which it belongs. Ours is de-
clared in line 26 and defined in 55.

The job of a constructor is to mala rewborn object ready to assume its responsibilities. The re-
sponsibilities of our object are to hold a valid dateyenbforward, and print it.A constructor must lee
the object in a state in which its other member functions will operate correctly.

For the moment, we will assume that a constructor mustalig values into all the data members of
the newborn objectLater, we will see constructors that do less (p. 149) and more (p. 13%)the mo-
ment, we also assume that the number gliments of the constructor will be the same as the number of
data members of the newborn object. Later will see that this is not alys so. (p. 125.)

Our constructor is called in line 37. As usual, the arguments are in parentheses; recall that the corre-
sponding line 33 ofersion2.C had{ curly bracey. The objectd is the main character of our program.

When adate is constructed, the data members are created in the order in whicnelteclared in
lines 22-24.For the present, hever, this is only of academic interest. No one cares what ordegerge
are created in, because nothing observable happens when an integer is born.

But the order may become important in the future. It is possible for the data members of an object to
be little objects, just as the fields of a structure can be little structures (pp. 257-265). §eax let
month , and day be objects in their own right, each willugaits own constructorWhen that happens, the
error checking for thenonth data member mo in lines 57-61, and the error checking for sy data

PSsso A hesenea ©2014 Mark Meretzky

=Y

O~NO Ol bW

114 ObjectsWithout Inheritance Chapter 2

member nw in lines 63-67, will be maed to the constructors for these month and day objeGtsserve
that lines 57-61 must bexecuted before 63-67, because thenth value must be validated before it is
used as an array subscript in line 63. Whey HeaEome objects, we will thereforevsa construct the
month before theday . Lines 22-24 do this moeven though it is not currently necessary will be one
less thing to change when our three data members change from integers to objects.

A constructor returns the object that it constructs; we wilk takvantage of this on pp. 137-138.
But the object is afays returned implicitly Do not declare a return type for the constructot even
void . And do not write aeturn statement with an expression inside a constructor.

r eturn; /lokay
return something / lwon’t compile

Public and private members

The members of a class fall intodwroups,public andprivate. The private ones are those declared
at the start of the class declaratigedr , month , day); the public ones are those declared after the label
public: in line 25 @ate , next , next , print). We muld hare inserted the labgirivate: at line
21%, but this would hee been redundant.

The public members of a class can be mentioned pyuenction. Themain function mentions te
of them:print in lines 41 and 49, and the ongplcit-argumentnext in line 47. But the priate mem-
bers can be mentioned only in the bodies of the member functions of that class (and in the class declaration
itself, lines 21-30). The membemsonth , day, year can be mentioned in line 106 by thent mem-
ber function, but not in line 40 bpain . Uncomment line 40 and see what the error message is.

It takes more effort to plan a C++ class than a C structng.function can access wafield of ary
C dructure. Butwe hare © decide in adance which functions will be able to access theafgimembers
of a C++ class; thewill have b be nember functions of the clasgVe will also hare © decide which func-
tions will have read/write access to the membersytivél have be ron-const member functions.

For the time being, let the data members of a class bat@tio male it easier to debug and modify
A data member should certainly bevate if not esery value is lgd for it, or if the Igd range of alues
depends on the value of another data membar example, aalue of 31 is lgd for day only for certain
values ofmonth .

There are tw other places where a pate member can be mentioned/e kring them up ne only
for completeness; daniorry about them yetA private member can be mentioned in the initi@ue for a
“ static’ data memberpp. 236-242. A private member that belongs to no object can be mentioned be-
tween its declaration and the curly brace that ends the class declaration.

class exotic {

static size ts; [/la "static" data member
char a[sizeof g]; /[Can mention s here even though it's private.
}; / /end of class declaration

size_t exotic::s = sizeof a; //Can mention a here even though it’'s private.

A variable that is not a data member (yet)

The date_length array in lines 5-19 is intended for use only by the member functions of class
date . For safetyit should be inaccessible twery other function.We dready knev how to do this: by
making the array a prite data member of clagsate .

But doing this nev would waste space if we had more than dia¢e object. Therds no need for
eachdate to contain its wn copy of the array We will have © wait until we talk about a different kind of
data membeithe ‘static” ones on pp. 238-23%or the present, we merely obserthat the array has yet
to receve its final disposition.Somavhat unsatisictorily, it remains a separate variable, floating near its
associated class.

PSsso A hesenea ©2014 Mark Meretzky

Section 2.1.3 Version 3: Call Member Functions of an Object 115

To indicate that the array has some kind of connection to dédes, we mporarily gveit a name
starting withdate_ . When it becomes a member of the classdtdte will be removed.

How vulnerable is the array in the meantime? Netyv A const global variable in C++ can be
mentioned only in theC file in which it is defined.(To change this, we could declare the array with the
keyword extern at the start of line 5.)

—On the Web at

http://i5.nyu.edu/ Omme64/book/src/version/version3.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 constint date_length[] = {
6 0, [/dummy element so that January will have subscript 1
7 31, /[January
8 28, [/IFebruary
9 31, //March
10 30, /[April
11 31, /IMay
12 30, /[June
13 31, /[July
14 31, /[August
15 30, /ISeptember
16 31, //October
17 30, /INovember
18 31 /IDecember
19}
20
21 class date {
22 int year;
23 int month; I/t to 12 inclusive
24 int day; n to date_length[month] inclusive
25 public:
26 date(int initial_month, int initial_day, int initial_year);
27 void next(int count); //Go count days forward.
28 void next(); 1IGo one day forward.
29 void print() const; /[Output date to cout (function declaration).
30} //[Don’t forget ; at end of class declaration.
31
32 int main()
33
34 /IConstruct d by p assing three arguments to the constructor for d.
35 /[The constructor will initialize d’s data members.
36
37 date d(1, 1, 2014); /Iparentheses around function arguments
38
39 cout << "How many days forward from ";
40 /[cout << d.month << "/" << d.day << "/" << d.year; /lwon’t compile
41 d.print(); /IPass the address of d to the print member function.
42 cout <<"doyouwanttogo?";
43
44 int count; /luninitialized variable
45 cin >> count;
46

PeSs 5o A hesenea ©2014 Mark Meretzky

116

47
48
49
50
51
52
53}
54
55 date::
56 {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72}
73

ObjectsWithout Inheritance Chapter 2

d.next(count);

cout <<"The new dateis";
d.print();

cout <<"\n";

return EXIT_SUCCESS;

date(int initial_month, int initial_day, int initial_year)

if (initial_month < 1 || initial_month > 12) {
cerr << "bad month " << initial_month << "/" << initial_day
<< "' <<initial_year << "\n";
exit(EXIT_FAILURE);
}

if (initial_day < 1 || initial_day > date_length[initial_month]) {
cerr << "bad day " << initial_month << "/" << initial_day
<< "' <<initial_year << "\n";
exit(EXIT_FAILURE);

}

year = i nitial_year;
month = i nitial_month;
day = i nitial_day;

74 void date::next(int count)

75 {
76
77
78
79
80
81
82
83
84
85}
86

/ICall the no-explicit-argument next (line 87) count times.
/IPass along the implicit pointer we received.

while (--count >=0) {
/lcall another member function of same object
/I(*this).next();
Ithis->next();
next();

87 void date::next()

88 {
89
90
91
92
93
94
95
96
97}
98

//IMove to the next date.
if (++day > date_length[month]) {

day = 1;

if (++month >12) {
month = 1;
++year;

}

99 void date::print() const //This is a function definition.

100 {

PSs 5o A hesenea ©2014 Mark Meretzky

Section 2.1.3 Version 3: Call Member Functions of an Object 117

101 /[cout << "The address of this object is " << this << ".\n";

102 /[cout << "Size in bytes of this object is " << sizeof *this << ".\n";
103

104 /[cout << (*this).month << "/" << (*this).day << "/" << (*this).year;
105 /[cout << this->month << "/" << this->day << "/" << this->year;
106 cout << month <<"/" << day << "/" << year;

107}

The expression in ale line 90 corresponds to the ones we examined in Versions 1 dhd 2iov
simple enough to need no explodedwie

How many days forward from 1/1/2014 do you want to go? 280
The new date is 10/8/2014.

The abee lines 101-102 would produce the following extra output on my platform.

The address of this object is Oxffbff03c.
Size in bytes of this object is 12. 3int ’s of 4 bytes each

The abee line 40 would cause the following trio of error messages on my platform.

version3.C: In function ’int main()’:
version3.C:23:6: error: 'int date::month’ is private
version3.C:40:12: error: within this context
version3.C:24:6: error: ’int date::day’ is private
version3.C:40:30: error: within this context
version3.C:22:6: error: ’int date::year’ is private
version3.C:40:46: error: within this context

v Homework 2.1.3a: deliberately introduce compilation errors
What is the error message on your platform when you try to violate each of the following rules?

(1) We can mention a pvete member of a class only in the body of the class declaration (lines 21-30
above) or in the body of a member function of the clagcomment line 40 of the ab®version3.C
and see what happens.

(2)this is a*const pointet so it dways points to the same placéry to make it point elsevhere.

1 ++this;

(3) Since thedate::print member function igonst , there are three things it cannot do to the
object to which it belongsWe would never want to do them in dgrint’”’ function, but les try them ag-
way.

(3a)date::print cannot change the value of a data member of the object.

2 ++day;

(3b) date::print cannot call a noigonst member function of the object, because that could

change the value of a data member.
3 next();
(3c) date::print cannot return a pointer granting read/write access to the objeatwill also

have b change thevoid todate * in the abwoe line 29.

date *date::print() const

[2Jé) SN
—~~

cout << month << "/" << day << "/" << year,

P3sso A hesenea ©2014 Mark Meretzky

118 ObjectsWithout Inheritance Chapter 2

7 r eturn this;
8 }

If we could get way with the aboe lines 4-8, we could use the returned pointer to changeatbe of a
data member:

9 const date d(1, 1, 2014); //should not be allowed to change d
10 date *p =d.print(); /Ip is a pointer to a date. Don't let this compile!
11 p->next(); /Ichange the value of a data member of d
Verify that date::print could return a pointer that is read-anlyou will have © change the

void to constdate * in the abwe line 29.

12 const date *date::print() const

13 {

14 cout << month <<"/" << day << "/" << year;

15 return this;

16}
Test the newdate::print like this:

17 date d(1,1, 2014);

18 const date *p = d.print();

19 cout <<"\n"

20

21 cout <<p<<"\n" //should output the address of d

22 << &d <<"\n" /[should output the same address
A

2.2 NotationalConveniences

2.2.1 Inline Member Functions
The member functioprint is small enough to be inlinae dready knev one way to do this.

(1) Addthe keywordinline to the start of the function definition in line 99 of the\abo
version3.C

(2) Move the definition in lines 99-107 up to line 31, because the definition of a function must be seen
before we can makan nline call to it.

If the function is a member function, there is a more compact notation for making it inline.
(1) Remae the functions definition in the abwee lines 99-107.

(2) Changehe declaration in the abe line 29 to the follwing line 9, which is both a declaration and
definition. Writeno semicolon after the closing curly brace, just as thasene semicolon after the
closing curly brace in the abe line 107. After theyear , howeve, write a semicolon as in the
aborve line 106.

1 class date {

2 i ntyear;

3 i nt month; /11 to 12 inclusive

4 i nt day; /1 to date_length[month] inclusive
5 public:

6 date(int initial_month, int initial_day, int initial_year);

7 void next(int count); /IGo count days forward.

8 void next(); //Go one day forward.

9 void print() const {cout << month << "/" << day << "/" << year;}

PSsso A hesenea ©2014 Mark Meretzky

Section 2.2.2 A Header File for a Class Declaration 119

10 3

Surprisingly an nline member function defined this way can mention another member before that
member has been declarate ould actually hee written the following line 16, mentioning timeonth ,
day, andyear before their declarations in lines 18—2Bor another example, see p. 214.

11 class date {

12 public:

13 date(int initial_month, int initial_day, int initial_year);

14 void next(int count); //Go count days forward.

15 void next(); /IGo one day forward.

16 void print() const {cout << month << "/" << day << "/" << year;}

17 private:

18 int year;

19 int month; I/t to 12 inclusive

20 int day; n to date_length[month] inclusive
21}

But moving the definition to the ale line 16 would just get people upséteep it in line 9. With only one
other exception, a C or C++ variable or function carenlee mentioned before its declaration.*

Given the compact notation, whwould we @er want to use the other one? Sometimes we ima
choice. Ifmonth_before_day had to be declared in line 33 for some reason, goihif mentioned
month_before_day , then the definition gprint must come after line 33.

22 class date {

23 int year;

24 int month; I/t to 12 inclusive
25 int day; n to date_length[month] inclusive
26 public:

27 date(int initial_month, int initial_day, int initial_year);

28 void next(int count); /lgo count days forward

29 void next(); /lgo one day forward
30 void print() const;

31}

32

33 bool month_before_day = true;

34

35 inline void date::print() const

36 {

37 if (month_before_day) {

38 cout << month <<"/" << day << "/" << year;

39 } else{

40 cout <<day <<"/" << month <<"/" << year;

41 }

421}

2.2.2 AHeader File for a Class Declaration

To use the same class in nyadifferent C++ programs without having to gognd paste, write the
declaration for the class (including the definitions of its inline member functions) in a sdyEmdéefile
named after the class. Write the definitions of the non-inline member functions of the claSsfile aal-
so named after the class. This file is sometimes called the éraptesnentatiorfile.

* The other exceptionwolves “templates: Seep. 751.

PSsso A hesenea ©2014 Mark Meretzky

120 ObjectsWithout Inheritance Chapter 2

If a header file contained the definition for a variable (not merely the declaration), and if it were in-
cluded in more than on€ file of the same program, we wouldvieanore than one cgpof the \ariable
and would be wasting memoryror this reason, the definition of the ardgte_length is written in the
implementation filedate.C .

In C++, a constant global variable is static byadéf it can be used only in the file in which it is de-
fined. Thearray can therefore be used only by the functions in theldite.C . In C, the array wuld
have reeded thedyword static ~ to male it gatic. InC++, the array would & reeded the éyword
extern to male it non-static.

For theifndef machinery in lines 1, 2, and 16, see pp. 81-@&2e.h must includdostream
and use namespastd because line 14 mentiom®ut and <<. date.C includesdate.h , which
malkes it redundant to includestream and usestd in lines 1 and 4 oflate.C . We keep lines 1 and 4
in date.C anyway just in case someone rewes them fromdate.h . This could happen if thprint
function was made non-inline and wed back todate.C .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/date/date.h

#ifndef DATEH
#define DATEH
#include <iostream>
using namespace std;

class date {
i ntyear;
i nt month; /11 to 12 inclusive
i nt day; /1 to date_length[month] inclusive

©CoOoO~NOOOUTA, WNPE

10 public:

11 date(int initial_month, int initial_day, int initial_year);

12 void next(int count); //Go count days forward.

13 void next(); 1IGo one day forward.

14 void print() const {cout << month << "/" << day << "/" << year;}
15}

16 #endif

—On the Web at
http://i5.nyu.edu/ Omm64/book/src/date/date.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

const int date_length[] = {
0, [/dummy element so that January will have subscript 1
31, /January
28, [/IFebruary
10 31, /IMarch
11 30, /[April
12 31, /IMay
13 30, /lJune
14 31, /[July
15 31, /[August
16 30, /[September
17 31, //October
18 30, /INovember
19 31 /IDecember

©CoOoO~NOOOUTA, WNPE

PSsso A hesenea ©2014 Mark Meretzky

Section 2.2.2

20}
21

22 date::date(int initial_month, int initial_day, int initial_year)

23{
24 if (initial_month < 1 || initial_month > 12) {

25 cerr << "bad month " << initial_month << "/" << initial_day

26 << "' <<initial_year << "\n";
27 exit(EXIT_FAILURE);

28 }

29

30 if (initial_day < 1 || initial_day > date_length[initial_month]) {
31 cerr << "bad day " << initial_month << "/" << initial_day

32 << "' <<initial_year << "\n";
33 exit(EXIT_FAILURE);

34 }

35

36 year = i nitial_year;

37 month = i nitial_month;

38 day = i nitial_day;

39}

40

41 void date::next(int count)

42 {

43 /ICall the other next count times.
44 while (--count >=0) {

45 next();

46 }

47}

48

49 void date::next()

50 {

51 /IMove to the next date.

52 if (++day > date_length[month]) {
53 day = 1;

54 if (++month > 12) {

55 month = 1;

56 ++year,;

57 }

58 }

59}

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/date/main.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

i nt main()

{
date d(1, 1, 2014);

cout << "How many days forward from ";
d.print();

PO OWoOoO~NOOUOD»WNLPE

B

printed 4/8/14
8:38:59 AM

All rights
reserved

A Header File for a Class Declaration 121

©2014 Mark Meretzky

12
13
14
15
16
17
18
19
20
21
22
23}

O©CoOoO~NOOOUOTA, WNPE

122 ObjectsWithout Inheritance Chapter 2

cout <<"doyouwanttogo?";

int count; //uninitialized variable
cin >>count;

d.next(count);

cout <<"The new dateis";
d.print();

cout <<"\n";

return EXIT_SUCCESS;

When compiling on Unix we mention only the names of. @diles, not the names of thie files.

1$ g++ -0 “/bin/prog main.C date.C Create™/bin/prog
2% Is -l “/bin/prog
3% prog

How many days forward from 1/1/2014 do you want to go? 280
The new date is 10/8/2014.

2.3 ScopingRules

Two groups of variables in scope in a free function

Suppose that the name ofaiable is encountered in the body of a member function, and the name is
not immediately preceded byyanof the operators, ->, or :: , or the more exotic one$ or.-> . The
computer will first check if there is a local variable (one declared earlier in the body of the function) with
the same name. If so, the computer decides thatdhible is the local one. If not, the computer will then
check if there is a global variable with the same nathso, the computer decides that this variable is the
global one. If not, the computerngs up and issues an error message.

A variable whose name can be mentioned at a certain point in a program is sard scdjgeat that
point. Inthe body of a free function twgroups of variables are in scop@le repeat the order in which the
computer checks them.

(1) Thevariables declared in the body of the function. These variables are lcallddecause theare
in scope only in the body of the function in whichytieere declared.

(2) Thevariables that are not localThese variables must be declared earlier in the file, and are called
global because theare in scope throughout the file.

A local variable and a global variable cawénéghe same name (lines 5 and 1). Since the computer
checks the local names before the global ones, the local will hide the global (I %jould need the
unary scope operatar in line 8 to access the eclipsed global when there is a local with the same name.

i nti=10;

void f()
{
i nti=20;
cout <<i<<"\n"; [/lthe local i in line 5
cout << i << "\n"; [/lthe global i in line 1
}

P3sso A hesenea ©2014 Mark Meretzky

Section 2.3 Scoping Rules 123

In practice, you should mer havea local and a global with the same name. The names of ladal v
able should be short and eentional:i for a loop counterp for a pointer Global names should @
more individuality:max_users , current_window

Three groups of variables in scope in a member function
In the body of a member function of a class, three groups of variables are in scope.
(1) Thelocal variables.
(2) Themembers of the class.
(3) Thevariables that are neither local nor members, which we will call the globals.

If the name of aariable is encountered in the body of a member function of a class, and if the name
is not immediately preceded by one of the operators , or :: , or the more exotic one$ or.-> , the
computer first considers the locals, then the members of the class, and finally the globals.

If a local and a member ¥ the same namealdy in lines 7 and 3), the local will hide the member
(line 9). We would need the binary scope operatorin line 10 or thethis-> in line 11 to access the
eclipsed member when there is a local with the same name. If a member and a golha same name
(month in lines 3 and 1), the member will hide the global (line 8% would need the unary scope oper
ator:: in line 14 to access the eclipsed global when there is a member with the sameAndnas. be-
fore, a local will hide a global.

1 i nt month = 10;

2

3 / IClass date has data members named year, month, day

4

5 void date::print() const

6 {

7 i ntday = 20;

8

9 cout << day << "\n" /Ithe local day in line 7
10 << date:day << "\n" /lthe day member of class date (binary ::)
11 << this->day << "\n"; /lthe day member of class date
12
13 cout << month << "\n" /lthe month member of class date
14 << iImonth << "\n"; /lthe global month in line 1 (unary ::)
15}

When we do inheritance, four or more groups aiables will be in scope in the body of a member
function of a “derved dass’. Seepp. 479-480.

The abee wles apply not only to variables, but also to anything that cae Aaame: functions,
typedefs, enumerations, etKeywords such amain, this , andsizeof do not count as namesA |o-
cal (in this case, an enumeration) will hide a member with the same name (line 24), and a member (in this
case, a member function) will hide a global with the same name (line 28).

16 void print(); /IDeclaration for a function that is not a member function.
17

18 //Class date has a data member named day and a member function named print.
19

20 void date::next() const

214

22 enum {day, night};

23

24 cout <<day<<"\n" /lthe local day in line 22

25 << date:day << "\n" /lthe day member of class date
26 << this->day << "\n"; /lthe day member of class date
27

PSsso A hesenea ©2014 Mark Meretzky

124 ObjectsWithout Inheritance Chapter 2

28 print(); /lthe print member of class date
29 :print(); /Ithe global print declared in line 16
30}

2.4 Structures vs. Objects

Why a C++ object is better than a C structure

(1) A member function of an object has a simpler body than a function tleatdakexplicit pointer
Here are corresponding lines from each body.

60 if (++*pmonth > 12) { /IVersion 1, p. 107
64 if (++p->month > 12) { /IVersion 2, p. 110
92 if (++month > 12) { /IVersion 3, p. 116

Does thet+ in Version 1 increment themonth or the*pmonth ? Does thet++ in Version 2 increment
thep or thep->month ? These questions disappear in Version 3.

(2) A member function of an object hasvés explicit arguments than a function that takes pointers.
Here are corresponding function calls.

38 date_next(&day, &month, &year, count); //Version 1, p. 107
42 next(&d, count); /IVersion 2, p. 109
a7 d.next(count); /IVersion 3, p. 116

(3) A C structure can easily be created without being initialized, leaving it fullrbbge. Bua C++
object cannot be created without being initialized, at least if we write a constructor for its class.

(4) If a field of a C structure reees the wrong value, gnfunction in the program might be guilty
But if a data member of a C++ object reesithe wrong value, i§ easy to mak a st of every possible
suspect: it must be one of the nmomst member functions of that object.

(5) If we change the name or data type of a field of a structure,stheretisy way to list all the
functions that would hee © be ewritten. Butif we change th@rivate members of an object, only the
member functions of the objestdass would hee be ewritten. Noother function in the programauld
need to be changed.

For example, here are the pate data members of Version 3.

22 int year;
23 int month; I/t to 12 inclusive
24 int day; n to date_length[month] inclusive

If we change them to

22 int year;
23 int julian; n to 365 inclusive (we're ignoring leap years)

then only the member functions of clalsge would have b change, and notven dl of them.

Let's walk through a call to the constructor of eotdata-membedate object, passing it the three
arguments 10, 8, and 2014 for October 8, 20line 15 the data membgear will receive the \alue
2014, and in line 17 the data mempaian will receive 8

(1) Thefirst time we decremeimitial_month in line 17, it becomes 9 (for September) and
julian s 8.

(2) Thesecond time we decremantitial_month in line 17, it becomes 8 (for August) and
julian is 8 + 30 = 38.

(3) Thethird time we decremeimitial_month in line 17, it becomes 7 (for July) and

julian is 8+ 30 + 31 =69.

PSsso A hesenea ©2014 Mark Meretzky

Section 2.4 Structures vs. Objects 125

(4) Thetenth (and last) time we decremémitial_month in line 17, it becomes 0 (for no month at
all) andjulian is8+30+31+31+30+31+ 30+ 31+ 28+ 31 =28%.ten leae the loop.

Corversely let's walk through a call to thprint member function of date of this type that con-
tains October 8, 2014. In line 40, the data memblem contains 281.

(1) Thefirst time we do the comparison in line 43nis 1 (for January) and is 281, which represents
the outrageous date January 281, 2014.

(2) Thesecond time we do the comparison in line #3s 2 (for February) and has been reduced to
250, which represents the slightly less outrageous date February 250, 2014.

(3) Thethird time we do the comparison in line 48js 3 (for March) andl has been reduced to 222,
which represents theven less outrageous date March 222, 2014.

(4) Thetenth (and last) time we do the comparison in linemi3, 10 andd (for October) has been re-
duced to 8, which represents the legitimate date October 8, 24 shen leae the loop.

If the min line 41 was declared in the loop in lines 43-45, we would not be able to mention it in line
47 outside the loop.

1 date::date(int initial_month, int initial_day, int initial_year)
2 {
3 i f (initial_month < 1 || initial_month > 12) {
4 cerr << "bad month " << initial_month << "/" << initial_day
5 << " /" <<initial_year << "\n";
6 exit(EXIT_FAILURE);
7 }
8
9 i f (initial_day < 1 || initial_day > date_length[initial_month]) {
10 cerr << "bad day " << initial_month << "/" << initial_day
11 << "' <<initial_year << "\n";
12 exit(EXIT_FAILURE);
13 }
14
15 year = i nitial_year;
16
17 for (julian = initial_day; --initial_month > 0;
18 julian += date_lengthl[initial_month]) {
19 }
20}
21
22 void date::next(int count) /[same as 3-data-member version
23
24 while (--count >=0) {
25 next();
26 }
27}
28
29 void date::next() /[simpler than 3-data-member-version
30 {
31 /[Change to the next date.
32 if (++julian > 365)
33 julian = 1;
34 ++year,;
35 }
36}
37
38 void date::print() const /Imore complicated than 3-data-member version

PSsso A hesenea ©2014 Mark Meretzky

126 ObjectsWithout Inheritance Chapter 2

39{

40 int d = j ulian; /lcompute month and day of month
41 int m =1

42

43 for (; d > date_length[m]; ++m) {

44 d -=date_length[m];

45 }

46

a7 cout <<m<<""<<d<<"/"<<year;

48}

Are there an other functions that could possiblyveab be ewritten as a result of the ab® cdange
to the prvate data members of cladate ? Only if our functions try to‘k-ray” classdate , which the
have ro business doing.

49 if (sizeof (date) == 3 * sizeof (int)) { /Ino longer true

50 date d(12, 31, 2014);

51 /Ino longer gets the year, month, day

52 int year = reinterpret_cast<int *>(&d)[0];
53 int month = reinterpret_cast<int *>(&d)[1];
54 int day = reinterpret_cast<int *>(&d)[2];

v Homework 2.4a: modify the member functions of class date

Make the following changes to the member functions of the ala$s with the threeint data
memberg/ear , month , day .

Throughout these changes, thext function that takes one explicit argument should remain a pub-
lic, nonconst , non-inline member function of clasite . It must continue to takexactly one &plicit
argument (arnint) and returnvoid . As before, it should change the contents ofdate (at least, when
its agument is non-zero), and it must produce no output. Do notwesthe print member function or
the constructorprint should remairconst . Do not add ag data members to claste . Do not use
the value of the dummy array elemeate_length[0] : your program should still workven if the ele-
ment contains@bage. Assumthere are no leap years.

To demonstrate that your weclassdate is still correct, run a program consisting of your class
date and themain function and other code in
http://i5.nyu.edu/ COmm64/book/src/date/testl/main.C . Make o changes to this file.
Themain function will create mandate objects and test their member functioiiisexamines the stan-
dard output of youprint member function and would become confused lydetugging output direct-
ed to the standard outpuYou should therefore send wrdebugging output to the standard error output.
Hand in your nevdate.h , date.C , and the output of the program, in that ordBo not hand in
main.C .

(1) AJuian dateis an integer in the range 1 to 365 inchesjving the day of the year for a particu-
lar date. For any yearA.D. or B.C,

(&) TheJulian date of January 1 is 1.

(b) TheJulian date of January 31 is 31.

(c) TheJdulian date of February 1 is 32.

(d) TheJulian date of December 31 is 365, since we are still ignoring leap years.

Write a member function namgdlian that will return thedate ’'s Julian date. Recall v the
print function required no explicit guments because the date it printed came from the data members of
thedate object to which theprint function belonged. In the sameyythejulian function will re-
quire no explicit arguments because the date whose Julian date it returns will come from the data members
of thedate object to which thgulian function belongs.

PSsso A hesenea ©2014 Mark Meretzky

Section 2.4 Structures vs. Objects 127

julian must be a publiconst member function of clasgate . It must output nothing and re-
turn anint .

If you create aylocal variables inside the body jolian , destroy them as soon as you are done
with them. For example, a variable that is used only withifoa should be declared after theof the
for loop.

(2) A member function can easily call another member function of the same dijeekample, the
one-argumennext function (one explicit argument, that is) called the mpsarentnext function (no &-
plicit arguments) in thevhile loop in lines 79-84 ofersion3.C on p. 116.

But the one-gjumentnext would be fster if it did all its work itself, without calling the nogar
mentnext . Transplant the body of the nogamentnext (lines 89-96 ofrersion3.C on p. 116) into
the body of thavhile loop in the one-argumenext .

1 void date::next(int count)
2 {
3 while (--count >= 0) {
4 / IMove to the next date.
5 i f (++day > date_length[month]) {
6 day =1;
7 i f (++month > 12) {
8 nmonth = 1;
9 ++year;
10 }
11
12
13}

For the time being, continue to assume (pray) thattusmt argument will be non-ruztive.

(3) Remae te no-agumentnext function, nav that it is no longer called by the oneyament
next function. Butwe still want to be able to say

14 date d(1,1, 2014)
15 d.next(); /lwith no argument

To permit this, provide a default value of 1 for the argument of the aneventnext . Remember that a
default value is specified only in the function declaration, not in the function definition; see p. 95.

(4) The one-giumentnext function (which is na our only next function) advances one day to-
ward the answer with each iteration of while loop. Butwe can do betterRecall that in the tw-data-
member classlate on pp. 124-126, the constructor and theat member function strodene full
month toward the answer with each iteration of their loops. In the samglet thenext function of the
three-data-member cladate adwance one full month with each iteration of its loop. Continue to assume
that thecount argument will be non-rggtive.

(5) To make aur next function even fasterlines 18-19 break theount into a quotient and remain-
der The addition in line 21 will get us to within one year of the target date in a single bohedhile
loop in lines 23-24 will therefore wer need to loop more than 11 times. Continue to assume that the
count argument is non-gative.

16 void date::next(int count)

17 {

18 const int quotient = count/ 365;

19 const int remainder = count % 365; /lin range 0 - 364 inclusive
20

21 add quotient to year;

22

23 the while loop you wrote in { (4) to move year, month, and day

24 remainder additional days forward;

P3sso A hesenea ©2014 Mark Meretzky

128 ObjectsWithout Inheritance Chapter 2

25}

(6) Deep in most machines, then the abwee line 18 actually computes both the quotient and the re-
mainder The quotient is stored in a variable and the remainder is discafdedxin line 19 also com-
putes both alues. Thigime, the remainder is stored and the quotient is discarded.

To get the quotient and remainder with no wasted effort, call the C Standard Library fudietiorit
returns adiv_t structure containing tainteger fieldsquot andrem. Continue to assume that the
count argument is non-gative.

26 #include <cstdlib> [[for div and div_t

27 using namespace std; /Ibecause div, like cout, belongs to namespace std
28

29 void date::next(int count)

30{

31 const div_t d = div(count, 365);

32 /lquotient is d.quot, remainder is d.rem

(7) So fr, our next function works only if its argument is nonga&ive. Make it work for a ng-
ative agument as well:

33 date d(10, 8, 2014);

34

35 cout << "280 days before ";
36 d.print();

37 cout <<"is";

38 d.next(-280);

39 d.print();

40 cout <<"An"

We will be able to write the alve nore legibly when we he “operator eerloading”.
41 date d(10, 8, 2014);

42

43 cout << "280 days before "<<d<<"is";

44 d -=280; /ld = d - 280;
45 cout <<d<<"\n"

280 days before 10/8/2014 is 1/1/2014.

For a mn-naaive count argument, thaliv function will give us a emainder in the range 0 to 364
inclusive. For example, @ount of 368 will give s aquotient of 1 and a remainder of Bnfortunately a
negdive count will give us a emainder in the range —364 to 0 inclegsi A count of —368 will give s a
guotient of —1 and a remainder of —-3.*

In the abwe 1 @) we wrote avhile loop that advances a nongaive rumber of days.To continue
to use this loop, without modification, our remainder wiltdh& be ron-nedive. A count of —368 will
have © give us a quotient of —2 and a remainder of 36heif in lines 50-53 will perform this adjust-

* Atleast thaliv function is portable. Thé and%operators are not. On some platforms, weesha

-368/365== -1

-368 % 365 == -3
On other platforms, we ka

-368/365== -2

-368 % 365 == 362

P3sso A hesenea ©2014 Mark Meretzky

Section 2.4 Structures vs. Objects 129

ment, yielding a remainder that isvalys non-ngdive. A count of —368 will nav move s 2 years back
and 362 days forward.

46 void date::next(int count)

474
48 div_t d = div(count, 365); /Ino longer const
49
50 if (the remainder is negative) {
51 make the remainder non-negative by adding 365 to it;
52 subtract 1 f rom the quotient to compensate for the addition;
53 }
54
55 add quotient to year;
56
57 the while loop you wrote in { (4) to move year, month, and day
58 remainder additional days forward;
59}
A

v Homework 2.4b: modify the data members of class date
On pp. 124-126, we changed the three data members otlatass

1 i ntyear;
2 i nt month; /11 1o 12 inclusive
3 i nt day; /1 to date_length[month] inclusive

to two data members.

i ntyear;
i ntjulian; /1 to 365 inclusive

(6N

Now change them to one data member
6 i nt day; /Inumber of days before or after Jan 1, 0 A.D.

Demonstrate that your weclassdate is still correct by handing in the output of
http://i5.nyu.edu/ COmm64/book/src/date/testl/main.C . Hand in your nevdate.h
date.C , and the output, in that ordeDo not hand inrmain.C .

Your class will be the most simple if your data member contains the number of days before or after

January 1, @.D. (We ae pretending that there was a year) Your class will be unnecessarily compli-
cated if your data member contains the number of days before or after Decembera3i, Hére are
some examples of correct values.

day will contain 0 when the object contains January ApO

day will contain 1 when the object contains January 20

day will contain 30 when the object contains January 34p0

day will contain 31 when the object contains February Ap0

day will contain 59 = 31 + 28 when the object contains MarchALpO

day will contain 364 when the object contains December 3100

day will contain 365 when the object contains JanuaryApl

day will contain 365x 2014 = 735,110 when the object contains January 1, 2014

day will contain -1 when the object contains December 314.61(i.e., 1B.C)

day will contain =365 when the object contains January 14.1 (i.e., 1B.C)

After dividing the data member by 365, neake remainder non-getive by writing anif like the
one in lines 50-53 of the previous Hommek. Thequotient will then gie the year The remainder will be
in the range 0 to 364 inclug, giving the day of the yeatAdd 1 to get the Julian date.

PSs 5o A hesenea ©2014 Mark Meretzky

130 ObjectsWithout Inheritance Chapter 2

If a function needs both the quotient and the remajrdéiithediv function. If only the remainder
is needed, use tiRéoperator.

Classdate must hae ro data member other than thrdday . Create no global variables or static
local variables. Dot use the value of the dummy array elentzte_length[0] . Assume there are
no leap years.

Make no dange from the previous Homerk in the names, argument types, retuaiues, or
const 'ness of the public member functions of clasdée . For example, the constructor fatate must
still take three arguments (month, dasar) &en though classlate now has only one data membeind
theprint member function must still output tdate in the formatm/d/y . Thenext member function
must still accept an argument that is nogaige a negdive. The default value of this argument must still
bel. Thejulian member function will still tak no aguments and return @nt in the range 1 to 365
inclusive.

If any of the member functions are whort enough, maktem inline. If your date.h file no
longer needs to includestream or usenamespacestd , remove tese lines.If the lines are no
needed irdate.C , move hem there.

A

2.4.1 ConstantObjects and Pointers Thereto

Which member functions can we call?
We @an call ag member function of a nonenst object.

1 date d(12, 31, 2014);
2 d.print(); Ila const member function
3 d.next(); /la non-const member function

But we can call only theonst member functions of eonst object.

4 const date e(12, 31, 2014);
5 e.print(); [iwill compile because print is const
6 e.next(); /lwon’t compile because next isn’t const

Any member function that can ®nst should beconst so that it can be called foranst object
such ae. A member function can beonst if it changes no data member of its object and calls no
nonconst member function of its object.

Why can the abee line 4 call the constructpwhich is not aconst member function?A const
object becomes constant when we return from its constr@ittuer by areturn statement or simply by
reaching thg at the end of the constructedody. Until then, we can still modify the objestthta mem-
bers and call its nonenst member functions. (On p. 268, we will see the moment wremst object
ceases to beonst .)

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/const_obj/const_obj.C

#include <iostream>
#include <cstdlib>
using namespace std;

class obj {
i nti;
public:
obj(int initial_i) {i = initial_i; f();}
void f() {cout << "l am not currently a const object.\n";}

©CoOoO~NOOOUTA, WNPE

10}
11

PSsso A hesenea ©2014 Mark Meretzky

Section 2.4.1 Constant Objects and Pointers Theeto 131

12 int main()

13{

14 const obj 0(10); /Iwill compile, even though constructor calls f
15 110.1(); /lwon’t compile: too late to call f

16 return EXIT_SUCCESS;

17}

| am not currently a const object.

Painters and references to objects

A pointer and reference to an objecvéahe same syntax as a pointer and reference to a structure.
In the following program, the structure is in column 1 and the object in column 2.

Line 22 applies the dereferencing operatdp the pointer to get the pointed-tariable. Sincehe
variable turns out to be a structure or object, we then apply the dot operator and the name of a field or mem-
ber Parentheses are necessary xecate the* operator before the dot operatdhen the member is a
member function, there is one more step: we apply the function call opdtatomes last because it and
the dot hae left-to-right associativity.

But dont write line 22. Line 26 is a simpleray to do the same thing. The asroperator-> does
the work of the tw operators® and dot. And ne that there is only one operatare no bnger need the

parentheses.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/const_obj/pointer.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std,;
5
6 struct mystruct {
7 i ntfieldl;
8 i ntfield2;
9},
10
11 int main()
12 {
13 mystruct s = {10, 20}; date d(12, 31, 2014);
14
15 cout <<s.fieldl <<"\n"; d.print();
16 cout << "\n\n";
17
18 /IA pointer to a structure and a pointer to an object.
19 mystruct *pl = &s; date *p2 = &d;
20
21 /[Don’t write this.
22 cout << (*pl).fieldl << "\n"; (*p2).print();
23 cout << "\n\n";
24
25 /\Write this instead.
26 cout << pl->fieldl << "\n"; p2->print();
27 cout << "\n\n";
28
29 /IA reference to a structure and a reference to an object
30 mystruct& r1=s; date& r2 = d;

PS50 A hesenea ©2014 Mark Meretzky

132 ObjectsWithout Inheritance Chapter 2

31
32 cout <<rl.fieldl <<"\n"; r2.print();
33 cout <<"\n";
34
35 return EXIT_SUCCESS;
36}

10 lines 15-16

12/31/2014

10 lines 21-23

12/31/2014

10 lines 25-27

12/31/2014

10 lines 32-33

12/31/2014

What types of pointers can point at a const object?

Only a read-only pointer can point tocanst object; only a read-only reference can refer to a
const object. Thepointers are in column 1; the references, in column 2.

1 const date d(12, 31, 2014);
2
3 / lwon’t compile
4 date *p = &d; date& r =d;
5
6 / Iwill compile
7 const date *p = &d; const date& r = d;
If the abae line 4 were lgd, we could change &onst object by sayingp->next() or
r.next()

Which member functions can we call with a read-only pointer or reference?
Once again, the pointers are in column 1; the references, in column 2.

The object in line 1 is natonst . But the pointer and reference to it in line 4 are read-odbing
them, we can call only theonst member functions of the object. Of course, by going directly to the ob-
jectin line 12 we can still call grmember function.

1 date d(12, 31, 2014);
2
3 / Iread-only pointer and reference
4 const date *p = &d; const date& r = d;
5
6 / Iwill compile because print is const
7 p->print(); r.print();
8
9 / lwon’t compile because next isn’t const
10 p->next(); r.next();
11
12 d.next();

PSsso A hesenea ©2014 Mark Meretzky

1
2
3
4

Section 2.5 Constructors 133

An object can be broken into

Hiding [making the data membepsivate] is for the preention of accidents,
not the preention of fraud.

—Bjarne Stroustrup in Boockbject-Oriented Analysis and Design, 2nd, d54

The values of the prite data members of an object can be changed by a determined jreremlér
it is not a member function of the objeétor example, here is a differemain function for Version 3.

Line 9 performs “type punning’ The expression&d is a pointer to aate , not a pointer to &har ,

so we need eeinterpret_cast to store it intop. The value ofp is now the address of the first byte
of d.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/const_obj/broken.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

i nt main()

{
date d(12, 31, 2014);
char *const p = reinterpret_cast<char *>(&d);
for (size_ti=0;i<sizeof d; ++i) {

pli] = '\0’; //Overwrite d with zeroes.
}
d.print();
cout <<"\n"
return EXIT_SUCCESS;
0/0/0

2.5 Constructors

Declare and define a constructor
A constructor has four distinguishing features. Compare the rules for a “destrontpr'is54.

(1) A constructos rame is the same as that of its claBer example, inversion3.C the class is
nameddate (p. 115, line 21) and the classbnstructor is also namethte (declared in line 26, called in
line 37, defined in lines 55-72).

(2) Do not declare a return type for the construcion’t even declare the constructarteturn type
to bevoid : just write nothing at all for the return type as in lines 26 and 53&ion3.C . Do not
write areturn statement that returnsyamalue from the constructofThe constructor will implicitly re-
turn the newly-constructed object.

(3) Don't declare the constructor to lmenst (asprint was in version3.C on pp. 115-116,
lines 29 and 99),ven if it changes the value of no data member and calls neoast- member function
of the same object.

(4) For the time being, a constructor mustags be public, not pvate. (Ourfirst private constructor
will be on p. 295; examples in the standard library will be in the stream classes on pp. 324-326 and the
type_info class on p. 1017.) If the constructor for a class \wekate , it could be called only by the

P3sso A hesenea ©2014 Mark Meretzky

OO, WN P

7
8
9
10
11

12}

134 ObjectsWithout Inheritance Chapter 2

member functions of another object of that claBlsat other object could lia been constructed only by a
third object. We would hare an infinite regress (a “chicken and eggjtuation).

My corvention is to name eachgument of the constructor after the data member that it initializes,
with a leadinginitial_ . The same name could be used for the argument and the data mémleer
write a:: or-> in front of it when it refers to the data membBut using the same name forawifferent
variables is alvays confusing. Line 3 uses the scope operator weosgp. 123, line 10. Line 9 uses the-ar
row we aw m p. 123, line 11; and on p. 117, line 105w&#rsion3.C . For brevity, we do rot shav the
error checking.

date::date(int month, int day, int year)

{
date::year = year;
date::month = month;
date::day = day;
}
date::date(int month, int day, int year)
{
t his->year = year;
this->month = nonth;
this->day = day;

For the time being, a constructor should initializerg member of the object. (Our firskeeption
will be the constructor for clasgack on p. 149.) The number ofgarments of the constructor does not
necessarily hae o be he same as the number of data members. An example was the constructor for the
above dassdate with ajulian data member.

Syntax for calling a constructor in a declaration

When calling a constructor with twor more arguments (line 26), we must surround them with
parentheses. 8w tis syntax in line 37 ofersion3.C on p. 115.

When calling a constructor with exactly one argument, we laatoice of notation.We @an sur
round the argument with the parentheses in line 29, or precede it with the equal sign in line 30. Since both
do the same thing (subject to theveat on p. 137), the choice serves only as documentation. Write the
parentheses to emphasize that a function is called to initialize the object. Write the equal signtte mak
user think of the object as merely a holder for a value.

The equal sign notation was pided so that we could use the same syntax when declaiiaples
of all data typesA variable of a bilt-in type is initialized with an equal sign (line 36), andvnee can do
the same for an object (line 30), at least when its constructoxaettyeone agument. Cowversely an d-
ject is initialized with parentheses (lines 26 and 29), and we can also do the same for a built-in (line 37).
We @an pretend that eacluili-in data type has a constructor that takes one argument of the sam&sype.
ing the same syntax for objects and built-ins will makkature called'templates’ applicable to all these
types (p. 634).

The default constructor

Classzero has no data members. Ibuld be unheard-of for a C structure todnao fields, but it is
quite reasonable for a C++ class todao data members. Examples are on pp. 590, 625, and 842.

Classzero has adefault constructor:one that can be called with nagaments, either because it
has no arguments at all, or becausgyeargument has a default value.

We would expect that line 33 would be the syntax for calling awdetonstructor But in C and
C++, this syntax is already used for declaring a function.

i ntf(Q); /ldeclare a function that takes no arguments and returns an int
zero z1(); /ldeclare a function that takes no arguments and returns a zero

P3sso A hesenea ©2014 Mark Meretzky

Section 2.5 Constructors 135

To call the default constructpwe rmust write line 34. (When the object constructed by auletonstruc-
tor is anonymous, the parenthesegehta be written; see p. 137Yet another syntax for calling a deafult
constructorfor use only within a template, will bevgh on p. &0.)

The copy constructor

A copy constructorcreates a cgpof an eisting object. It takes exactly one argument, a read-only
reference to another object of the same class as the one being constructed.y thastogctor for class
monois declared in line 16, defined in lines 57-61, and called in line 39 (and maybe called also in line 30;
see the oaat on p. 137).Classmono can hae wo constructors (lines 15 and 16) because theguments
are diferent; this is an example of function nanwertbading. Onthe other hand, a class carvéa most
one default constructor and at most oneyaamstructor.

Our cowention is to use the nananother for the agument of a copconstructor It mustalways
be passed by referenciVere it passed by value, itould have b be ©pied before the function call (pp.
69-70). Butanother is an object, and the only way to goan diject is to call its cop constructor.
Therefore eery call to the cop constructor would h&e © be preceded by another call to the sameycop
constructorand we would go into an infinite loop.

A member function can wabys access the pate members of itsven object. This cop constructor
is our first @ample of a member function that can also access thagprmembers of another object of the
same class (p. 201). When called from line 39, xaneple, theanother.memberl in line 60 is a mem-
ber of the objean, and the plairmemberl in line 60 is a member of the objenR

The copy constructor must not change the valuendfin line 39. To ensure this, we declare its refer
ence argument to lmnst in lines 16 and 57.

Had we not defined a cgponstructor for classnono, line 39 would hee worked aryway. The
computer would hae kehaved as if we lad defined the following one.

nono::mono(const mono& another)

{

/ I"'memberwise" copy: copy each data member of the other object
/ linto the corresponding member of the new object.

memberl = another.memberl;

O©oo~NOOLh~ W

}

(We'll see on p. 261 that the computer actually betias if we had written a cop constructor with a
colon.

10 mono::mono (const mono& another)
11 : memberl(another.memberl)
12 {

13}

With the colon, iinitializes rather tharassigns toeach data member of the newborn object.)

While learning C++, the author often put an output statement into a constructor jesfytdhat the
constructor is calledWe wrote our own cop constructor only because the one provided implicittuld
not have had the output statement in line 58ometimes, hwever, there is a non-trivial reason to write our
own ocopy constructor This will happen on pp. 153 and 306—-307, when wesledcita member that is a
pointer.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/constructor/duo.C

#include <iostream>
#include <cstdlib>
using namespace std;

abhwNRE

class duo {

PSsso A hesenea ©2014 Mark Meretzky

136 ObjectsWithout Inheritance Chapter 2

6 i nt memberl;
7 i nt member2;
8 public:
9 duo(int initial_memberl, int initial_member2);
10}
11
12 class mono {
13 int memberl,;
14 public:
15 mono(int initial_member1);
16 mono(const mono& another); /lcopy constructor
17}
18
19 class zero {
20 public:
21 zero();
22},
23
24 int main()
25{
26 duo d1(10, 20);
27 /[duo d2; [lwon’t compile: constructor needs arguments
28
29 mono m1(10);
30 mono m2 = 10; /lanother way to do the same thing when the
31 /[constructor has exactly one argument
32
33 /lzero z1(); /[creates no object, calls no constructor
34 zero z2; /lcall a constructor that has no arguments
35
36 int i=10;
37 int j(10); /lanother way to do same thing
38
39 mono m3 =ml,; /[call copy constructor: m3.mono(m1)
40
41 return EXIT_SUCCESS;
42}
43
44 duo::duo(int initial_memberl, int initial_member2)
45
46 cout << "constructor for duo\n®;
47 memberl = i nitial_ memberl;
48 member2 = i nitial_member2;
49}
50
51 mono::mono(int initial_memberl)
52 {
53 cout << "constructor for mono\n";
54 memberl = i nitial_ memberl;
55}
56
57 mono::mono(const mono& another) //copy constructor
58 {
59 cout << "copy constructor for mono\n";

PSs 5o A hesenea ©2014 Mark Meretzky

Section 2.5 Constructors 137

60 memberl = another.memberl;
61}

62

63 zero::zero()

64 {

65 cout << '"constructor for zero\n";
66 }

One final caeat. Mostmodern compilers will creat@2in the aboe line 30 by calling the construc-
tor that takes an integer.

constructor for duo line 26
constructor for mono line 29
constructor for mono line 30 constructsn?2
constructor for zero line 34
copy constructor for mono line 39

But the compiler wuld be within its rights if it createti2in a more roundaboutay. An older com-
piler, or the g++ compiler with the optionfno-elide-constructors , could create amnonymous
temporary object—one that has no name—when it seestHe) in the abee line 30. It would do this by
calling the constructor that tek an integer (line 51).Thenm2could be created by calling the gopon-
structor (line 57).

constructor for duo line 26

constructor for mono line 29

constructor for mono line 30 constructs an anonymous temporagno
copy constructor for mono line 30 copies the anonymous temporary mt»
constructor for zero line 34

copy constructor for mono line 39

As we s& in the first box of output, a newer compiler vélide the anogmous temporary in line 30For
other examples of elision, see pp. 190-191, 234-236, and 660.

Construct an anonymous object

We havemade it sound as if a constructor can be called only in a declaration for an object. But it can
also be called to create an anonymous temporary objevtariable needs no name if it would be men-
tioned only once. Our examples will belauble and adate .

(1) To print the square root of 2, all wevei do is to pint thedouble returned by theqrt func-
tion in line 1. There is no need to declare the unnecessaigbie in line 5 to hold the square root and
print it in line 6.

Similarly, to print adate , al we have do is to pint thedate returned by the constructor function
in line 1. A constructor returns the newly-constructed objeanéhough we return no explicit value when
defining the constructoMhen constructing an anonymous object, the name of the constructor wayst al
be followed by parenthesesjen if the parentheses enclose nguanents. Therés no need to declare the
unnecessary variable in line 5 to hold tleée and print it in line 6.

The << operator that outputs ttdate in line 1 will not compile yet; we’ll mad it work on p. 335
when we do operatorverloading. Inthe meantime, line 2 can call tipeint member function of the
anorymous temporary object returned by the constructdreast this is better than an unnecessary decla-
ration. (Thisis our first example of calling a member function of an anonymous temporary object returned
by a function. Others will be line 11 ofturn_obj.C on p. 190 and line 11 géturn.C on p. 191;

* This is lgd because the constructor in line 51 was declared without #yavokd
explicit

PSsso A hesenea ©2014 Mark Meretzky

OO, WN P

11
12
13
14
15

16
17
18
19
20

21
22
23

138 ObjectsWithout Inheritance Chapter 2

pp. 203-204 and 209; p. 292; line 20path.C on p. 322; line 8 on p. 326.)

cout << sqgrt(2.0) << "\n"; /lcout << date(12, 31, 2014) << "\n";
date(12, 31, 2014).print();
cout << "\n";

double unnecessary_double = sqrt(2.0); date unnecessary_date(12, 31, 2014);
cout << unnecessary_double << "\n"; cout << unnecessary_date << "\n";

(2) To pass the square root of 2 to a functigrdl we have © do is to ke thedouble returned by
thesgrt function and pass it tb in line 7. There is no need to declare the unnecessaigble in line 9
to hold the square root and pass it tim line 10.

Similarly, to pass adate to a functionf , al we have © do is to tike thedate returned by the con-
structor function and pass it toin line 7. There is no need to declare the unnecessaigble in line 9 to
hold thedate and pass it tb in line 10. (Thanks to function namegesloading, thef that receres the
double is not the same function as the one that vesdhedate .)

f (sqrt(2.0)); f(date(12, 31, 2014));

double unnecessary_double = sqrt(2.0); date unnecessary_date(12, 31, 2014);
f(unnecessary_double); f(unnecessary_date);

(3) Line 11 creates theariablex. To change the alue ofx to the square root of 2, all wevsat do
is to tale thedouble returned by theqgrt function and assign it to in line 12. There is no need to de-
clare the unnecessary variable in line 14 to hold the square root and assigmitite 15.

Similarly, line 11 creates theaviabled. To change the value af to a nev date , dl we have © do
is to tale date returned by the constructor function and assign it io line 12. There is no need to de-
clare the unnecessary variable in line 14 to hold thedates and assign it td in line 15.

double x = 10.0; date d(1, 1, 2014);
X = sqrt(2.0); d = date(12, 31, 2014);

double unnecessary_double = sqrt(2.0); date unnecessary_date(12, 31, 2014);
X = unnecessary_double; d = unnecessary_date;

(4) To return the square root of 2 from a function, all weehia do is to eturn thedouble returned
by thesqgrt function in line 16. There is no need to declare the unnecessary variable in lines 18-19 to
hold the square root and return it in line 20.

Similarly, to return adate from a function, all we ha © do is to eturn thedate returned by the
constructor function in line 16. There is no need to declare the unnecessabjevin lines 18-19 to hold
thedate and return it in line 20. (The unnecessagyiables in lines 19-19 could lenst ’'s because
they will never be thanged. Thgare destructed in the very next line.)

return sqrt(2.0); return date(12, 31, 2014);
const double const date

unnecessary_double = sqrt(2.0); unnecessary_date(12, 31, 2014);
return unnecessary_double; return unnecessary_date;

If the constructor has exactly onggament, we can omit the name of the constructor and the paren-
theses around the argument in thevadme 16.

return duo(10, 20); /IMust write "duo” & parentheses.
return mono(10); //[Could write "mono” & parentheses,
return 10; //but don't have to.

This will work only if the constructor was declared without tlegword explicit

PSsso A hesenea ©2014 Mark Meretzky

24

Section 2.5 Constructors 139

(5) A final warning. Neer write the follaving call to thesgrt function in a statement all by itself
in C or C++. It would return an angmousdouble , which would then be discarded without having been
used. Inother words, it would be a deadlue; see p. 37Similarly, neve write the following call to the
constructor function for clasgate in a statement all by itself. It would construct and return anyanon
mousdate object, which would also be a dead value.

sqrt(2.0); date(12, 31, 2014);

Can one constructor call another one for the same object?

The following clasanyobj has the tw constructors called in lines 26 and 2lZet’s aall them the
“1D constructor’and the “DI constructoi’respectiely. Snce thg do the same wark, we want to write it
only once. We'll do the work in the ID constructpand the DI constructor will merely be a call-through to
the ID constructor.

The DI constructor attempts to call the ID constructor in line\W8.hope this will work because the
syntax of line 13 imitates that of line 10, which successfully calls another member function of the same ob-
ject. We saw e member function calling another member function of the same object as early as lines
80-83 of Version 3 on p. 116.

But this syntax will vork only if the other function is not a constructdf the other functioris a
constructoras in Ine 13, we will be committing the blunder in the abdine 24. Line 13 does not call an-
other member function of the same objettconstructs and discards a separate, anonymous object, which
has no effect on the object that the DI constructor is trying to construct.

Lines 14 and 16 areain attempts to makit work, but 14 has the same bug and 16 will n@ne
compile. Linel8 does work, lt only at the price of constructing a separate, anonymous object, and cop
ing it into the objectthis that the DI constructor is constructing. The DI constructor has therefore con-
structed a total of tavobjects. Thas too expensie for us.

1 class myobj {
2 i nti;
3 double d;
4 public:
5 myobj(int initial_i, double initial_d) {i = initial_i; d = initial_d;}
6
7 myobj(double initial_d, int initial_i) {
8
9 / ICall another member function of the same object:
10 f(initial_i, initial_d);
11
12 /2 unsuccessful attempts to call another mem func of same object:
13 myobj(initial_i, initial_d);
14 myobj::myobij(initial_i, initial_d);
15
16 this->myobij(initial_i, initial_d); /lwon’t compile
17
18 *this = nyobij(initial_i, initial_d);
19 }
20
21 void f(int i, double d) const {}
22},
23
24 int main()
25{
26 myobj m1(10, 3.14159); /ID: int and double
27 myobj m2(3.14159, 10); //DI: double and int
28

PSs 5o A hesenea ©2014 Mark Meretzky

140 ObjectsWithout Inheritance Chapter 2

29 return EXIT_SUCCESS;
30}

How to do it

If two constructors hee the same work to do, theshould call a common prate member function.
Do not attempt to hee ane constructor call another constructor for the same obfgaeiry object should
have exactly one constructor called for it.

31 class myobj {

32 int i

33 double d;

34 void init(int initial_i, double initial_d) {i = initial_i; d = initial_d;}
35 public:

36 myobj(int initial_i, double initial_d) {init(initial_i, initial_d);}
37 myobj(double initial_d, int initial_i) {init(initial_i, initial_d);}
38}

Get the date and time in C

We will define another constructor for cladate , one that initializes the newborn object to today’
date. Heras the code in C and C++ to get the current date from the operating system.

1 /* E xcerpt from <time.h>, showing some of the fields of struct tm. */
2
3 t ypedef long time_t; /* may not be long on all platforms */
4
5 struct tm {
6 i nttm_mday; /* 1 to 31 inclusive */
7 i nttm_mon; /* 0 to 11 inclusive */
8 i nttm_year; [* year minus 1900 */
9 /* etc.*/
10}

In versions of C prior to C99, the declarations in a block mugdyal come before the other state-
ments; see pp. 32-33. This forces line 8 todgauninitialized: the assignment pin line 15 must come
after theif , while the declaration gb must comebefore theif . C also needs theekword struct in
line 8.

What could go wrong without the cast in line 10? On my platféime_t is another name for the
data typdong . Imagine, howeer, that it was another name fonsignedshort , and that an
unsignedshort was narronver than arint (16 and 32 bits respeedly). If the call totime in line 7
failed, thet in line 10 would hold the value'2- 1 = 65, 535 the 16-bit unsigned equent of —1. This
value would be promoted ot to match the other operand of the equality in line 10;theThe promo-
tion would be by zeroxgension (p. 61), resulting in @nt value of 65,535. But 65,535 does not equal
-1, and théf would not detect the failure of thene function. Ofcourse, dime_t would never be 16
bits. Butin some future implementatiotime_t andint might be 32 and 64 bits, causing the saom b
—On the Web at
http://i5.nyu.edu/ Omme64/book/src/constructor/time.c

1 #include <stdio.h> [* C example */

2 #include <stdlib.h>

3 #include <time.h> [* for time_t, time, localtime */
4

5 i nt main(int argc, char **argv)

6 {

7 const time_tt = time(NULL);

PSsso A hesenea ©2014 Mark Meretzky

10
11
12
13
14
15
16
17
18
19
20
21
22}

O©CoOoO~NOOOUTA, WNPE

Section 2.5 Constructors 141

const struct tm *p; /* uninitialized and not *const */

if (t==(time_t)-1) {
fprintf(stderr, "%s: time failed\n", argv[0]);
return EXIT_FAILURE;

}
p = | ocaltime(&t);
printf("day == %d\n", p->tm_mday);
printf("month == %d\n", p->tm_mon + 1);
printf("year == %d\n", p->tm_year + 1900);
return EXIT_SUCCESS;

day ==

month ==

year == 2014

Get the date and time in C++

In C++, we write zero instead ®fULL in line 8; see p. 68. Line 15 does not need tagvkrd
struct ; see line 33 ofversion2.C on p. 109.Even betterp can nav be a*const pointer since it is
initialized in its declaration.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/constructor/time.C

#include <iostream> //C++ example
#include <cstdlib>

#include <ctime>

using namespace std;

i nt main(int argc, char **argv)
{
const time_t t = time(0);
if (t==static_cast<time_t>(-1)) {
cerr << argv[0] <<": time failed\n";
return EXIT_FAILURE;

}
const tm *const p = localtime(&t); /finitialized and *const
cout <<'"day=="<<p->tm_mday << "\n"
<< "month ==" << p->tm_mon + 1 << "\n"
<< "year ==" << p->tm_year + 1900 << "\n";

return EXIT_SUCCESS;

PSsso A hesenea ©2014 Mark Meretzky

N -

1
2
3
4

142 ObjectsWithout Inheritance Chapter 2

day ==
month ==

year == 2014

v Homework 2.5a: give a dass another constructor

Classdate already has the threegaiment constructor declared in line 26vefsion3.C on p.
115. Keep it, but also provide a default constructor declared as follows.

public:
date(int initial_month, int initial_day, int initial_year); //3-arg const.
date(); //default constructor

The default constructor will put todaythte into the data member(s) of the newldate object.

You can use the version of cladate with either one, two, or three data membdfsyour version
of classdate has amonth data member whose value is a number in the range 1-12 uecldiere
tm_mon plus 1 into it. If your version of clagtate has ayear data member whose value is the year
storetm_year plus 1900 into it.

Do not remee thenext andjulian member functions.

In the following test program, the objects in lines 8 and A& mames; the one in line 16 is an
anonymous temporaryThe temporary is constructed by the default constructor for dées.

There is also a default constructor for eadaiittin data type, which puts a zero into thevbern
variable. Linel9 calls the default constructor for the data type and outputs thealue of the resulting
anorymous temporary These constructors are intended for use only itemplate’ (p. 660) where it is
adwantageous to having the same syntax for all data types (p. 634). An example is line 13 orEser96.
where, we should simply writ instead oint()

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/constructor/main.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

i nt main()

{
date d1(12, 31, 2014); //parentheses for more than one argument
d1.print();
cout <<"\n%
date d2; /Ino parentheses for no arguments
d2.print();
cout <<"\n%
date().print(); /[Construct an anonymous date; call its print function.
cout <<"\n%
cout <<int() <<"\n"; //Construct an anonymous int with the value 0.
return EXIT_SUCCESS;

P3sso A hesenea ©2014 Mark Meretzky

Section 2.5 Constructors 143

12/31/2014 lines 8-10
4/8/2014 lines 12-14
4/8/2014 lines 16-17
0 line 19

A

Review of typedef

The next Homeork will require a typedef statement, so we ravienow.

Despite its name, a typedef does not createradaéa type. It merely creates a one-word alteveati
name for an existing data typEor example, the typedef in line 4 creates the nicknaommaber_t for the
data typdongunsigmed

A typedef makes the code easier to charkge.example, instead of writing the old nanoag
unsigned three times in lines 1-3, we can write it once in line 4. The variable in line 6 wdldactly
the same data type as the one in line 1.

1 | ong unsigned nl1 = 10;
2 | ong unsigned n2 = 20;
3 | ong unsigned n3 = 30;
4 t ypedef long unsigned number_t; //From now on, number_t means long unsigned.
5
6 number_tnl =10;
7 number_t n2 = 20;
8 number_t n3 = 30;
Instead of the typedef in the algoline 4,number_t could hae been a macro.
9 #define number_t long unsigned
But there is no practicalay to use a macro for a data type whose name consiste efparate parts, such
as thechar [4] (“array of four characters”) in lines 10—-12nstead of writing this name three times, we
should hae written it only once in line 13.
10 char kennedy[4] = "JFK";
11 char laguardia[4] = "LGA";
12 char newark[4] = "EWR";
13 typedef char airport_t[4]; //An airport_t is an array of 4 char’s.
14
15 airport_t kennedy = "JFK"
16 airport_t laguardia = "LGA";
17 airport_t newark = "EWR"

The name created by a typedef\ariionally ends in t , at least in the C Standard Libraryhe &-
amples we ha& wsed with classlate arediv_t andtime_t ;the mostimportant ones asze_t and
ptrdiff_t . The C++ Standard Library contains all the C typed&tsptwchar_t , which is nav a
keyword in C++. For mary of its own typedefs, the C++ library has abandoned thsuffix in favar of
_type :size _type ,difference_type , andvalue_type

One common use of typedef in C ismnannecessary in C++A C structure was a second-class citi-
zen, needing the helping wosttuct in line 23.

18 struct mystruct { /* C example */
19 int fieldl,;

20 int field2;

21}

22

P3sso A hesenea ©2014 Mark Meretzky

144 ObjectsWithout Inheritance Chapter 2

23 struct mystruct m = {10, 20}; /* name of data type is "struct mystruct" */
A typedef was often used to create a one-word name for the data type.

24 typedef struct { [* C example */

25 int fieldl,;

26 int field2;

27 } mystruct;

28

29 mystruct m = {10, 20}; /* name of data type is now only one word */

But the C++ structure in line 35 does not need #evkrd struct |, just as the C++ object in 36 does not
need the &yword class . The typedef in the alve line 24 is therefore no longer necessary.

30 struct { /[C++ example
31 int fieldl,;

32 int field2;

33 } mystruct;

34

35 mystruct m = {10, 20};
36 date d(4, 8, 2014);

v Homework 2.5b: do the work in the member functions of a class

We translated the gme of life into C++ on pp. 42-44, but not the way the language should really
have been used. This Homerk will be another step in the right direction.

Package the answer to the Game of Life haioik as a class namdifle . One benefit of doing so
will appear on pp. 170-17Z%or the present, declare the class in a header file nifadd . Define the
three non-inline member functions in a file nanitelC (or life.cpp , or whatever the filename xe
tension is on your platform).

Test the class with the folang main function. Lines22-25 call the four member functions of
classlife , starting with the one-argument constructor for the object nagtiéer in line 22.

| try to use consistent names for the member functions of all my claSkessegdate andlife
have member functions namedext andprint . When we do operatorverloading, well give these
functions their proper C++ namexperator++ (pp. 288-289), andperator<< (pp. 337-340).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/life/main.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <cstring> //for strcmp

4 #include "life.h" /[for class life, life_xmax, and life_ymax
5 using namespace std;

6

7 i nt main()

8 {

9 const bool glider_matrix[life_ymax][life_xmax] = { //sorry y before x
10 {0, 0,0,0,0,0,0,0,0,0},
11 {0, 1,0,0,0,0,0,0,0,0},
12 {0, 0,1,1,0,0,0,0,0,0},
13 {0, 1,1,0,0,0,0,0,0,0},
14 {0, 0,0,0,0,0,0,0,0,0},
15 {0, 0,0,0,0,0,0,0,0,0},
16 {0, 0,0,0,0,0,0,0,0,0},
17 {0, 0,0,0,0,0,0,0,0,0},
18 {0, 0,0,0,0,0,0,0,0,0},

PSsso A hesenea ©2014 Mark Meretzky

Section 2.5 Constructors 145

19 {o, 0,0,0,0,0,0,0,0,0}

20 3

21

22 for (life glider = glider_matrix;; glider.next()) {
23 glider.print();

24

25 cout << glider.generation()

26 << " Press c to continue, g to quit, and RETURN.\n";
27

28 char buffer[256];

29 cin >> buffer;

30 if (strcmp(buffer, "c") 1= 0) {

31 break;

32 }

33 }

34

35 return EXIT_SUCCESS;

36}

The nestedor loops that print the matrix data member willinbe in heprint member function
of clasdife . The code that updates the matrix data member (angHieneration) will be in the
next member function of cladfe . The code that initializes the tndata members will be in the con-
structor for clastife . Remember to initialize the cells along the edge of the arrtatde

The matrix originally namedld is used continuously during the lifetime of trenge. Itshould be
enshrined as a data member of cldss , private, as ap data member should be. The constructor will fill
in its initial value, including thé&lse ’s dong the edges.

On the other hand, the matrix originally nanmexlv is used only by the code that updatesdlte
matrix. Itis then discarded, and createdwarlee next time we update tiodd matrix. Sincet is used on-
ly intermittently the new matrix should be a local variable in thext member function of cladde

Thelife_ymax andlife_xmax in lines 5-6 oflife.h are not data members of cldge
They merely float somewhat unsatisfactorily near it as globaiables. Seéhe similar disposition of the
arraydate_length inversion3.C on pp. 114-115.

As in C, aglobal variable is one that is declared and defined outside the bodyyduaation. A
static global variable is one that can be mentioned in only.Gnéle. A global variable is often declared
in a header file, but rarely defined in one.

To e wly, assume that the header were included in more than®ffige of the same program. If a
static global variable were defined in the header ould be wasting memory: ead8 file that included
the header could get its own yatie copy of the \ariable. VWrse, if a non-static global variable were de-
fined in the headethe program would notven link. Theglobal variable would be “multiply defined’
causing an error message.

But in lines 5-6, our header defineotglobal variables ayway. We can get aay with this because
in C++, aconst global variable is static by dailt. (To make it non-static, we would need theyword
extern in front of theconst .) OurC++ program will link, vasting a bit of memory when we include
the header in more than or@ file. Butthis is a necessaryié life_ymax andlife_xmax are used
as array dimensions in line 10, soytmust be defined, not merely declared, earlier in this header file.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/life/life.h

#ifndef LIFEH
#define LIFEH
#include <cstddef> [[for size_t

abhwNRE

const size_t life_ymax = 10;

PSsso A hesenea ©2014 Mark Meretzky

146 ObjectsWithout Inheritance Chapter 2

6 constsize tlife_xmax = 10;

7
8 class life {
9 i ntg; /lgeneration number
10 bool matrix[life_ymax + 2][life_xmax + 2];
11 public:
12 life(const bool initial_matrix[life_ymax][life_xmax]);
13 int generation() const {return g;}
14 void next(); //Advance the matrix data member 1 generation; add 1 to g.
15 void print() const; //Print the matrix data member.
16 };
17 #endif

Also male the following changes.

(1) Instead of hardwiring theX’ s and’.’” s into the firstcout statement in th@rint member
function, give the function tvo arguments:

18 void print(char filled, char empty) const;
Let the arguments kia the default values’ and’.’ respectrely. See pp. 94-97 for default values.

(2) At line 7 oflife.h , write a typedef to declare thifie_matrix_t is another name for the
data type'life_ymax xlife_xmax array ofbool 's”. Then change the name of the data type of the
following two variables tdife_matrix_t

(a) thelocal variableglider_matrix in themain function (which should also be
const);

(b) theinitial_matrix argument of the constructor (which should also be
const).

(3) At line 7% oflife.h | write a typedef to declare thalife_matrix_t (with a leading un-
derscore) is another name for the data ty#e' ymax + 2) x (life_xmax + 2) aray of bool 's”.
This typedef is only for internal use by cldés . Then change the name of the data type of thewello
ing two variables to life_matrix_t

(8) thematrix data member of cladie ;
(b) thelocal variablenewmatrix in thenext member function.

(4) Define a ne public member function of clad§e to display the game by means of teem_
functions written in C:

19 void put(char filled, char empty) const;
life::put will put the matrix data memberor as nuch of it as will fit, upper-left justified onto the
screen. Sethe extra credit part of the Game of Life havoek.

Let the arguments ka te default wlues 'X* and '’ respectiely. Assume that
term_construct has already been called before the first cdlfeaput , and that
term_destruct will be called after the last call tde::put . Call the two-argumenimin function

(pp. 43-44) to compute the minimums in lines 23-24.
20 void life::put(char filled, char empty) const

214

22 /[How much of the game will fit on the screen?

23 const size_t ymax = minimum of term_ymax() and life_ymax;

24 const size_t xmax = minimum of term_xmax() and life_xmax;

25

26 for (a pair of...

27 for (...classic nested "for" loops

28 const char c = either filled or empty, depending on the

P3s 5o A hesenea ©2014 Mark Meretzky

Section 2.6 Destructors 147

29 contents of the matrix data member;

30

31 if (term_get() says c is not already at this place on the screen) {
32 term_put(c at this place);

33 }

34 }

35 }

36}

Testlife::put without usingcin or cout :

37 term_construct(); /Ibefore constructing any life objects
38

39 for (life glider = glider_matrix;; glider.next()) {

40 glider.put();

41

42 /[Don’t bother to display the generation number.

43 term_puts(O0, minimum of life_ymax and term_ymax()-1,
44 "Press ¢ to c¢ ontinue, g to quit.");

45

46 char c; /luninitialized variable
a7 use term_key to wait until the user has pressed a key;

48

49 if (the key is not 'c’) {

50 break;

51 }

52 }

53

54 term_destruct();

2.6 Destructors

A class with a constructor and a destructor

We haveseen seeral classes with a constructone mow introduce the matching member function,
the destructor Our example will be a stack, first in C as a lot of variables and functions, and then in C++ as
a dass.

A stack is what a copyright layer would call an “information storage and retdesystem’. In a
stack, the order in which the values are stored dictates the order in wlyiehilthe retrieved: last in, first
out. Accountantsvould call it a LIFO list; the rest of us would say “last hired, first fited.

The values stored and retréel by aur stack will be intgers. Eactvalue is stored by the function
push and retriged by pop. Retrieving a value remes it from the stack, so it can be reied only once.

The stack contains an arrayig enough to hold 100 elementd/e dso hase a \ariablen to hold the
number of elements currently in the stack. Initially the stack is emsptyis initialized to zero in line 7 of
stack.c

In both languages, thenablesa andn will be accessible only to the functiopash andpop. To
accomplish this in C we declare the variables to be static, and define no functions otpasithandpop
in the same file ag andn. In other words, the source code has to be sliced into separate filgprese
which variables can be accessed by which functions.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stackce/stack.h

1 #ifndef STACKH [* C example */

PSsso A hesenea ©2014 Mark Meretzky

OO, WN

O©CoOoO~NOOOUTA, WNPE

10

148 ObjectsWithout Inheritance Chapter 2

#define STACKH

void push(int i);
i nt pop(void); [* C needs the keyword void */
#endif

Warning: the%uin lines 14 and 27 is not portablsize_t will not always be another name for
unsigendint

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/stackc/stack.c

#include <stdio.h> /* C example */
#include <stdlib.h>

#include "stack.h"

#define STACK_MAX_SIZE 100

static int af] STACK_MAX_SIZE];
static size_tn=0; /* number of values in the stack; stack initially empty */

/* P ush a value onto the stack. */

11 void push(int i)
12 {

13
14
15
16
17
18
19

if (n==STACK_MAX_SIZE){ /* overflow */
fprintf(stderr, "Can’t push when size %u == capacity %u.\n",
n, STACK_MAX_SIZE);
exit(EXIT_FAILURE);

}

an++] =1,

20}

21

22 [* Pop a value off the stack. */

23

24 int pop(void)
25{

26
27
28
29
30
31

if (n==0){ [* underflow */
fprintf(stderr, "Can’t pop when size %u == 0.\n", n);
exit(EXIT_FAILURE);

}

return al--nj;

32}

O©CoOoO~NOOOUTA, WNPE

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stackc/main.c

#include <stdio.h>
#include <stdlib.h>
#include "stack.h"

i nt main()
{
printf("To hire a person, type their social security number.\n"
" To fire the most recently hired person, type a zero.\n"
" To quit, type a negative number.\n");

PSs 5o A hesenea ©2014 Mark Meretzky

Section 2.6 Destructors 149

10
1 for () {
12 int ss; I* uninitialized variable */
13 scanf("%d", &ss);
14
15 if (ss<0){ [* quit */
16 break;
17 }
18
19 if (ss>0){ [* hire */
20 push(ss);
21 } else{ [* fire */
22 printf("Firing number %d.\n", pop());
23 }
24 }
25
26 return EXIT_SUCCESS;
27}
To hire a person, type their social security number.
To fire the most recently hired person, type a zero.
To quit, type a negative number.
10 Yau type the numberin italics.
20
30
0
Firing number 30.
0
Firing number 20.
40
0
Firing number 40.
0
Firing number 10.
-1

Package the stack as a C++ class.

As abwe, the ariablesa andn will be accessible only to the functiopash andpop. Butin C++
we can express this in the language itself rather than by the cnide dEslicing the source code into sep-
arate files.We leta andn be private data members of a class, gndh andpop be member functions.

Of course, the code is still divided into separate files. Butthis is for an entirely diérent reason:
to reuse classtack in mary C++ programs without having to cp@nd paste it into other filesWe an
simply addstack.h andstack.C to the list of files that constitute a program.

Thestack_max_size in line 5 ofstack.h is not a data member of clagtsck (yet). Itmere-
ly floats somewhat unsatisfactorily near it. See the similar disposition of the globatlareajength
on pp. 114-115, and the globariableslife_ymax andlife_xmax on p. 145.Eventually it will be
renamedmax_size , the cowentional C++ name for the maximum size of a data structAr€++ data
structure is called eontainer. The container classegctor , map, andstring all have amax_size .

We dready knav that a constructor is the member function called at the start of an slifectand
the name of the constructor is the same as the name of thebgd! Incidentallythis is our first con-
structor that does not put a value interg data member of the newborn obje8incen is zero, there is no
need for the constructor to put anything into the aaray

PSsso A hesenea ©2014 Mark Meretzky

150 ObjectsWithout Inheritance Chapter 2

A destructoris the member function called at the end of an olgjdit#. Thename of the destructor
is the name of the objestdass with a tilde in front of it. Our constructaefined in line 11, is inline; our
destructordeclared in line 12, is not.

Until now, none of our classes has needed a destrutitardass has no destructdinen, for the time
being, nothing happens when an object of that clagses. Butif the dying object requires grkind of
cleanup or funeral, a postmortem examination, & gfumoke, an aria, or if it needs to inform its neigh-
bors of its demise, we can place these last rites in a destructor to ensureytirat hieeer forgotten.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/stack/stack.h
1 #ifndef STACKH [/IC++ example
2 #define STACKH
3 #include <cstddef> [[for size_t
4
5 const size_t stack_max_size = 100;
6
7 class stack {
8 i nt a[stack_max_size];
9 size_tn; /Inumber of values currently in the stack
10 public:
11 stack() {n=0;} /lconstructor: start with the stack empty
12 “stack(); /ldestructor
13
14 void push(int i);
15 int pop(); [IC++ doesn’t need the keyword void
16 };
17 #endif
—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/stack/stack.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "stack.h"
4 using namespace std,;
5
6 stack:"stack() //destructor
7
8 / Icout << "destructor for stack\n®;
9
10 if (n!'=0){
11 cerr << "Warning: stack still contains " << n << " value(s).\n";
12 }
13}
14
15 //Push a value onto the stack.
16
17 void stack::push(int i)
18 {
19 if (n==stack_max_size){ //overflow
20 cerr << "Can't push when size " << n << " == capacity "
21 << stack_max_size << "\n";
22 exit(EXIT_FAILURE);
23 }
24

PSsso A hesenea ©2014 Mark Meretzky

Section 2.6 Destructors 151

25 a[n++] =i;

26}

27

28 //Pop a value off the stack.

29

30 int stack::pop()

31{

32 if (n==0){ /lunderflow
33 cerr << "Can't pop when size " << n << " ==0.\n"
34 exit(EXIT_FAILURE);

35 }

36

37 return al--nj;

38}

An objects destructor is alays called when the object reaches the end of its lifespanexample,
the objects is local to themain function, so its life gtends from its declaration in line 12 wfain.C to
the return fronmain in line 28. The constructor far is called in line 12; the destructor is called in 28.
we delete theeturn in line 28, the destructor would be called when we return fraim at the closing
curly brace in line 29.

Our classstack belongs to no namespacanother classtack , belonging to namespastd , is
declared in the header fitestack> . We dd not include this header directljut it might hae keen in-
cluded by one of the headers that we did include.

The double colon in line 12 ensures thatdtaek is the one that belongs to no namespace; the dou-
ble colon is needed only if the header filgtack> was included (either directly or by another header
file). Assuminghat<stack> was included, astd::stack in line 12 would heae keen the class
stack belonging to namespas#&d , and an unadornestack would not hae mmpiled.

Is there ap down dde to rewriting the code as a clasé®ll, the C functionpush took only one ar
gument, It the member functiostack::push takes two arguments, one explicit and one implicis
long as there is only one stack, this is a disadvantage.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/stack/main.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std,;
4 #include "stack.h"
5
6 i nt main()
7
8 cout << "To hire a person, type their social security number.\n"
9 " To fire the most recently hired person, type a zero.\n"
10 "To quit, type a negative number.\n";
11
12 ;istack s; /ICall the constructor for s with no arguments.
13
14 for () {
15 int ss; /luninitialized variable
16 cin >>ss;
17 if (ss<0){ /[quit
18 break;
19 }
20
21 if (ss>0){ /Ihire

PSsso A hesenea ©2014 Mark Meretzky

22
23
24
25
26
27
28

152 ObjectsWithout Inheritance Chapter 2

s.push(ss);
} else{ [ffire
cout << "Firing number " << s.pop() << ".\n";
}
}

return EXIT_SUCCESS; //Call the destructor for s.

29}

30

A C++ object should Vie ro longer than it needs to. If we change thevellmes 12-14 to
for (:stacks;;) {

the stack will be destructed as soon as weeldee loop.

v Homework 2.6a: add new member functions to class stack
(analogous to Homework 2.4a)

Add three n&¥ member functions to clastack . All three hae return values; none of them should
produce ay output. Donot add ay data members to clastack in this homevork.

To demonstrate that your wemember functions work, hand in the output of the three programs
main12.C , main3.C , and main4.C in the directory
http://i5.nyu.edu/ COmm64/book/src/stack/test

(1) Add an inline member function declared as
bool empty() const;

that will returntrue if the stack is emptyfalse otherwise. Thestack is empty if is equal to zero.
Since the value of a comparison operator suckras true or false , you do not need to write ah or
the operatoP: in empty . empty must produce no output.

The destructor and thgpp member function should mosee if the stack is empty by callirgnpty .
It is no sin for one member function to call another.

(2) Add an inline member function declared as
bool full() const;

that will returntrue if the stack is full, false otherwise. Thetack is full ifn is equal to
stack_max_size . Since the value of a comparison operator such=ais true orfalse , you do not
need to write aif or the operato?: infull . full must produce no output.

Thepush member function should mosee if the stack is full by callinfyll
(3) Add an inline member function declared as

size_t size() const;

that will return the current number of elements in the stack: the numbelues\that hae keen pushedus
have rot yet been popped. It will\abkys return the value of, even if it is greater than
stack_max_size . This should neer happen.

size must produce no outpuithe destructor and tipush andpop member functions should dis-
play the return value cfize as part of their error message.
A

v Homework 2.6b: change a data member of class stack
(analogous to Homework 2.4b)

To demonstrate that your clastack still works after you do this homerk, hand in the output of
the three programmain12.C , main3.C , and main4.C in the directory
http://i5.nyu.edu/ COmm64/book/src/stack/test

PSsso A hesenea ©2014 Mark Meretzky

Section 2.6 Destructors 153

Change then data member of clastack from asize_t to a read/write pointer to ant , and
rename itp. At any gven moment,p will point to the ‘next free element'of a: the element with the
smallest subscript that is not currently occupied by a pusilad.vior example, the constructor for class
stack will store the address @f0] into p because no element afis yet occupied by a pushed value.
push will store a walue into the array element to whiphis pointing, and will then makp point to the
next array elementpop will make p point to the previous array element, and will then return the value to
which p is now pointing.

The only data members of themnelassstack will be a andp. Do not create aynglobal variables.
Do not declare gnlocal variable inside a function to batic . Do not remae theempty , full , and
size member functions from classack . empty , full , size , the constructgrand the destructor will
continue to produce no outpytush andpop will produce no output other than error messages.

Make whatever changes are necessary in the existing member functions oktdaks . Sincen and
p are prvate, no changes will be needed iry&uanction that is not a member of clasack .

We will also have © write our own cop constructor for classtack to accommodate the change
fromn top. The following line 2 calls the cgpronstructor for classtack .

1 . :stack s1; /[call the default constructor
2 . stack s2 = s1; //call the copy constructor

Since we hee rot written the coyp constructoy the computer will behee & if we had written the follav-

ing. It blindly copies the alues from the data members of the other obgk} (nto the data members of
this object §2). Line 9 is wrong: it leaves the p data member of this object pointing at a data member of
the other object. (There is also a performance bugptheloop usually will not need to cgghe entire ar

ray.)

3 stack::stack(const stack& another)
4 {
5 f or (size_ti=0; i< stack_max_size; ++i) {
6 a[i] = another.a[il;
7 }
8
9 p = another.p; //bug
10}

You will therefore hae o write your own cop constructor for the e classstack .

When we hee qerator @erloading, we will hae © write one more member function for class
stack to accommodate the change franto p. See p. 311.
A

The corventional name for the data type of each element

To keep the exposition simple, we wrote clagzck in terms of data typet . But the C++ con-
vention is to create a typedef namexdue_type for the data type of thealues stored in a data structure.
The members of clastack should therefore v been declared as follows.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/stack/stack2.h
#ifndef STACKH

#define STACKH

#include <cstddef> [[for size_t

using namespace std;

t ypedef int value_type; //data type of each value contained in the stack
const size_t stack_max_size = 100;

O©CoOo~NOOOUTA, WNPE

class stack {

P3sso A hesenea ©2014 Mark Meretzky

154 ObjectsWithout Inheritance Chapter 2

10 value_type a[stack_max_size];
11 size t n; /Inumber of values currently in the stack
12 public:

13 stack() {n=0;}

14 “stack();

15

16 void push(value_type i);

17 value_type pop();

18

19 bool empty() const;

20 bool full() const;

21

22 size t size() const;

23}

24 #endif

A destructor is declared and defined lik a onstructor.
Compare the four constructor rules on pp. 133-134.

(1) A destructos name is the same as that of its class with a leading tjldeosen because the tilde
means‘hot” in C and C++. In the abee G++ program, the class is namstck (line 7 ofstack.h)
and the class’destructor is namettack (declared in line 12 aftack.h , defined in lines 6-13 of
stack.C).

(2) Since a constructor can &krguments, a class canveanore than one constructor thanks to
function name werloading. Buta destructor takes no gmments, so a class carnveehavemore than one
destructor.

(3) A destructor returns naiue. Butdo not declare its return type to b@d : just write nothing at
all as in line 12 obtack.h and line 6 ofstack.C

(4) Do not declare a constructor or destructor tedrest (asprint was on p. 115-116, ¥rsion
3, lines 29 and 99)ven if they change the alue of no data member and call no momst member func-
tion of the same object.

(5) For the time being, a constructor and the destructor muagsabepublic |, not private . If
the destructor for a classagprivate , it could be called only by the member functions of another object
of that class. The other object could be destructed only by a third oldfecthould have an infinite regress
(a “chicken and eggsituation). (Anon-public destructor will appear on p. 1045.)

(6) Additional rules will be promulgated lateA destructor should wer call exit ; see p. 184.A
destructor must bévirtual’’ if any aher member function is; see pp. 493-4%h ‘“exception’ should
never escape from a destructor if there is currently another exception at large; see pp. 614-616.

Don't write an explicit call to a destructor.

[T]he aged star still continues meticulously to fulfill its part in the dance. . . .
Finally its light is etinguished and its tissues disintegrate in death. Henceforth it
continues to sweep through space, but it does so unconsciagliyn a manner
repugnant to its still conscious fellows

—Olaf StapledonStar Maker(1937), chapter XI, 83

After its destructor is called, an object is no more than aveadBy ‘‘cadaver”, we mean the mem-
ory occupied by the destructed obje€or example, the objecs declared in line 8 is local to thmain
function, so it occupies in memory until the return fromin in line 15. But the call to the destructor in
line 13 turns it into a cader.

There is no guarantee that a caslas member functions will still work or that its data members will
hold their \alues. Properlgpeaking, a cadar has no membersSinces became a cader in line 13, the
call to the member function in line 14 might fail.

PSsso A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA,WNPE

1
2
3

Section 2.6 Destructors 155

To ensure that a cadler is disposed of immediatelythe memory occupied by an object mustane
outlive the object. In other words, we must ensure thiatyeobject stays alie wntil the last moment before
its memory is deallocated. This means that we musdrmall a destructorxlicitly. And there is no rea-
son we would eer want to. Just before deallocating the memory occupied by an object, the destructor is al-
ways called automaticallyThere is no reason to call it ourselves.

But what if you really want to destruct the object at thevalioe 13? In that case, the object should
have been allocated dynamicallgot automatically A dynamic object can be destructed at point. See
new anddelete in Chapter 4.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stack/cadaver.C

#include <iostream>
#include <cstdlib>
#include "stack.h"
using namespace std;

i nt main()
{
. stack s; /[Call the constructor.
S .push(10);
s.push(20);
cout << s.pop() << "\n"; /[This pop will work correctly.
s."stack(); /[Call the destructor explicitly. Never do this.
cout << s.pop() <<"\n"; /[This pop may not work.
return EXIT_SUCCESS; /ICall the destructor implicitly; may not work.

Incidentally the abee pogram has anotheub. Ewery C++ object should be constructed and de-
structed exactly once. But line 15 calls the destructos faven though it has already been called in line
13. Andtheres a hird bug. Thecall to the destructor in line 15 might fail for the same reason as the call
to pop in line 14.

On rare occasions, mostly related to theatement’ operatomew, we will have b make an &plicit
call to a destructorAn example will be when we pass fdifent arguments to the constructor for each ob-
ject in a dynamically allocated array of objectel | see this on p. 406 when we dew anddelete

Classst ack in the C++ Standard Library

A classstack has already been written for us in the C++ Standard Libfarfact, it is getting hard
to think of simple, general classes that wauld hare © write for ourselves; most of them are already in
the library Here, for example, is the prewritten classck .

A class whose name contaidangle brackts>, such as the classtack<int> in line 8, is called a
template classAlthough we do not yet ko how to create a template class, we can easily use one: just
plug the name of another data type into the angle btacker the standard library clastack , we dug
in the name of the data type of the values to store andveetfibestack in line 8 will store and retriee
int ’s.

Thetop function of the standard libragtack in line 18 returns the most recently pushed element,
but without removing it from the stacklo remove it, we must call theop in line 19.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stack/stdstack.C

#include <iostream>
#include <cstdlib>
#include <stack>

4 using namespace std,;

P3s 5o A hesenea ©2014 Mark Meretzky

N -

156 ObjectsWithout Inheritance Chapter 2

i nt main()
{
stack<int>s; //Born empty because we gave no args to constructor.
cout <<'"empty ==" << s.empty() << ", size ==" << s.size() <<"\n";
s.push(10);
s.push(20);
s.push(30);
cout <<'"empty ==" << s.empty() << ", size ==" << s.size() << "\n";
cout <<s.top() <<"\n";
s.pop(); /Ireturns void, unlike the stack::pop we wrote
cout << s.top() <<"\n";
s-pop();
cout <<s.top() <<"\n";
s-pop();
cout <<'"empty ==" << s.empty() << ", size ==" << s.size() <<"\n";
return EXIT_SUCCESS;
To print thebool return values as the worttsie or false , see p. 354.

empty == 1, size == line 10;bool prints asl or 0

empty == 0, size == line 16

30 line 18

20 line 21

10 line 24

empty == 1, size == line 27

Why was the functionality of oypop function split into tvo separate functions in the clasgck
in the standard library? The obvious reason is taall®to peek at the top element of teeack without
removing it. But esen if every call totop is followed by a call tgpop, there would still be a reason for the
split.

Consider the following fragment, in which a value is popped from a stack of the class that we wrote.

stack s;
S .push(10);
cout << s.pop() << "\n";

Our pop function returns an integer byalue. Butit could hare gotten avay with a return by reference,
since it returns an element of an array that doesvapbeate as we return.

Now imagine a more sophisticated stack, one that stores its elements into a dynaxpealtling
and contracting block of memonjts pop function would hae return by value if it deallocated the
memory for the most recently pushed element and then returned the element. Return by reference could
not be used because the elenmemgmory has been deallocated.

Such may be the case with the clatck in the standard libraryltstop function can return the
most recently pushed element by reference, because the element is still in . mButaty pop function
can not return the element by reference, because the element is no longer there. Rather than returning each
element by value from a call fop, the standard librargtack returns each element by reference from a

PSsso A hesenea ©2014 Mark Meretzky

Section 2.7 An Interface Class for the Terminal 157

call totop . But dont try to use the reference after the element to which it refers has been popped (lines
17-18, 22-23).

4 #include <stack>
5 using namespace std;

6
7 stack<int> s; /lthe standard library stack
8 S .push(10);
9 S .push(20);
10 s.push(30);
11
12 cout <<s.top() <<"\n"; /loutputs 30
13 s.pop();
14
15 int *p = &s.top();
16 cout <<*p<<"\n% /loutputs 20
17 s.pop();
18 cout <<*p<<"\n% //may no longer output 20
19
20 int& r = s .top();
21 cout <<r<<"\n" /loutputs 10
22 s.pop();
23 cout <<r<<"\n" /I[may no longer output 10

See another example at p. 802.

All the values in a stack must be of the same data tBpébecause the standard libratpack is a
template class, each stack can hold a different type of value.

The stack of stacks in line 33 needs a space between dhestwSee line 17 in § (2b) on p. 101.
Something we could push onto the stack of stacks is the stack in line 28.

24 #include <stack>
25 #include "date.h"
26 using namespace std;

27

28 stack<int> s1; /la stack of int's

29 stack<double> s2; /la stack of double’s

30 stack<int *>s3; /la stack of pointers

31 stack<date> s4; /la stack of objects

32

33 stack<stack<int> > sb; lla stack of stacks

34 s5.push(sl); /[Push the stack in line 28.

2.7 Anlnterface Class for the Terminal
v Homework 2.7a:

Another way to write on the screen

The major classes wevesen araate |, life , andstack . We will introduce one more, class
terminal , before talking about classes in general.

Instead of doing our specialfefts by calling the teterm_ C functions in pp. 85-89, we will mo
construct an object of clagsrminal and call its ten member functions. Compare the following test pro-
gram with themain.C back in pp. 87-88. It doexactly the same demo by calling a different set of func-
tions. For each C function, there isw@ member function that does the same job.

PSsso A hesenea ©2014 Mark Meretzky

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

158 ObjectsWithout Inheritance Chapter 2

For corvenience, we also introduce emmember functions which ka ro counterparts among the
term_ functions. Thdunctionnext in lines 18 and 23 takes a pair of codrdinateandy, and adances
them to the next location. Itauld change (0, 0) to (1, 0), one location to the right. And on a screen with
80 columns, it would change (79, 0) to (0, 1), the first location on tkieline. Finally, with 24 rows it
would change (79, 23) to (0, 24), one step Wwalwe bottom rav of the screen, but would refuse to adee
it any farther.

We asked you to maé every reference argument read-only on pp. 72-74. The caleid in line
18 shavs the danger of violating this rule. Although thered way to see it by inspecting that limegxt
changes the values wfandy. We will clean this up when we introduce aiterator” f or classerminal
on p. 966.

The functionin_range in line 23 returngrue if the pair of codrdinates is on the screen. dsw
named after theut_of _range “exception’ on pp. 622-623.

We reed two variablesx andy, to loop across the screen in line 23. When westigrators we will
be able to do the loop with only oneee though the screen is tadimensional. Iranticipation of that day
we changed the pair of nested loops in the original test program (lines 23m&4noE on p. 87) to the
single loop in line 23. This change is premature: if there avevaniables, there should bedvoops. But
try to think of thex andy as a single object with twdata members. In time thevill be.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/terminal/main.C

#include <iostream>
#include <cstdlib>
#include "terminal.h"
using namespace std;

i nt main()
{

const terminal term(’."); //The constructor for term calls term_construct.

const unsigned xmax = term.xmax();
const unsigned ymax = term.ymax();

unsigned X = xmax/2; /lcenter of screen

unsigned y = ymax/?2;

term.put(x, y, 'X);

char ¢ = t erm.get(x, y);

term.next(x, y);

term.put(x, Yy, C);

term.put(0, 0, "Please type printable characters ending with a g.");

for (x=0,y=1;term.in_range(x, y); term.next(x, y)) {
while ((c = term.key()) =="\0’) {

}
if (c=="0){ /lquit
break;
}
term.put(x, Y, C);
}
term.wait(1000);

PSsso A hesenea ©2014 Mark Meretzky

35
36

37}

Section 2.7 An Interface Class for the Terminal 159

term.beep();
return EXIT_SUCCESS; /[The destructor for term calls term_destruct.

An interface class
Let's read the definition for clagerminal , starting with the simplest member function.

The beep function in line 29 is merely a call-through (p. 95): it simply calls the corresponding C
functionterm_beep . Other examples are in lines 27-29. Since this class does almostrhcow its
own, we call it arinterface classit merely delvers the results of another piece of software, thegen_
functions.

Now let’s look at the data members. The constructoegadchar argument and stores it in the data
member_background in line 9 ofterminal.C . It has an underscore because a clasd banéa data
member and a member function with the same nafoekeep the name of the public member short and
simple, the brden of the underscore is placed on thegm®i member (See p. 241 for anothekample.)
The constructor also initializes the screen in line 1ieghinal.C , and then stores the dimensions of
the screen into the otherdvdata membersxmax and_ymax in lines 13 and 14.

The member functionsackground , xmax, and ymax in lines 18-20 oterminal.h grant the
public read-only access to theyate data members. (See p. 242 for another example.)

The two-argumenput in line 23 ofterminal.h passes thebackground data member to the
three-argumenput in line 22. This has the effect of lettindgpackground be the default value for the
third agument. Iwish we could combine the oafunctions into one with a default value for its thirguar
ment:

void put(unsigned x, unsigned y, char ¢ = _background) const;

But the language just does not let us do tAislata member of an object can be mentioned insidbdtig
of a member function of the same object; it cannot be mentioned insidegtiraent listof a member
function of the same object.

Thein_range in line 31 has no need to checkifindy are ngative. They neve can be, because
they are unsigned.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/terminal/terminal.h

1 #ifndef TERMINALH

2 #define TERMINALH

3

4 extern"C"{

5 #include "term.h"

6 }

7

8 class terminal {

9 char _background; //default value for third argument of put
10 unsigned _xmax; /Inumber of columns of characters
11 unsigned _ymax; /Inumber of rows of characters
12
13 void check(unsigned x, unsigned y) const;

14 public:

15 terminal(char initial_background ="");

16 “terminal();

17

18 char background() const {return _background;}
19 unsigned xmax() const {return _xmax;}

20 unsigned ymax() const {return _ymax;}

PSss0 A hesenea ©2014 Mark Meretzky

160 ObjectsWithout Inheritance Chapter 2

21

22 void put(unsigned x, unsigned y, char c) const;

23 void put(unsigned x, unsigned y) const {put(x, y, _background);}

24 void put(unsigned x, unsigned y, const char *s) const;

25 char get(unsigned x, unsigned y) const {check(x, y); return term_get(x, y);}
26

27 char key() const {return term_key();}

28 void wait(int milliseconds) const {term_wait(milliseconds);}

29 void beep() const {term_beep();}

30

31 bool in_range(unsigned x, unsigned y) const {return x < _xmax && y < _ymax;}
32 void next(unsigned& X, unsigned& y) const;

33}

34 #endif

Every character is ultimately put on the screen by the thgrevantput in line 36, which calls the
C Sandard Library functiomsprint ~ to check that the character is printablit is not, we cast the char
acter to print its ASCII code. See line 14stdtic_cast.C on p. 65.

The initial_background argument of the constructor is checked when line 19 fills the screen
with the background character.

—On the Web at

http://i5.nyu.edu/ Omme64/book/src/terminal/terminal.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <cctype> /ffor isprint
4 #include "terminal.h”
5 using namespace std;
6
7 t erminal::terminal(char initial_background)
8 {
9 _background = initial_background;
10
11 term_construct();
12
13 _Xmax = t erm_xmax();
14 _ymax = t erm_ymax();
15
16 if (_background !="") {
17 for (unsignedy =0; y < _ymax; ++y) {
18 for (unsigned x = 0; x < _xmax; ++x) {
19 put(x, y);
20 }
21 }
22 }
23}
24
25 terminal::"terminal()
26 {
27 for (unsignedy =0;y < _ymax; ++y) {
28 for (unsigned x = 0; x < _xmax; ++x) {
29 put(x, v,)
30 }
31 }
32

PSsso A hesenea ©2014 Mark Meretzky

Section 2.7 An Interface Class for the Terminal 161

33 term_destruct();

34}

35

36 void terminal::put(unsigned x, unsigned y, char c) const
374

38 if (isprint(static_cast<unsigned char>(c)) == 0) {
39 cerr << '"unprintable character "

40 << static_cast<unsigned>(static_cast<unsigned char>(c))
41 << "\n";

42 exit(EXIT_FAILURE);

43 }

44

45 check(x, y);

46 term_put(x, Yy, C);

47}

48

49 void terminal::put(unsigned X, unsigned y, const char *s) const
50 {

51 for (;*s!1="\0"; ++s) {

52 put(x, Y, *s);

53 next(x, y);

54 }

55}

56

57 /IMove to the next (X, y) position: left to right, top to bottom.
58 //Warning: will change the values of the arguments.

59

60 void terminal::next(unsigned& x, unsigned& y) const
61 {

62 check(x, y);

63

64 if (++x>=_xmax) {

65 X =0

66 if (++y>=_ymax) {

67 cerr << "can't go to or beyond row " << _ymax << "\n";
68 exit(EXIT_FAILURE);

69 }

70 }

71}

72

73 void terminal::check(unsigned x, unsigned y) const

74 {

75 if (lin_range(x, y)) {

76 cerr <<"coordinates (" << x<<", " <<y
77 << ") must be >= (0, 0) and < ("

78 << _xmax << "," << _ymax << ")\n";
79 exit(EXIT_FAILURE);

80 }

81}

List of the five ource files that constitute the test program

(1) term.h andterm.c (pp. 85-89).term.c is written in the language @&rm.h is acceptable to
both languages. The remaning files are in C++.

PSsso A hesenea ©2014 Mark Meretzky

WN P

N o o b~

WN P

o o b~

162 ObjectsWithout Inheritance Chapter 2

(2) terminal.h andterminal.C (pp. 159-161)
(3) main.C (pp. 157-159)

Compile the test under Unix

1$ gcc -I. -DUNIX= -c term.c minus uppercase |
2$ Is-lterm.o minus lowercase L

3$ g++ -l. -0 “/bin/tester main.C terminal.C term.o -lcurses
4$ Is -l “/bin/tester
5% tester Run it.

It' s just as fast to call the member functions of class terminal.

Instead of calling the C functions directiye ae nav calling them through the member functions of
aterminal object. Ina noment we will see the benefits of this extra layer of saiw Butfirst we
must consider if the extra layer has slowed the program down.

When we write a call to an inline function, the computer behas if we tad written the body of the
inline function in place of the call. When we write line 2, faample, the computer beles as if we fad

written line 3. Calling the member functiteep in line 2 is therefore just as fast as calling the C function

term_beep in line 3.

const terminal term(’.");
t erm.beep(); //When we write this,
t erm_beep(); Ilthe computer behaves as if we had written this.

Sometimes the member functions of cléessninal are &en faster When we write line 5, the

computer behaes as if we lad written line 6. But line 6 calls no function; it simply uses the value of a data

member Calling the member functiormax in line 5 is therefore faster than calling the C function
term_xmax inline 7.

const terminal term(’.");

unsigned x = term.xmax(); //No function is called.
unsigned x = term._xmax;
unsigned x = term_xmax(); //A function is called.

Why bother with an interface class?
The B words were in all cases compound words.
—George Orwell1984 Appendix: The Principals of Newspeak

Classterminal does not sl down the program, and in aviecases it makes iafter But the real
reason we introduced this extra layer is for aesthetics. Heravigdlliing the member functions of an ob-
ject is more covenient than calling naked C functions.

(1) The C function names had to be compoundds because we mightueasveaal devices to ma-

nipulate. Ifthere aren devices andm functions for each device, the number ofealiént function names
will be nx m.

t erm_beep(); [* C: number of names increases geometrically */
modem_beep();

pager_beep();

But the C++ member function names can be shorter because the member functions belong to dh object.

there aren devices anan functions for each device, the number of different names will beroflm.

t erm.beep(); [[C++: number of names increases arithmetically
nmodem.beep();
pager.beep();

PSsso A hesenea ©2014 Mark Meretzky

o

10
11
12

13
14

15
16
17

18
19
20

Section 2.8.1 A Structur e with Better Security 163

Our first example of shortening the names was on pp. 110-111.
(2) The C++ member functions also/bdewer and simpler names thanks to function naxeel@ad-

ing.

/ * C: e very function must have a different name. */

t erm_put(x, Yy, c); [* display a character */

t erm_puts(x, y, S); [* display a string */
[IC++: can use same name for similar functions
term.put(x, Yy, C); /ldisplay a character
term.put(x, Y, S); /ldisplay a string

(3) The most frequently used value for aguenent can be made the default in CH+ar example,
the most frequently displayed character is the background character.

term_put(x, y,"); [*C*
term.put(x, y); [[C++: display term’s background character
(4) Instead of tw widely separated function calls

term_construct();
/lthe whole game
term_destruct();

we nav write only a single declaration:

terminal term(’.’); /[This declaration calls the constructor.
/lthe whole game
return from main; /[The return from main calls the destructor.
If the call toterm_construct in the abwoe line 15 was missing in C, a call term_put at line 16

would still compile but would xecute incorrectly But if the declaration forerm in the abwe line 18 vas
missing in C++, a call tteerm.put at line 19 would notwen compile. Thisis better thanecuting in-
correctly.

(5) Packaging the ten C functions as a class would alse ihaksier to hae a pogram with more
than one terminal. As we will see, this is one of the main reasons for making a class.
A

2.8 Whatare Objects For?

I wish | could gve you a single, werarching statement about what an object is, or what an object is
for, or how to recognize when an object should be used. The best | could do was to come up with four gen-

eral ways of thinking about objects.
(1) Anobjectis astruct with better security:
(&) Thankdo its constructgiwe @n't put garbage into a newborn object.

(b) If gabage appears later in theyate data members, st'easy to round up all the possible sus-
pects. Onlythe member functions of the objexctiass could hee put the garbage there.

(2) Anobject can trigger a pair olents; multiple objects can trigger nested pairs. More radijcadly
objectis the pair of gents, or the interval between theents.

(3) Anobject is something that we might want to makore than one of.

(4) Anobjectis a group of one or more variables wha@daes are used and changed by a series of func-

tion calls, and which persist until the last call of the series.
Let's take them one at a time. Lateghere will be tvo more (p. 473 and pp. 734-735).

P3sso A hesenea ©2014 Mark Meretzky

O~NO O WNPE

164 ObjectsWithout Inheritance Chapter 2

2.8.1 AStructur e with Better Security

In C we wrote a structure with fields, and an array and function floatingnd@mensatisictorily
nearby There is no connection between the structure and the floaters, exceptdatetheprefix on their
names.

struct date {
i ntyear;
i nt month;
i nt day;
b

const int date_length[] = /* etc. */
void date_print(const date *p);

In C++ we write a class with data members and member functions. The floating function in the

above line 8 is nav an integral part of the class in the following line 180 ensure that the data members
are initialized to lgd values, there is also a constructor in line N& other functions in gnprogram can
read or write the pvete data members ofdate object.

The floating array in the abe line 7 will also become a member of the class in line\i8. will do
this on pp. 238-239 when weuga'static” data membersNow that the floaters are members, their names
have keen shortened.

9 class date {
10 static const int length[];
11 int year;
12 int month;
13 int day;
14 public:
15 date(int initial_year, int initial_month, int initial_day);
16 void print() const;
17}

2.8.2 Atrigger for a Pair of Events.

The mere eistence of an object triggers a pair gémts: a call to one of its constructors and a call to
its destructar Here are examples of what a constructor/destructor pair can do.

(1) Error checking. The constructor installs gdenitial value into a newborn object; the destructor
certifies that the value at death is stitide A destructor can print a warning if the object is unhgadth
the end of its life or has not been properly drained (dsk , pp. 149-154; also pp. 923, 295-299.)

(2) Make something unfagettable. © ensure that anvent will happen at some future time, we can
construct an object whose destructor performs teate For example, we might ka © print a message
wheneer we ae about to return from a functiodf the function has manreturn statements, we simply
construct an (automatically allocated) object upon entry to the function. Wheaetam is executed,
the objects destructor will be called and the message will be printed.

(3) Bookleeping. Imagine program that constructs and destructs ynalojects of the same class.
To keep count of h@ mary objects exist at gngiven moment, we can define the folling variable (a
global, not a data member):

i ntcount = 0;
Every constructor for the class will say
++count;

and the destructor will say

PSs 5o A hesenea ©2014 Mark Meretzky

©CoOoO~NOOOUTA, WN P

Section 2.8.2 A trigger for a Pair of Events. 165

- -count;

The count will then be maintained automatically.

To keep all the objects of a class on a éidKist, @ery constructor can insert the object into the list
and the destructor can remsoit. To keep all objects visible on the screen whileytbdst, every construc-
tor can drav the object and the destructor can erase it. Et cetera.

(4) Resource managemenany resources may kia o be dlocated at an objec’birth and deallo-
cated at the objeat’death: memoryfiles, locks, windows, network connections, diwvery constructor for
the objects dass can allocate the resources, and the destructor can deallocate them.

Events come in pairs

In the world of computer programmingyents happen in pairs. Not all of them, of course; but when
they must be paired, failure to do so usually results in disaster.

Each &ent often centers around a call to a function. In C, we might call tbefunctions in the
wrong ordey or forget to call one of them, or call one of them more than oht€++, the first function
can be called by an objesttonstructor and the second by the obgedgstructor We an trigger the cer
rect pair of calls simply by creating an object and lettingét ¢t its life.

Generally the first\ent creates one or moranables that must besal for later use. Often tlye
lapse into irreleance after the secondent. If so, there is nw a matural place to store these values: in the
objects data members. It is therefore common teéha G-+ class with only one data membefile it
would be quite unusual to ¥/ a C sructure with only one field(A C++ class canven haveno members
at all; see pp. 590 and 842.)

The first two examples of pairs ofwents are taken from the C Standard Libray C++, they could
be packaged as objects.

(1) The functiongnalloc andfree allocate and free dynamic memor{C++ will replace them
with new anddelete .)

The first @ent is the allocation in lines 6—10, which creates théablep. (Theperror inline 8 is
the error-printing function from the C Standard Libraryhe second eent is the deallocation in 15, after
which the value op is useless(Thefree in line 15 returns/oid , so we an't test it for filure.) Be-
tween themp is used by the series of function calls in lines 12-13.

/* C e xample */

#include <stdio.h> [* for perror and printf */
#include <stdlib.h> [* for malloc, free, exit, EXIT_FAILURE, and NULL */
#include <string.h> [* for strcpy */

char *const p = malloc(6);

if (p == N ULL){
perror(argv[0]);
exit(EXIT_FAILURE);

}

strepy(p, "hello™);
printf("%s\n", p);

| free(p); |

(2) fopen andfclose open and close a file. C++ will use the constructor and destructor for class-
esofstream or ifstream

The first @ent is the opening in lines 20-24, which creates tréablefp . The secondwent is the
closing in 29-32, after which the valuefpf is useless. Between thefp, is used by the series of func-
tion calls in lines 26-27.

PSsso A hesenea ©2014 Mark Meretzky

166 ObjectsWithout Inheritance Chapter 2

16 /* C example */

17 #include <stdio.h> /* for fopen, NULL, fprintf, fflush, fclose, perror */
18 #include <stdlib.h> [* for exit and EXIT_FAILURE */
19

20 FILE *const fp = fopen("outfile", "w");

21 if (fp==NULL){

22 perror(argv[0]);

23 exit(EXIT_FAILURE);

24 }

25

26 fprintf(fp, "hello\n");

27 fprintf(fp, "goodbye\n™);

28

29 if (fclose(fp) !=0) {

30 perror(argv[0]);

31 exit(EXIT_FAILURE);

32 }

1
2
3
4
5
6

In each case, the entire scenario could be packaged as a C++ class. Tvenficsiudd be the con-
structor; the secondrent, the destructorThe data thatxsts from the firsteent to the second could reside
in the data members. The intervening functions that use the data could be member functions.

Here are other pairs ofents suitable for this treatment.

(3) Create and destya file or directory.

(4) Compress and decompress a file.

(5) Encrypt and decrypt a string.

(6) Copy a goup of files into or out of an arcid file such as gar archve.

(7) Lock and unlock a record in a file or database.

(8) Pop up a menu and neit disappear.

(9) Open and close a network connection.

(10) An obscure example for the C Standard Libreay:start andva_end .

When should we end one function and start another?

The local objects declared in a function will be destructed when we return from the furkaiic-
ample, the local ariableost constructed in line 6 will be destructed when we reach the the closing curly
brace at the end of the function in line 1@s in C, havever, variables that are static folloa dfferent
rule.)

The amount of code in a C++ function is often determined bylbog we want its local objects to
stay alve. When it is time for them to be destructed, it is time to cépheffunction with g . In fact, we
often think of a function as primarily a framerk over which we stretch the lifespan of the local objects.

For example, here is a function that writes to a filde will see that the tw-event scenario in the
aborve lines 20-32 can be performed by constructing an object ofafstssam and letting it lve aut its
life. Theconstructor for this object opens an output file, the destructor closes it, and in between, this object
can write to the file with the same& syntax used bgout andcerr . The output file stays open for the
lifespan of this object. The functionrite_to_file keeps the object ale for as long as we ant to
keep the file open.

#include <fstream> [[for ofstream
using namespace std;

void write_to_file()

{

ofstream ost("outfile"); /[The constructor opens an output file.

PSsso A hesenea ©2014 Mark Meretzky

Section 2.8.2 A trigger for a Pair of Events. 167

ost << "hello\n"; /\Write to the file.
ost << "goodbye\n";
} /[The destructor closes the file.

O © o~

There is a way to destruct an object in the middle of a function, without returning from the function.
It would require the C++ equalents ofmalloc andfree . Let’s not think about this yet.

An example of program reorganization

Here is the outline of a video game in @/e initialize the screen andeiboard before the game be-
gins, and restore them to their prior state when the game bnitislizing the screen consists of creating a
graphics windw or putting the screen into graphics mode. Initializing teghbloard will gve the program
access to eachelstrole as it is yped, without having to wait for the RETURMN In other words, it
makes the &yboard live.

1 /* C e xample */

2
3 i nt main()
4 {
5 i nitialize the screen (i.e., create a graphics window);
6 i nitialize the keyboard (i.e., so you don't have to press RETURN);
7 play_game();
8 r estore the keyboard to the way it was before;
9 r estore the screen to the way it was before;
10
11 return EXIT_SUCCESS;
12}

When | learned structured programming (circa 1980y, theght us to regenize a program by putting all
the initialization code into one big subroutine, and all the restoration code into another.

13 int main()

14 {

15 initialize();

16 play_game();

17 restore();

18

19 return EXIT_SUCCESS;

20}

21

22 void initialize(void)

23

24 initialize the screen;

25 initialize the keyboard;

26}

27

28 void restore(void)

29 {

30 restore the keyboard to the way it was before;
31 restore the screen to the way it was before;
32}

But the chunks of code for initialization in the &bdines 24 and 25 probably V& rothing in com-
mon: no shared variables, constants, typsdefc. Theonly way thg could communicate with each other
would be through globalariables. Dittdor the restoration chunks in lines 30 and 31.

PSsso A hesenea ©2014 Mark Meretzky

168 ObjectsWithout Inheritance Chapter 2

Is there a better pairing for these bedig® Theones that belong together are the functions in 24
and 31: thg probably share more variables than 24 and 25. In fact, line 24 probably storefutsethat
are used to restore the screen in line 31. Simjldréykeyboard functions in 25 and 30 belong together.

We will pair them by making them constructors and destructdhgy will communicate via the data
members of the object to which thieelong. Incidentallythis will halve the number of function names we
have o invent: a constructor and destructor share the same name, with a tilde. See pp. 13Behb4din
function will nav contain declarations for twvariables (lines 49-50) instead ofdyairs of widely sepa-
rated function calls (in the abe lines 5 and 9, 6 and 8).

33 class screen { /[C++ example

34 declare variables shared by constructor and destructor here

35 public:

36 screen(); /[constructor: initialize the screen

37 “screen(); /ldestructor: restore the screen

38}

39

40 class keyboard {

41 declare variables shared by constructor and destructor here

42 public:

43 keyboard(); /[constructor: initialize the keyboard

44 “keyboard(); /ldestructor: restore the keyboard

45}

46

47 int main()

48 {

49 screen s /[construct (i.e., initialize) the screen
50 keyboard k; /[construct (i.e., initialize) the keyboard
51

52 play_game(s, k);

53

54 return EXIT_SUCCESS; //destruct (i.e., restore) keyboard & screen,
55 /lin that order

56 }

To add extra screens anéyboards, we can simply declare extra objects. Local objects are destruct-
ed in the opposite order from that in whichytere constructed: last hired, first fired.

57 int main()

58 {

59 screen sl;

60 keyboard K1,

61

62 screen s2;

63 keyboard k2;

64

65 play_game(sl, ki, s2, k2);
66

67 return EXIT_SUCCESS; //destruct k2, s2, k1, and s1, in that order
68}

Many operations must be undone in evese order

Many operations hee © be dne in pairs.Furthermore, the pairs must often be nested. Our first e
ample creates a windoand puts icons into it, does somenk, and then destroys (or hides) the icons and
window. We must destrg the iconsbefore we destry the windav. If we destroyed the windw first, the
icons would (momentarily) land on the desktop. The nested indentation shawisenpairs of eents nest.

PSsso A hesenea ©2014 Mark Meretzky

Section 2.8.2 A trigger for a Pair of Events. 169

Create a winda.
Create icons in the windo
Do the work.
Destrg the icons.
Destrgy the windav.

A second example creates a directory and puts files into it, does sorkeand then destroys the
files and directory.

Create a directory (or “folder™).
Create files (or “documents”) in the directory.
Do the work.
Remae the files.
Remae the directory.

A third example copies mgrnindividual files into atar archive, compresses it, does somenk;,
and then decompresses the arelend extracts the original files from it.

Create atar file, and cog mary individual files into it.
Compress thaar file into a.tar.gz file.
Do the work.
Decompress thgar.gz file back into atar file.
Extract the individual files from théar file, and remue the.tar file.

To nest thesewents, we can simply declare objects whose lifespans are ndstedxample, imag-
ine atempdir object whose constructor and destructor create and gastzmporary directoryend a
tempfile object whose constructor and destructor create and gesteonporary file. The constructor
for tempfile takes an argument giving the directory in which to create theTdexreate and destyahe
directory and files in the correct ordere reed only declare theempdir before thetempfile ’'s and
then let them lie aut their lives. Seep. 180-181.

1 void f()
2 {
t empdir td; /ICreate a directory.

3

4

5 t empfile f1(td); /[Create files in the directory.
6 t empfile f2(td);

7 t empfile f3(td);

8
9
0

do t he work;
10} /[Destroy the files 3, f2, f1; then destroy the directory td.

The abwoe pairings were temporal; the following pairings are spatiala table in HTML (‘Hyper-
text Markup Languagé’on the web), each box is surrounded by a paifbftags (“table datd). The
opening and closing tags of each pawéhthe same name, but closing tag also has a diagonal Sask.
larly, each rav of boxes is surrounded by a pairBRtags (“table rav’’), and the entire table is surrounded
by a pair ofTABLEtags.

A web browser corerts the pairings from spatial to temporal by reading the table from top to bot-
tom. Wheneer it encounters the opening tag of each jphican construct an object for that paivhen it
encounters a closing tag, it can destruct the object for thatlp#iere is no such object, we musvéan-
countered a closing tag with no prior matching opening tagie pass the end of the table and there are
leftover objects, we must v encountered an opening tag with no subsequent matching closing tag.

rowl,ooll | row1, ool 2
row2,0l1 | row2, ol 2

PSsso A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

170 ObjectsWithout Inheritance

<TABLE BORDER>
<TR>
<TD>

rowl, coll

</TD>
<TD>

row 1, col 2

</TD>
</TR>
<TR>
<TD>

row 2,coll

</TD>
<TD>

row 2,col?2

</TD>
</TR>

</TABLE>

2.8.3 Somethingo Make More Than One Of.

Chapter 2

It would be hard to modify the answer to Hamoek 1.5a (pp. 42-44) to run more than oreng si-
multaneously But the answer to Homerk 2.5b (pp. 144-147) would require no modification:

—On the Web at
http://i5.nyu.edu/

#include <iostream>
#include <cstdlib>
#include <cstring>
#include "life.h"

using namespace std;

i nt main()
{
const life_matrix_t
{0, 0,0,0,
{0, 1,0,0,
{0, 0,1,1,
{0, 1,1,0,
{0, 0,0,0,
{0, 0,0,0,
{0, 0,0,0,
{0, 0,0,0,
{0, 0,0,0,
{0, 0,0,0,
}.

const life_matrix_t

{0, 0,00
{0, 01,0
{0, 01,0,
{0, 01,0
{0, 0,00

printed 4/8/14
8:38:59 AM

cNeoNoNolNolNolNolNolNolNol

Omm64/book/src/life/main2.C

«Q

o
D
=

eeleololoNolNoNoNol
OCoo0oo0oo0oo0o0o0oo

2

life glider = glider_matrix;

|
~

0000000000
eNeReReReReReR=R=K=Ea
R e e el g

All rights
reserved

©2014 Mark Meretzky

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55}

Section 2.8.3

{0,
{0,
{0,
{0,
{0,

coooo
coo0oo0oo
coo0oo
coooo
[eReNeNeNe!
coo0oo
coooo
[eReNeNeNe!
eX=K=X=K=)

—— o o

life blinker = blinker_matrix;

for (;;){
glider.print();
cout <<"\n";
blinker.print();

cout << glider.generation()

<< " Press ¢ RETURN to continue, g RETURN to quit.\n";

char buffer[256];

cin >> buffer;

if (strcmp(buffer, "c") 1= 0) {
break;

}

glider.next();
blinker.next();

}

return EXIT_SUCCESS;

Something to Make More Than One Of 171

| printed the pictures side-by-side tovegmaper They actually appear one atse another.

1: Press ¢ RETURN to continue, g RETURN to quit: ¢

printed 4/8/14
8:38:59 AM

All rights
reserved

©2014 Mark Meretzky

O~NO O WNPE

172 ObjectsWithout Inheritance Chapter 2

4: Press ¢ RETURN to continue, g RETURN to quit: ¢

There’s no good way to do it without objects.

Our C stack used a crude method to entle \ariablesa andn accessible only tpush andpop:
we sliced the C program into files and barricaded the variables and functions together in a separate file.
In C++, we can protec andn by using the language instead of a pair of scissafs.smply let them be
private members of clasgack .

Suppose we needed three stacks, each with atsdn accessible to no one else. There is no good
way to do his in C. One bad ay is to mak three.c files (and threeh files, not shan). Errorchecking
omitted for brevity.

/* T his file is stack0.c (C example). */
#include <stddef.h> [[for size_t

static int af] STACK_MAX_SIZE];
static size tn=0;

void pushOQ(int i) {a[n++] = i;}
i nt popO(void) {return a[--n];}

PSsso A hesenea ©2014 Mark Meretzky

Section 2.8.3 Something to Make More Than One Of 173

9 /* T hisfile is stackl.c (C example). */
10 #include <stddef.h>
11
12 static int af] STACK_MAX_SIZE];
13 static size_tn=0;
14
15 void pushi(inti) {a[n++] = i;}
16 int popl(void) {return a[--n];}

17 /* This file is stack2.c (C example). */
18 #include <stddef.h>

19

20 static int a[STACK_MAX_SIZE];

21 static size_tn=0;

22

23 void push2(int i) {a[n++] = i;}

24 int pop2(void) {return a[--n];}

A more sophisticated bad way toveathree stacks would be to add agwanent topush andpop
specifying which stack we want to useor example,

25 /¥ C example */

26 int i

27

28 push(1, 10); I* Push 10 onto stack number 1. */
29 push(2, 20); I* Push 20 onto stack number 2. */
30 i = pop(d); I* Pop stack number 1. */

But implementing this will ma& the code more than twice as complicated. (Error checking omitted for
brevity.)

31 /* This file is stack.c (C example). */
32 static int a[3][STACK_MAX_SIZE];
33 static size_t n[3] ={0, 0, 0};

34

35 void push(size_t which_stack, int i)

36 {

37 /¥ More than twice as complicated as line 25 of stack.C on p. 151. */
38 aJwhich_stack][n[which_stack]++] =i;

39}

40

41 int pop(size_t which_stack)

42{

43 /¥ More than twice as complicated as line 37 of stack.C on p. 151. */
44 return aJwhich_stack][--n[which_stack]];

45}

Even with all this work, we cahtreate and destycstacks as the program runs, or reak$ack accessible
to only one function.

In C++ we can simply declare three objects of our ctatsack . They will last as long as the call
to functionf , and will be accessible to only that one function.

46 void f()

47 {

48 .:stack sO; /Mlocal to the function f
49 .:stack sl;

50 .:stack s2;

P3s 5o A hesenea ©2014 Mark Meretzky

174 ObjectsWithout Inheritance Chapter 2

51

52 s1.push(10);

53 s2.push(20);

54 int i = s 1.pop();

55} /IDestruct the stacks in the order s2, s1, s0.

Eventually we will mak an aray of objects.

56 :istack a[3]; /ICall the constructor for class stack 3 times.
57

58 a[1].push(10); /[Push 10 onto stack a[1].

59 a[2].push(20);

60 int i = a [1].pop();

Another example of something we might want to ma&kmore than one of

Heres an aample from K&R, pp. 46—-47Let’s asssume that annsignediong is four bytes, with
the bits numbered from right to left starting at bit 0. The most significant bit is number 31.

Line 6 scrambles the value oéxt . The first time it is gecuted, it will change the value néxt to
1,103,527,590. Mathematiciahgve determined that the most random part of the resulting value consists
of bits 30 through 16 incluge. Here is 1,103,527,590 in binary with these bits underlined:

0100000111000110 0111111010100110

In line 7, the/ 6 5536 chops of the bottom 16 bits ohext and the(unsigned) and the
% 2768 chop of the top bit. What remains is bits 16 through 3e first time it is gecuted, line 7 will
returns 16,838, which is the number we underlined:

100000111000110

(Where did the mysterious number 1,103,515,24553 5 x 7 x 129,749 come from? Look up
“Linear Congruential Sequencesi Donald Knuths The Art of Computer Bgramming \oblume 2:
Seminumerical Algorithmy.

/* r eturn pseudo-random integer in 0..32767 (C example) */

i nt rand(void)
{
static unsigned long next = 1;
next = next * 1103515245 + 12345;
r eturn (unsigned)(next / 65536) % 32768;

O~NO O WNPE

Unfortunately every program that calls the a® function alvays receres exactly the same series of
random numbers, starting with 16838, 5758, 10113, etc. Xdra@e in K&R therefore lets usvg an ini-
tial value of our own choosing (theeed to the \ariablenext . For example, the initial value 2014vgs
us a diferent series of random numbers starting with 30237, 3862, 1078, etcarfdadaenext had to be
made global in line 11 to be visible to both functions:

9 /* C e xample */
10
11 static unsigned long next = 1;
12
13 void srand(unsigned seed) /* set seed for rand() */
14 {
15 next = seed;
16}
17

P3sso A hesenea ©2014 Mark Meretzky

Section 2.8.3 Something to Make More Than One Of 175

18 int rand(void) /* return pseudo-random integer in 0..32767 */
19 {

20 next = next* 1103515245 + 12345;

21 return (unsigned)(next / 65536) % 32768;

22}

To get two series of random numbers, with the seeds 1 and 2014, we can easily generate them one af-
ter the other:

23 /¥ C example */
24 int i;
25
26 /* Start with the default seed. */
27 for (i=0;i<3;++i){
28 printf("%d\n", rand());
29 }
30
31 /* Start with the seed 2014. */
32 srand(2014);
33 for (i=0;i<3;++i){
34 printf("%d\n", rand());
35 }
The output is
16838 series that started with the seed 1
5758
10113
30237 series that started with the seed 2014
3862
1078

But to interlace the tw<eries, we would first ha o precompute them and store them i tarays:

36 /¥ C example */

37 int i

38 int r1[3];

39 int r2[3];

40

41 for (i=0;i<3;++i){
42 rifi] = rand();
43 }

44

45 srand(2014);

46 for (i=0;i<3;++i){
a7 r2[i] = rand();
48 }

49

50 for (i=0;i<3;++i){
51 printf("%d\t%d\n", ri[i], r2[i]);
52 }

To right-justify the columns of numbers, see p. 353.

PSsso A hesenea ©2014 Mark Meretzky

176 ObjectsWithout Inheritance Chapter 2

16838 30237 first number in edt<eries
5758 3862 second number in ehceries
10113 1078 third number in eals series

The inline constructor in line 9 has a default value for its argument.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/myrandom/myrandom.h

1 #ifndef MYRANDOMH
2 #define MYRANDOMH
3
4 / /An object of this class generates a series of random numbers.
5
6 class myrandom {
7 unsigned long next;
8 public:
9 myrandom(unsigned initial_next = 1) {next = initial_next;}
10 int rand();
11}
12 #endif
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/myrandom/myrandom.C
1 #include "myrandom.h”
2
3 i nt myrandom::rand()
4 {
5 / IAs in C, but next is now a data member instead of a static variable.
6 next = next * 1103515245 + 12345;
7 r eturn static_cast<unsigned>(next / 65536) % 32768;
8 }

Instead of the abw lines 36-52, we can mooutput the tveo interlaced series without the arrays:
—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/myrandom/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "myrandom.h"
4 using namespace std,;
5
6 i nt main()
7
8 myrandom rl;
9 myrandom r2(2014);
10
11 for (inti=0;i<3;++i){
12 cout <<rl.rand() <<"\t"
13 << r2.rand() << "\n";
14 }
15
16 return EXIT_SUCCESS;
17}

PSsso A hesenea ©2014 Mark Meretzky

Section 2.8.5 Other Uses of Objects 177

16838 30237 first number in edtseries
5758 3862 second number in ehceries
10113 1078 third number in eals series

2.8.4 ASet of Variables Used by a Series of Function Calls

Often we notice that the same variable, or the same group of variables, is used by a series of function
calls. Perhapsve are calling different functions; or perhaps the same functienand over. The func-
tions might change the values of the variables, but the variablegesfiorn one call to the next.

Here are three of the ways this can happen.

(1) The variable is passed as agusnent to tw or more function calls.For example, on p. 165,
(1), the \ariablep was passed testrcpy andprintf . And on pp. 165-166, (2), thanablefp was
passed to a series of callsfpointf

(2) The variable is a static local variable in a function that is calledtwrore times. For example,
on p. 174, line 5, theaviablenext will be used by each call to the functicend . Since it is static, the
variable retains its value from one call to the next.

(3) The variable is a global variable that can be used®yadunctions. For example, on p. 174,
line 11, the wriablenext can be used by the functiossand in lines 13-16 andand in 18-22. Asin
the previous paragraph, the variable retains its value from one call to the next.

When a group ofariables is used by a series of function calls, the variables and functions should be-
come the data members and member functions of an oBjegod candidate for objecthood was the pair
of variablesx andy, and the functionserm_put andterm_get to which thg were passed, in the
term_ function test prograiqmain.C on pp. 87—-88.A another candidate as the paix andy, and the
functionsput , get , next , andin_range to which thg were passed, in the terminal test program
main.C on pp. 157-159. These functions are currently members oftelasmal ; later they will be-
come members of an object whose data members axeattgdy. Such an object, which keeps track of our
location in a data structure, will be calledigemator.

A third candidate for objecthood will be the trio of poiAfd, and C, and the functiongrea and
contains to which thg will be passed, imain.C on pp. 208-209We will pull them together into an
object of a class namadangle . A fourth candidate will be on p. 727.

2.8.5 OtherUses of Objects

Certain kinds of classes occur so frequently that it is worthwhilevi® feemes for them.

Container classes

An object of acontainer classcontains other objects, pointers thereto, or at least valuesudf-anb
data type. Our first example, the classck on pp. 149-154, was hardwired to store and regraaly in-
tegers. Thamore sophisticated container classes in the C++ Standard Libvacter |, list , map,
gueue —are ‘templates’ that let us plug in our choice of the data type to be hétdl.a preview, e the
standard librargtack on pp. 155-157.

To qualify as a containethe class must do much more than just haldes. Itmust let us access the
values through'iterators’ (Chapters 4 and 8) and manipulate the iterators thrdaigjorithms’ (Chapters
7 and 8). Clasderminal will eventally acquire with all of these features (Chapter 9).

Series and streams

Some objects are the source or destination (or both) of a stream of data. Our first example, the class
myrandom on p. 176, generated a series of random integers.

Often the stream of data provided by an object comes from the outsilte Examplesre class
istream , which can read from the standard input, and dlsggam , which reads from a file. Or the

P3sso A hesenea ©2014 Mark Meretzky

178 ObjectsWithout Inheritance Chapter 2

stream can gt the outside world: classstream , which can write to the standard output, and class
ofstream , which writes to a file. (The most famous objects of clastesam andostream arecin
andcout respectiely.)

A stream object can be dressed up to look kontainer (pp. 850-855), allowing it to be manipulat-
ed by an algorithm.

Miscellaneous

Any visible component of a GUI should be an objdétthe component has a cola symbol, or a
location on the screen, the natural place to store this information is in the data members of a®uobject.
examples will be classeabbit andwolf (pp. 194-197 and 197-199), and the classiinal itself.

Classterminal is our example of amterface class. Althought caches a little bit of data for us,
its member functions do almost nark. They simply call other functions to get the job done. An inter
face class shields us from dealing directly with these pphesumably distasteful, functions.

Divide a program into objects

A word of caution: bginners often find it hard to “find the classdsut that prob-
lem is usually soonwercome without long-term ill écts. Net, hovever, often

follows a phase in which classes . . . seem to multiply uncontrollablyNot ev-

ery minute detail needs to be represented by a distinct class . . .

—Bjarne StroustrupThe C++ Pogramming Languge, $ecial Edition, p. 734

An architects first work is apt to be spare and cledte knows he doesnknow
what he$ doing, so he does it carefully and with great restraint.

As he designs the first work, frill after frill and embellishment after embellishment
occur to him. These get storediay to be tsed ‘next time” Sooner or later the

first system is finished, and the architect, with firm confidence and a demonstrated
mastery of that class of systems, is ready to build the second system.

This second is the most dangerous system a m&amesigns. . . .
—TFrederick PBrooks, Jr.;The Mythical Man-Month, Anniversary Edition 5.

There are avays maly ways to divide a program into objectiset’'s dance at some of the possibili-
ties for the Game of Life.

(1) In Homavork 2.5b, the whole game of life was one big object with & 10 array ofbool 's.

(2) We oould let each cell be a separate object. In this case there would bel® Hiray of ‘cell”
objects, each havingtmol data member.

The most interesting possibilities lie between theseauremes.

(3) As the game runs, individual cells turn on and tufn houldthis pair of @ents be packaged as
a oonstructor and destructor? In this case, onlyoit®ipiedcells would be objectsThe other cells wuld
be nothing at all. The alse dagram would hee d@ght “occupied cell’ objects, and their numberownld
change as the game runs. Theng would hee me linked list containing all the occupied cell objects,
each haing x andy data members. The object®wd no longer need th®ol data member in the prie
ous paragraph, since the mere fact of an olsjedstence indicates that its cell is occupied.

| find the occupied cell objects attraeticecause themake the pairing of gents explicit. This ap-
proach might also sa memory Most cells will be empty most of the time because of the afDeath.
Having a permanent object fowery cell would be vasteful. Finally we would no longer ha © worry

PSsso A hesenea ©2014 Mark Meretzky

NOoO o~ WNPRE

Section 2.9 Objects as Function Arguments and RetarValues 179

about falling of the edge of the playing board—thereuhd be no more boardlhex andy data members
of each object could range through all possite values.

(4) To move b the net generation, we v@ b accumulate information about the occupied cells and
the cells adjacent to the occupied ceferhaps all of these should be the objects, each witintw data
membersx andy, and anotheint data member to count Wwamary neighbors are occupiedlhe abee
diagram would hee 37 dbjects.

(5) The abwe dagram has te “blobs” or ‘‘islands’. Shouldthey be the objectsThe blobs are the
active, organic entities, while the individual cells are merely machiriHse abeoe dagram would hee two
“ blob” objects, each containing a linked list of “occupied celbjects.

Letting each blob be a separate object wouldenidasier to let the user pick up a blob andvmib.
In addition, this approach might nekhe game runaster Instead of considering the interaction between
ewery pair of occupied cells, we @ partitioned them into “island umerses’. We might also want to en-
ter the shape of each blob into a hash table.

What should happen to a blob object when its blob splits indbootwrore blobs?How do we €ll
when two or nore blobs come close enough to interact orga®r Andwhen this happens, which blob ob-
ject should absorb the other(s)? Or to &ie hould the merging blobs die and be replaced by oneobe
ject?

(6) The abwe djects are visible to the useNow let's consider objects that are part of the imple-
mentation. Agame has seeral 10x 10 arrays.Should each of them be an objedtét’s call the typotheti-
cal object anatrix . The nested loops that print an array could then be a member function named
print ; the ones that cgpan aray could be a member function nanredtrix::copy (eventually to be
renamednatrix::operator=). matrix::copy would be called by the the constructor for class
life and at the end dife::next

(7) Suppose we wanted toveagach picture so we could run through them again, either forwards or
backwards. Shoul@ach generation be an object? If so, should it be type of object in T (5)?

(8) Are the abee possibilities mutually excluse?

2.9 Objectsas Function Arguments and Retun Values

A class of objects that announce their own birth and death

You . . . will be told that we musicians of the eighteenth century were no better
than serants. .. . But we were learned servants! . We took unremarkable
men .. . and sacramentalized their mediocrityrumpets sounded when the

entered the world, and trombones groaned whenl #ieit!
—Peter ShafferAmadeusAct |, Scene 3

An object of the following classbj will announce its own birth and deatfihese objects will sho
us actly when and in what order there created, copied, and deged. Thg will also shav us how
they are created: each constructor in lines 9-11 prints a different message.

The member functions are short enough to be inline, so thereabji file. The operator
functions in lines 16-19 and 22 will bevaped in Chapter 3.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/obj.h

#ifndef OBJH

#define OBJH

#include <iostream> [lfor <<, >>, ostream, istream
using namespace std;

class obj {
i nti;

PSsso A hesenea ©2014 Mark Meretzky

180 ObjectsWithout Inheritance Chapter 2

8 public:
9 obj(int initial_i) {i = initial_i; cout << "construct " <<i<<"\n";}
10 obj(const obj& another) {i = another.i; cout << "copy construct " << i << "\n";}
11 obj() {i = 0; cout << "default construct " << i << "\n";}
12
13 “obj() {cout << "destruct " << i << "\n";}
14 void print() const {cout << i;}
15
16 obj& operator++() {++i; return *this;} //prefix
17 operator int() const {return i;}
18 friend ostream& operator<<(ostream& ostr, const obj& ob) {return ostr << ob.i;}
19 friend istreamé& operator>>(istreamé& istr, obj& ob) {return istr >> ob.i;}
20 };
21
22 inline const obj operator++(obj& ob, int) { [Ipostfix
23 const obj old = ob;
24 ++0b; /lob.operator();
25 return old;
26}
27 #endif

The lifespan of an object
To talk about the lifespan of an object oyaither variable in C or C++, we need four definitions.

A declaration announces the name and data type cdréalle. Adeclaration may also bedefini-
tion, a datement that actually creates the variable.

1 extern int i; /IThis declaration is not a definition.
2 i nti=10; /IThis declaration is also a definition.
3 i ntj; /[This declaration is also a definition.

A group of statements ificurly brace} is ablock; see p. 32.A variable defined outside of yan
block is aglobal. A global can be mentioned in all the functions of its source file, and possibly also in other
source files of the same program.

A variable has one of three possible lifespaive sy that it belongs to one of thremrage dasses:
static, automatic, or dynamic.

(1) A global variable, or one defined with theylkord static inside a block, is said to tstatic or
statically allocated.A static variable is constructed exactly once, and thes lithout interruption until
it is destructed xactly once when the program endsExactly oncé’ means no more and no less than
once.

The statics fall into tev groups.

(1a) Global variables are constructed before the stamaai and destructed after the endrodin .
As usual, the are constructed in the order in which yhaee declaredcin , cout , andcerr are globals.

(1b) Variables defined with theeywvord static inside the body of a function are constructed the
first time their definition is»ecuted.

(2) A variable defined in a block, without theykord static , is said to beautomatic or automati-
cally allocated.It is constructed when wexecute its definition, and destructed when wevéetae block.
If the block has more than one automatic variable; #he destructed in order of increasing ayfée ok
advantage of this on p. 169.

There are seral ways of leaving a blockWe @an alvays leave it by reaching the closing curly brace
at the end of the block, or byeeuting areturn statement. Ithe block is the body of a loop, we can al-
so leae it with abreak orcontinue . If the block is sswitch statement, we can leait with a
break . See belav for leaving a block by callingxit

P3s 5o A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA, WNPE

O©CoOoO~NOOOUTA,WNPE

Section 2.9 Objects as Function Arguments and RetorValues 181

An automatic variable will be reincarnated each time we re-enter its block arectgeeits defini-
tion. For example, a variable defined in the body of a function will be re-constructed and re-destructed
each time the function is called variable defined in the body of a loop will be re-constructed and re-de-
structed each time the loop is repeated.

(3) A variable that is created and destroyed witilloc andfree , or with their C++ counterparts
new anddelete , is said to bedynamic or dynamically allocatedor on the heapStatic and automatic
variables alvays hare rames (unless tlgeare anonymous temporariesytldynamically allocatedariables
never do. Seeop. 386-389 for whhwe would want to allocate a variable dynamically.

v Homework 2.9a: statically allocated objects

If a C++ program consists of more than o@efile, there is no way to predict which one will con-
struct its globals first. What order do you get on your platform?

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/global/global.h

#ifndef GLOBALH
#define GLOBALH
#include "obj.h"

extern obj obj4;
extern obj obj5;

void f();
#endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/global/main.C

#include <iostream>
#include <cstdlib>
#include "obj.h"
#include "global.h"
using namespace std;

obj obj1 = 10;
obj obj2 = 20;

10 int main()

11

12
13
14

static obj obj3 = 30;

f0;
return EXIT_SUCCESS;

15}

O~NO O WNPE

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/global/other.C

#include "global.h"

obj obj4 = 40;
obj obj5 = 50;

void f()

{
obj obj6 = 60;

PSsso A hesenea ©2014 Mark Meretzky

182 ObjectsWithout Inheritance

9}

O©CoOo~NOOOUTA, WNPE

10
11
12

Chapter 2

My platform gaveme different output depending on the command line that ran the compiler.

g++ main.C other.C

construct 40
construct 50
construct 10
construct 20
construct 30
construct 60
destruct 60
destruct 30
destruct 20
destruct 10
destruct 50
destruct 40

Global objects irother.C
Global objects irmain.C constructed last.
local static inmain function

local static inf function

Global objects itain.C destructed first.

Global objects irother.C destructed last.

constructed first.

g++ other.C main.C

construct 10
construct 20
construct 40
construct 50
construct 30
construct 60
destruct 60
destruct 30
destruct 50
destruct 40
destruct 20
destruct 10

Global objects itmain.C constructed first.
Global objects irother.C
local static inmain function

local static inf function

Global objects irother.C destructed first.

Global objects itmain.C destructed last.

constructed last.

A

v Homework 2.9b: automatically allocated objects

Each time we call the functidnin the following line 15, the automati@nableob is created.The
variable stays alie for as long as we stay within the curly braces in lines 16 and 19.

—On the Web at
http://i5.nyu.edu/

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

void f(int i);

i nt main()
{
f(1);
f(2);
return

13}

printed 4/8/14
8:38:59 AM

COmmé64/book/src/objarg/infinite.C

EXIT_SUCCESS;

All rights
reserved

©2014 Mark Meretzky

14

Section 2.9 Objects as Function Arguments and RetorValues 183

15 void f(int i)

16 {
17
18
19}

20

1
2
3
4

0o ~NO O

obj ob=i;
i + 1);

construct 1
destruct 1
construct 2
destruct 2

Uncomment line 18, and comment out line T1will call itself repeatedlycreating a n& variable
each time. Ha mary variables can it create before you run out of memory?
A

v Homework 2.9c: automatically allocated objects

The body of this loop has curly braces, which endka block. Theobjecti is defined outside the
block and will be constructed and destructed exactly once. The phigctefine inside the block and will
be constructed and destructed duing each iteration.

In newer versions of C++, will be destructed before is destructed. Does this happen on your plat-
form? W& detected this indirectly on pp. 34-35, butvwe can see it in the output.

Define the follaving public member function at line 15 obj.h on p. 180. Its name is only e
sional. Whernwe do operator werloading, it will be replaced by theperator++ in line 17. See pp.
288-289.

void next() {++i;}

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/objarg/automatic.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

i nt main()
{
for(obji=1;i<=3;inext(){
objj=i+10;
J-print();
cout <<"\n";

}
obj k = 20;
return EXIT_SUCCESS;

I must hae a rewer version of C++: my was destructed befork was constructed.

PSs 5o A hesenea ©2014 Mark Meretzky

184 ObjectsWithout Inheritance Chapter 2

construct 1 Line 8 constructs.

construct 11 Line 9 constructs the firgt.

11

destruct 11 Line 12 destructs the firpt
construct 12 Line 9 constructs the secopd
12

destruct 12 Line 12 destructs the second
construct 13 Line 12 constructs the thiid.
13

destruct 13 Line 12 destructs the thijd.
destruct 4 Line 12 destructs after the loop is over.
construct 20 Line 14 constructk.

destruct 20 Line 15 destructk.

A

Don't deprive an object of its last rites

We haveclaimed that the C++ language guarantees vy eonstructed object willventually be
destructed. Buthere are three functions in the standard library that masggréhis:exit , terminate
andabort .

main

|
g

In the following programinain callsf , f callsg, and on the \my down we construct static and automatic
variables. Themore elaborate prograunwind.C on pp. 608-611 will hae dynamic variables as well.

If we callexit , the program will call the destructors for the static objects* but not for the automatic
and dynamic onesl-or example, the output shows that @t in line 25 triggered the destruction of on-
ly the three static objects. But the three other objects still in existesa®3-, auto4 , and
auto5 —vanished without being destructeld.we want all of our objects to be destructed, we mugeme
callexit when automatic or dynamic objects still exist.

If we callterminate or abort , the situation is\en worse: the program will end without calling
the destructors for grobjects at all. We nmust neer call these functions when objects still exist.

But what if we really do want to end the program without destructing the objects thaiss#l Bor
the present, we will caéixit anyway and just pray that nothing goes wrotktyentually howeve, we will
“ throw exceptions’to ensure that all the objects are properly destructed (pp. 608—-611).

Line 17 isinaccessible:it will never be executed because of thexit in line 25. Some compilers
require it, howeer, because line 12 declares thaain returns arnnt

* We might therefore go into an infinite loop if the destructor for a static object etls .
And since there is no portable way for an object to tell if it is static, a destructor sheerldaile
exit

PSsso A hesenea ©2014 Mark Meretzky

Section 2.9

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/objarg/exit.C

Objects as Function Arguments and RetorValues 185

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std,;
5
6 void f();
7 void g();
8
9 obj staticl = 10;
10 obj static2 = 20;
11
12 int main()
13{
14 obj auto3 = 30;
15 obj auto4 =40;
16 f0;
17 return EXIT_SUCCESS;
18}
19
20 void ()
21
22 obj auto5 =50;
23 static obj static6 = 60;
24 90;
25 exit(EXIT_SUCCESS);
26}
27
28 void g()
29 {
30 obj auto7 =70;
31 obj auto8 = 80;
32}
construct 10 Line 9-10 construct two global static objects.
construct 20
construct 30 Lines 14-15 construct two automatic objects locaiiain .
construct 40
construct 50 Line 22 constructs an automatic object locaf to
construct 60 Line 23 constructs a static object localfto
construct 70 Lines 30—-31 construct two automatic objects locajto

construct 80

destruct 70

destruct 20
destruct 10

destruct 80 Line 32 starts our journebadk up.

destruct 60 Line 25 callsexit , destructing the three static objects.

printed 4/8/14
8:38:59 AM

All rights
reserved

©2014 Mark Meretzky

186 ObjectsWithout Inheritance Chapter 2

Pass an object as an explicit argument to a function

When beggars die there are no comets seen;
The heaens themselves blaze forth the death of princes.

—Julius Ceesarll ii 30-31

Theres an @sy way to pass an object to a function in Cket the function be a member function of
the objects dass, and then the object can be passed implicitly (invisibly):

1 date d;
2 d.print(); /ld passed implicitly to print

But only one object can be passed implicithdditional objects must be passed explicitly (visibly).
Heres how we would have © call a version oprint that takes three objects.

3 date d1, d2, d3;
4 d1.print(d2, d3); //d1 passed implicitly, d2 and d3 explicitly

An object will also hae © be mssed xplicitly to a function that is not a member of the obct’
class. Sometimes fact, the function cabhbe amember of the objed’dass. or example, a function can
be a member of only at most one clast already is a member of another class, it talso be a member
of the first one.

5 timet; /limagine that there was a class time.

6 date d;

7

8 t .print(d); //d must be passed explicitly,

9 / Ibecause this print is already a member function of class time

Even if the function could be a member function of the olgetdss, we might not want it to b&o
minimize the number of functions thateato be cehugged when a badalue shows up in a pate data
membeya dass should h&e o unnecessary member functions. If the function uses natpnmembers of
the class, it does not need to be, and therefore should not be, a member function of the class.

For these reasons, an object passed to a function maythae @mssed eplicitly. Fortunately the
rules for passing objectg@icitly are the same as those for passing arguments of the built-in types in C and
C++. Firstwe'll do it with anint , and then we’ll do it with an object.

It looks like line 10 is passing theaxiablei to the functionf . But when we pass an argument by
value, we actually maka opy of the argument and g the copy to the function. Normally, no me is
awae that a copis created—there are no observable side effects whémt ans copied—nbut it eplains
why f cannot change the valueiof f never recevesi . It receires anly a copy, and can change only the
copy.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/objarg/pass_int.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 void f(int copy);
6
7 i nt main()
8 {
9 i nti=10;
10 f(i);
11 return EXIT_SUCCESS;
12}

PSsso A hesenea ©2014 Mark Meretzky

Section 2.9 Objects as Function Arguments and RetorValues 187

13

14 void f(int copy)

15 {

16 cout << copy <<"\n"
17}

When we pass an object by value, we enalopy of the object and ge te copy to the function. Of
course, the cagpis constructed by a cgpconstructoy and destructed by a destructor; tivedence is under
lined in the output.This time, havever, we ae very much &are that a copis created. Theopy construc-
tor and the destructor Y& the side effect of producing output.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/objarg/pass_obj.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std,;
5
6 void f(obj copy);
7
8 i nt main()
9 {
10 obj ob=10;
11
12 cout << "about to call f\n";
13 f(ob);
14 cout << "just returned from f\n";
15
16 return EXIT_SUCCESS;
17}
18
19 void f(obj copy)
20 {
21 cout << '"start of \n";
22 copy.print(); /ljust to make sure that f received the obj
23 cout <<"\n";
24 cout <<'"end of f\n";
25}
construct 10 line 10 constructeb
about to call f line 12
copy construct 10 lines 13 and 19 construcbpy
start of f line 21
10 line 22
end of f line 24
destruct 10 line 25 destructsopy
just returned from f line 14
destruct 10 line 16 destructsb

Pass the address of the object tovaid constructing and destructing a copy

To pass an gument without copying it, we pass it by reference. The argumentvis pointer to an
obj inlines 6 and 19:To accommodate this change, we must introdu&draline 13 and a> in line 22.

PSsso A hesenea ©2014 Mark Meretzky

188 ObjectsWithout Inheritance Chapter 2

Since the ggument is merely a pointano wpy is constructed of the objeatb. And since the gu-
ment is a read-only pointghe functionf cannot change the valueas.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/objarg/pointer.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

void f(const obj *p);

i nt main()
9 {
10 obj ob=10;

12 cout << "about to call \in";
13 f(&ob);
14 cout << "just returned from f\n";

16 return EXIT_SUCCESS;
17}

19 void f(const obj *p)

20{

21 cout << "start of fin";

22 p->print(); /ljust to make sure that f received the obj
23 cout <<"\n"

24 cout <<"end of fin";

25}

construct 10 line 10 constructeb
about to call f line 12

start of f line 21

10 line 22

end of f line 24

just returned from f line 14

destruct 10 line 16 destructsb

Here’s a smpler notation for passing the address of an object to a function. Lines 13 andrPfore
their original operators.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/objarg/reference.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

void f(const obj& a);
i nt main()

{
obj ob=10;

PO OWoOoO~NOOUOD»WNLPE

B

PSs 5o A hesenea ©2014 Mark Meretzky

Section 2.9
12 cout << "about to call \n";
13 f(ob);
14 cout << "just returned from f\n";
15
16 return EXIT_SUCCESS;
17}
18
19 void f(const obj& a)
20 {
21 cout << '"start of \n";
22 a.print();
23 cout <<"\n";
24 cout <<'"end of f\n";
25}

Objects as Function Arguments and RetorValues 189

/ljust to make sure that f received the obj

construct 10

about to call f

start of f

10

end of f

just returned from f
destruct 10

line 10 constructeb
line 12

line 21

line 22

line 24

line 14

line 16 destructsb

A function that returns an object

It looks like line 16 has auy. Thevariablei in line 15 is local to the functioh, soi dies when we
return fromf in line 16. Arent we therefore returning a value thataporates as we return it?

There is no bug, becauses returned via pass-byalue. Linel6 actually creates a cppf i , and
the copy is what is returned as the originalaporates. Normallyno me is avare that a copis created—
there are no noticeable side effects whemanis copied—but it explains whthere is no bug.

—On the Web at

http://i5.nyu.edu/ Cmm64/book/src/objarg/return_int.C

1 #include <iostream>

2 #include <cstdlib>

3 using namespace std;

4

5 i ntf();

6

7 i nt main()

8 {

9 cout << f() <<"\n";
10 return EXIT_SUCCESS;
11}

12
13 int f()
14 {
15 int i =10;
16 return i;
17}

10

printed 4/8/14
8:38:59 AM

All rights
reserved

©2014 Mark Meretzky

190 ObjectsWithout Inheritance

Chapter 2

When returning an object via pass-alae, a function is within its rights if it constructs and returns
a aopy of the object. Of course, the gpfs constructed by a cgpconstructor and destructed by a destruc-
tor; the evidence is underlined in the output.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/objarg/return_obj.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "obj.h"

4 using namespace std,;
5

6

7

8

obj f();
i nt main()
9 {
10 cout << '"start of main\n";
11 f().print();
12 cout <<"\n";
13 cout << "end of main\n";
14
15 return EXIT_SUCCESS;
16}
17
18 obj f()
19
20 cout << '"start of \n";
21 obj ob=10;
22 cout << "about to return from f\n";
23 return ob;
24}

The abee line 11 calls theorint

member function of the anonymous object returned by\Ve

have dready seen an example of a call to a member function of arymoos object returned by a func-

tion, in line 2 on pp. 137-138.

construct 10

copy construct 10
destruct 10

about to return from f
copy construct 10
destruct 10
10destruct 10

end of main

f0 .| print 0
start of main line 10
start of f line 20

line 21 constructs an anonymous tempoieaioy

line 21 copies the temporary inbb

line 21 destructs the anonymous temporary

line 22

line 23 constructs the anonymous tempo@y printed in line 11
line 23 destructsb

line 11 prints & destructs anonymous temporary constructed in
line 12 outputs a newline

line 13

23

With a newer compilethe aboe line 21 creates only one object; wavsan example of this on p.
137. Inaddition, this single objedb in line 21 is nav merely another name for the (anonymous) object
whoseprint function is called in line 11. The cgipg we just did in line 23 is gone. Theawemporary

printed 4/8/14
8:38:59 AM

hesenea ©2014 Mark Meretzky

25
26

O©CoOoO~NOOOUTA, WN P

Section 2.9 Objects as Function Arguments and RetorValues 191

objects that we no longer create—the ones that were in the &@ies 21 and 23—shothe two ways that
temporaries can baided.

start of main line 10

start of f line 20

construct 10 line 21 constructeb

about to return from f line 22

10destruct 10 line 11 prints and destructsh
line 12 outputs a newline

end of main line 13

(Both of the abee autputs were actually produced by the same comtef]; | merely cqaveit the option
-fno-elide-constructors when creating thexecutable that produced the first output.)

It is disquieting that we can legitimately getotdifferent outputs from the same program.pro-
gram should produce tlsameoutput no matter what compiler was used. An object should therefore be re-
turned via pass-byalue only if its cog constructor and destructor cause no output or other observable side
effects.

In the abee line 11, the anonymous temporary object in tkgressiorf().print() will always
be destructed after themtire expression has beewatuated. Thids good nes. If the temporary had been
destructed after thi) but before the.print() , we would be printing a corpset is a minor anng-
ance that the destructor for the ayimous object emits a line of outputéstruct 10\n") that ap-
pears wkwardly between theprint() in line 11 and the newline in line 12Ve will fix this on p. 338
when the member functioprint becomes a‘friend” function namecdperator<< , dlowing us to
print and destruct the object, and print the newline, all in the same expression.

If the anonymous temporary makes you uncomfortable, you wantsareturn value of in a \ari-
able with a name. The ab®line 11 could be changed to

obj ob=f();
ob.print();

Making an unnecessary gpopf a return value can sometimes beided by returning theariable’s
address (pass-by-reference). But we tda’tis in the abee line 21. The griableob is automatically al-
located, so we would be returning the address of a value that turns to garbage as we return.

Call a constructor explicitly in a return statement

If the returned object is mentioned only in the return statement (thve &be 23), itS easier to con-
struct it in thereturn statement itselfWe saw earlier that a declaration is not the only place where we
can construct an object. See p. 138, T (4).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/objarg/return.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

obj f();

i nt main()

{

cout << '"start of main\n";

f().print();
cout <<"\n";
cout <<"end of main\n";

P3sso A hesenea ©2014 Mark Meretzky

192 ObjectsWithout Inheritance Chapter 2

15 return EXIT_SUCCESS;

16}

17

18 obj f()

19

20 cout << "start of fin";

21 cout << "about to return from fin";

22 return obj(10); /[Don’t bother to give the object a name.
23}

Since the constructor in the aleoline 22 takes only one argument, and since it was declared in
obj.h without the lkeyword explicit , we may change it to

24 return 10;
See p. 138.
On my platform, the object construced in thevabine 22 (or 24) is the same object as the one pint-
edin line 11.
start of main line 10
start of f line 20
about to return from f line 21
construct 10 line 22 constructs an anonymous object
10destruct 10 line 11 prints and destructs the anonymous object
line 12 outputs a newline
end of main line 13

But there is no guarantee thatythvéll be the same objectWith an older compileior with the

-fno-elide-constructors option ofg++, they are two separate objects.
start of main line 10
start of f line 20
about to return from f line 21
construct 10 line 22 constructs an anonymous object
copy construct 10 line 22 copies the anonymous object
destruct 10 line 22 destructs the original anonymous object
10destruct 10 line 11 outputs and destructs the copy
line 12 outputs a newline
end of main line 13

2.10 TheRabbit Game

v Homework 2.10a:
Version 1.0 of the Rabbit Game: initial version of the game

PSsso A hesenea ©2014 Mark Meretzky

Section 2.10 The Rabbit Game 193

C++ has may powerful features with subtle interactions, such as dynamic memory allocation, inher
itance (single and multiple, public andvate), virtual functions, templates, and the Standard Template Li-
brary (STL). The syntax of each feature could be presented in an example of only co@ayeas: Buit
would take a firly substantial program before there would b laenefit from using these constructs-
stead of brdening the student matarge programs, we will depjoall of these features in one/@ving
program. Itwill become simplerless repetitious, more orthogonal, and easier to maintain >goachck
Later incarnations will delier more functionality And the kludges for special cases will disappeatr.

The program is a video game with moving anim&sarnivores will be uppercase, hevbres laver-
case. The , for example, is a rabbit. It hops randomly around the terminal, one step at a timewsdt kno
that it cant move df the screen or occyphe same place at the same time as another animal.

The Wis the wolf. It is under manual control: you V& press leys to nove t. To avoid the com-
plexity of making the arme keys work on all platforms, we use four letters:

h left
j down
k up

I right (lowercase L)

These four letters are in av@n a QVERTY keyboard. (Thg are also the motiondys in the Unix editor
vi .) I readily concede that it is counterintuéifor L to mean “right”.

You win the game by making the wolf stomp on the rabbibu can also win merely by launching
the game and going out to lunch. The rabbit, moving randomly around the screenjendiiadly blunder
into the wolf and be eaten.

The game has three objects: teeminal , wolf , and rabbit . The calls to their constructors
will be visible: theterminal will fill the screen with its background charactand the tvo animals will
drav themseles. Ewentually the calls to their destructors will also be visible: the rabbit and wolf will
erase themselves, and teeminal will blank itself out.

Each animal will hee x andy data members giving its current locatioie will see the data mem-
bers changing: whewer this happens, the animal will ma

The main function

Line 12 ofmain.C “seeds’the random number generator (p. 174), ensuring that the subsequent
calls torand in lines 42-43 ofabbit.C on p. 196 will return a different series of random numbers dur
ing each run of theagne. V¢ will use the current time as our seed humbire zero used to B¢ULL in
C; see p. 68. The cast suppresses the warning we would get on machines where the returmeype of
(time_t) is wider than the argument typesrand (unsigned).

Lines 18-19 construct theol and rabbit one-third of the screen apart, at middle height. The main
loop in line 21 will then call thenove member function of each animal four times per second. These func-
tions returntrue if the rabbit is still alve, false if it has been eaten. In the latter case, we break out of
the main loop and the game gD

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/gamel/main.C

#include <cstdlib> /[for the srand function and EXIT_SUCCESS
#include <ctime> [lfor the time function

#include "terminal.h"
#include "wolf.h"
#include "rabbit.h"

using namespace std;

O©CoOoO~NOOOUTA, WNPE

10 int main()
11 {

P3sso A hesenea ©2014 Mark Meretzky

194 ObjectsWithout Inheritance Chapter 2

12 srand(static_cast<unsigned>(time(0)));

13 const terminal term(’.");

14

15 const unsigned xmax = term.xmax();

16 const unsigned ymax = term.ymax();

17

18 wolf w(term, xmax * 1/ 3, ymax / 2);

19 rabbit r(term, xmax * 2 / 3, ymax / 2);

20

21 for (;; term.wait(250)) { /250 milliseconds equals .25 seconds
22 if (‘'w.move()) {

23 break;

24 }

25 if (r.move()) {

26 break;

27 }

28 }

29

30 term.put(0, 0, "You killed the rabbit!");

31 term.wait(3000); /IGive user three seconds to read the message.
32 return EXIT_SUCCESS; //Destruct rabbit, wolf, & terminal, in that order.
33}

The abee lines 21-28 may be combined to

34 for (; w.move() && r.move(); term.wait(250)) {
35 }

But dont do it. We would just hae o change it back in a later version of the game.

Class rabbit

The game is played ontarminal object shared by the animal3he animals call the member
functions of the terminal. One way to neakie terminal accessible to the animals would be toenita&
global variable.

const terminal term(’.");
i nt main()

{

But if we did this, we would be locking oursebsinto having exactly one terminal and exactly camey
It would be impossible to turn our program into a server that rung gaemes simultaneously.

A WNPE

To keep our options open, we made the terminal accessible to the animals by giving each animal a
pointer to the terminal it inhabits. This pointein line 6 is read-only to makit impossible for an animal
to change the size or background character of its termifmlnsure thatrabbit.h can mention the
name of clasgerminal , it must includeterminal.h

The data members in lines 6—8 rabbit.h are of the built-in data types: integers, characters,
pointers. Thg are not objects, thehaveno constructors, and nothing happens when éhe constructed.
As long as thg are constructed before being used in lines 13 and 28btiit.C , it doesnt matter what
order thg are constructed in.

This being the case, there is no reason at present to dediafere the other three data members.
But perhaps there will be a reason in the futdriee four data members might become objects, each initial-
ized by its own constructoiwhen that happens, the error checking performed in lines 13 and 29 of
rabbit.C will be done in the constructors far, y, and c. The data member is used by this error
checking code, sb will have © be onstructed first.To prepare for thiseentuality,t is constructed first

PSsso A hesenea ©2014 Mark Meretzky

Section 2.10 The Rabbit Game 195

by being declared first in lines 6—-8 @bbit.h , dthough we do not need this rightwo It will be one
less thing to change should the data membersbecome objects.

We mnsistently use an unsigned number to represent a position in a space whose coérdinates start at
zero. Earlieexamples were the unsigned data tgpee_t for an array subscript (p. 66); the unsigned ar
guments and return value of the C functiteisn_put andterm_xmax on p. 86; the unsignedr-
ments and return value of tipgt andxmax member functions of clagerminal on pp. 159-160.In
keeping with this practice, the co6rdinates of an animal are unsignegpaltkem from becoming gaive.

These include the data membgrandy in line 7 ofrabbit.h and the local ariablesnewx andnewy in
lines 50-51 ofabbit.C

On the other hand, we use a signed number to represent a direction and distance ofHadién.
examples were the signed argument of the fundimte::next and the local variabledx anddy in
life::next . In keeping with this practice, horizontal or vertical motions are signed to let them be posi-
tive a negdive. These include the fsfetsdx anddy in lines 43-44 ofabbit.C . The unsigned/signed
distinction appeared in the C Standard Librargias_t vs. ptrdiff_t , ahd will reappear in the con-
tainers in the C++ Standard Librarysige type vs.difference_type

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/rabbit1/rabbit.h

#ifndef RABBITH
#define RABBITH
#include "terminal.h"

class rabbit {
const terminal *t;
unsigned X, y;
char c;
public:
10 rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y);
11 bool move();
12}
13 #endif

O©CoOoO~NOOOUTA, WNPE

We saw back on pp. 184-185 what will go wrong when calleagt in line 17: the objects that are
not statically allocated will ner be destructed. W will fix this bug when we ceer “exceptions’. For
now, let's hope it n@er happens. Line3 disallows tw animals in the same location at the same time.
Line 29 disallows an insible rabbit: one whosécblor” (character) is the same as the termbgick-

ground.
The value of thexpressiorrand() % 3 in line 43 is either 0, 1, or ZThe value of the largeixe
pressiorrand() % 3 - 1 is therefore -1, 0, or 1, to indicate left, no motion, or right.

Will line 53 really be able to detect an out-of-range locatiba®s sy that in line 50x is zero and
dx is —1. Sincex is unsigned anddx isint , the sum will beunsigned . Anunsigned sum, and
theunsigned variable newx, cannot possibly hold the out-of-range value —1. But the —1 will be stored
in newx as the maximum possiblmsigned value, which line 53 will recognize as out-of-range.

Line 35 “registers'the newbormabbit with itsterminal it informs theterminal that the
rabbit exsts. Thisis a clear demonstration that an obgadnstructor must sometimes do more than
just put values into the objestthta members. It also notifies other objects about the birth of therre

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/rabbit1/rabbit.C

1 #include <iostream>

2 #include <cstdlib> [[for rand and exit functions
3 #include "rabbit.h"

4 using namespace std,;

5

PSsso A hesenea ©2014 Mark Meretzky

196 ObjectsWithout Inheritance Chapter 2

6 r abbit::rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
7
8 t
9 X

10 y

11 c

12

13 if (t->in_range(X, y)) {

14 cerr << "Initial rabbit position (" << x <<"," <<y

15 << ") off" << t->xmax() << " by " << t->ymax()

16 << "t erminal.\n";

17 exit(EXIT_FAILURE);

18 }

19

20 const char other = t->get(x, y);

21 const char background = t->background();

22

23 if (other != background) {

24 cerr << "Initial rabbit position (" << x <<"," <<y

25 << ") already occupied by ™ << other << ™.\n";

26 exit(EXIT_FAILURE);

27 }

28

29 if (c ==background) {

30 cerr << "Rabbit character " << ¢ << " can’t be the same as"

31 "the terminal's background character.\n";

32 exit(EXIT_FAILURE);

33 }

34

35 t->put(x, Yy, C);

36}

37

38 //Return false if this rabbit was eaten, true otherwise.

39

40 bool rabbit::move()

41 {

42 /[The values of dx and dy are either -1, O, or 1.

43 const intdx=rand() % 3 - 1;

44 const intdy=rand() % 3 - 1;

45

46 if (dx==0&&dy==0)({

47 return true; //This rabbit had no desire to move.

48 }

49

50 const unsigned newx = X + dx;

51 const unsigned newy =y + dy;

52

53 if (t->in_range(newx, newy)) {

54 return true; //Can't move off the screen.

55 }

56

57 const char other = t->get(newx, newy);

58

59 if (other != t->background()) {

&initial_t;
i nitial_x;
i nitial_y;

r

PSs 5o A hesenea ©2014 Mark Meretzky

Section 2.10 The Rabbit Game 197

60 if (other==c){

61 /[This rabbit collided with another rabbit.

62 return true;

63 } else{

64 /[This rabbit blundered into the wolf and was eaten.
65 return false;

66 }

67 }

68

69 t->put(x, y); /[Erase this rabbit from its old location.
70 X = newx;

71 y = newy,;

72 t->put(x, Yy, C); //Redraw this rabbit at its new location.

73

74 return true;

75}

The abee lines 60-66 may be combined to the single statement
76 return other == c;

But dontdo it. It's dearer the way it is na
The abee lines 70-72 may be combined to

77 t->put(x = newkx, Y = newy, c);
But dontdo it. C++does not share €tage to cram as much code as possible into a single expression.

The abee lines 69 and 72 seem to form a p&hould the be rewritten as calls to a constructor and
destructor for some mekind of object? Closer inspectionveals that the constructor would be called at
line 72 and the destructor at 69. Then should 69 be paired with 35, and 72 with a line you will write in the
destructor for classabbit in Homework 2.10b?

| decided to leee lines 69 and 72 as thatand because the wenbject would be too tvial to be of
much use. What would we call this kind of objectagparition ? Aquantum ? See pp. 178-179.

In conclusion, we makiwo aiticisms of classabbit . A rabbit interacts with derminal in
a very sophisticated way: it can call member functions ofelminal by means of the umbilical cotd
But arabbit interacts with other animals in a very crude way: it sees onlgithe of the other animal.
This is sufficient to identify the species of the other animaljgnot enough for grmeaningful communi-
cation with it. When we hee vaal otherrabbit s, dl with the same charactat , we will not be able
to tell whichrabbit we hare mllided with. We will remedy this on p. 467.

The second problem is more pasve. Every line of clasgabbit betrays the fact that our terminal
is Cartesian and two-dimensional, from the data membargly to the double-barreled arithmetic in the
above lines 43-44 and 50-51We will remedy this when we ha “iterators’, allowing us to rewrite the
game without ag mention ofx andy, dx anddy (p. 966). We will then be able to port the game to a ter
minal with a different topology: polar codrdinates, three dimensions, etc.

Class wolf
The data members, and the declarations for the member functions, are the same walfasard
rabbit
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/wolfl/wolf.h

1 #ifndef WOLFH

2 #define WOLFH

3 #include "terminal.h"
4

P3sso A hesenea ©2014 Mark Meretzky

198 ObjectsWithout Inheritance Chapter 2

5 class wolf {
6 const terminal *t;
7 unsigned x, y;
8 char c;
9 public:
10 wolf(const terminal& initial_t, unsigned initial_x, unsigned initial_y);
11 bool move();
12}
13 #endif

An array of structures is the easiestyor a C or C++ program to store information in rows and col-
umns (lines 27-32). In both languages, we use the datsizge for the number of elements in an ar
ray (line 33).

The declaration fop is tucked in the left parentheses of foe loop in line 36; see pp. 33-34.
Similarly, the declaration fok is tuclked in the left parentheses of fifie in line 35. Theif will be true if
the initial value ok is non-zero, which will happen if the user pressedya k will be destructed when we
reach the end of tHé , marked by thé in line 59.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/wolfl/wolf.C

1 #include <iostream>
2 #include <cstdlib> //for exit function
3 #include "wolf.h"
4 using namespace std,;
5
6 wolf::wolf(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
7
8 t
9 X
10 y
11 c
12
13 /[Copy lines 13-35 of the above rabbit.C here,
14 /Ichanging the word "rabbit" to "wolf".
15}
16
17 //Return false if this wolf ate another animal, true otherwise.
18
19 bool wolf::move()
20{
21 struct keystroke {
22 char c;
23 int dx; //horizontal difference
24 int dy; /lvertical difference
25 3
26
27 static const keystroke a[] = {
28 {h, -1, 0}, eft
29 {7, 0, 1}, //down
30 {K, 0, -1}, /up
31 {r, 1, 0} Ilright
32 3
33 static const size_t n = sizeof a / sizeof a[0];
34
35 if (const char k = t->key()) {

&initial_t;
i nitial_x;
i nitial_y;
CW

PSsso A hesenea ©2014 Mark Meretzky

Section 2.10 The Rabbit Game 199

36 for (const keystroke *p = a; p <a+ n; ++p) {

37 if (k==p->c){

38 const unsigned newx = X + p->dx;

39 const unsigned newy =y + p->dy;

40

41 if ('t->in_range(newx, newy)) {

42 break; /IGo to line 57.

43 }

44

45 const bool |_ate _him =

46 t->get(newx, newy) != t->background();

47

48 t->put(x, y); /[Erase this wolf from its old location.
49 X = newx;

50 y = newy,

51 t->put(x, Yy, C); /[Redraw this wolf at its new location.
52

53 return l_ate_him;

54 }

55 }

56

57 /[Punish user who pressed an illegal key or tried to move off screen.
58 t->beep();

59 }

60

61 return true;

62}

Up to one quarter of a second may elapse betweegstrdde and the next call to the olf’s move
function, causing the wolf to respond sluggishhis could be fixed by making the input “interrupt\dri
en”, but we will not pursue it for na

For the present, there is an asymmetry in the behavior of colliding animals. When a wolf stomps on a
rabbit, the rabbit disappears. But when a rabbit blunders into a wolf, the rabbit merely freezes because its
move is reve carried out. We'll fix this on p. 469 when we introduce “dynamic memory allocation’
which will give s greater control wer the exact moments of an objedtirth and death.

Classesvolf andrabbit are identical in their data members, almost identical in their constructors,
and similar in their remaining member functiote will eventually consolidate this duplication by means
of inheritancefrom a common base class.

List of the nine source files that constitute the game

(1) term.h andterm.c (pp. 85-89). These are the onlyawritten in C; the rest are C++.
(2) terminal.h andterminal.C (pp. 157-163)

(3) main.C (pp. 193-194)

(4) rabbith andrabbit.C (pp. 194-197)

(5) wolf.h andwolf.C (pp.197-199)

Compile the game on Unix

1% gcc -l. -DUNIX= -c term.c
2% s -l term.o

PSsso A hesenea ©2014 Mark Meretzky

NOoO o~ WNPRE

200 ObjectsWithout Inheritance Chapter 2

3% g++ -1. -0 “/bin/game main.C wolf.C rabbit.C terminal.C term.o -Icurses
4$ Is -l “/bin/game

5% game Run the game.
6% echo $? See the gamg'it status.

A

¥ Homework 2.10b:
Version 1.1 of the Rabbit Game: destructors for classesolf and rabbit

Write a destructor for classolf , even though there currently is no animal that could eato# |,
and a destructor for classbbit . Each destructor should do three things in the following order.

(1) Beepthe terminal on which the dying animal is displayed.
(2) Pause for one second, so the dying animal stands “frozen in the headlights”.

(3) Calltheget member function of the animalterminal to see if the animallocation on the screen is
occupied by the animal’character If so, call theput member function of the animalterminal to
wipe the anima$ character dfthe screen by displaying the termisatackground character there, as
in line 48 of the abee wolf.C . Otherwise, do not cajput and do not change the character at that
location on the screen, because the location is already occupied by another BReimamnberthere
is one occasion when tnanimals are momentarily at the same place at the same time: right after the
wolf stomps on the rabbit. This anomalous situation will be reth@n p. 40 when we hae “dy-
namic memory allocation”, but for mowe haveto handle it.

The destructor should not change the value gfadithe dying anima$ data members. Thereowld
be no point in doing so, since the animal is abouwv#parate. Changings data members would be dik
rearranging the deck chairs on ffi@nic.

A

v Homework 2.10c:
Version 1.2 of the Rabbit Game: mak the animals impossible to copy

Make the wolves and rabbits impossible to gopy depriving them of their cop constructors. A
C++ object can be copied only by its gamnstructor.

Even though we defined no gpponstructor for classesolf andrabbit , the computer belas
as if we had (p. 135)To prevent the computer from doing this, declare avgig copy constructor for each
class but do not define it. In otheords, do not write a function bodyf a member function of one of
these classes tries to call the gapnstructor for that class, the gogonstructor will be undefined and the
program will not link. And if ag other function tries to call the cgmonstructoythe cojy constructor will
be private and the program will novven compile. Ineither case, it will be impossible to goihe animal.

class rabbit {

const terminal *t;

unsigned x, y;

char c;

r abbit(const rabbit& another); /[deliberately undefined
public:

/ letc.
A

2.11 FriendFunctions

P3sso A hesenea ©2014 Mark Meretzky

Section 2.11 Friend Functions 201

The unit of protection is a class, not an object.

We havesaid that the pvete members of an object can be mentioned only by the member functions
of that object. But under certain circumstancey ttam also be mentioned by the member functions of oth-
er objectsof the same clasdlVe haveeven sen tw examples: the copconstructor for classnono, in
line 57 ofduo.C on pp. 136-137, and the goponstructor for classtack , on p. 3. Eachcopy con-
stuctor was able to mention theyate members of tevdifferent objects: the object of which it was a mem-
ber, and another object which it receied as an eplicit argument.

More examples are in the following clag®int , which represents a point in adwdimensional
space with Cartesian codérdinatesy

Four examples in this class shhat it is quite natural for the member functions of one object to use
the prvate members of other objects of the same class. In fadinh whose member functions couldin’
do this would be useless. It would be stuck in vt® golipsistic unrerse, with no way to interact with oth-
erpoint 's.
(1) Themember functiordist in lines 17-25 ofpoint.C mentions the pviaste members of te ob-

jects of claspoint : the object of which it is a membend another object which it receies &

an explicit argument.

(2) Themember functiomist in lines 7-15 opoint.C mentions the pviate members of tavobjects
of classpoint : the object of which it is a membend the global objeqgtoint_origin in line 5
of point.C

(3) Themember functioimidpoint in lines 19-21 opoint.h mentions the pvate members of tar
objects of claspoint : the object of which it is a membend another object which it receies &
an explicit argument.

(4) Themember functiorarea in lines 27-33 opoint.C mentions the pviste members of three ob-
jects of clasgoint : the object of which it is a membend two more which it receies as &plicit
arguments.

The members are nameéist to avoid conflict or confusion with thdistance function in the
C++ Standard Library.

Line 24 of point.C constructs and returns an agorous double . Smilarly, line 20 of
point.h constructs and returns an anonymous object. See p. 138, { (4). It can construct theapbject e
before the entire declaration for the class (lines 6-24) has been seemidipoat s inline.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/pointl/point.h

1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>

4
5
6
7
8
9

10

11

12

13

14

15

16

17

18

19

using namespace std;

class point {
double x, y;
public:
point(double initial_x = 0.0, double initial_y = 0.0) {
X = i nitial_x;
y = initial_y;
}
void print() const {cout << "(" << x << ", " <<y << ")}
double dist() const;
double dist(const point& another) const;
point midpoint(const point& another) const {

PSsso A hesenea ©2014 Mark Meretzky

202 ObjectsWithout Inheritance Chapter 2

20 return point((x + another.x) / 2, (y + another.y) / 2);
21 }
22
23 double area(const point& A, const point& B) const;
24},
25 #endif
The point_origin in line 5 ofpoint.C is not a data member of clgssint . It merely floats

somavhat unsatisfactorily near it. See the similar disposition of the datgy length on pp. 114-115.
—On the Web at

http://i5.nyu.edu/ Omm64/book/src/pointl/point.C
1 #include <cmath> /ffor sqrt
2 #include "point.h"
3 using namespace std;
4
5 const point point_origin; //give arguments 0.0, 0.0 to constructor
6
7 | IReturn the distance between this point and the origin.
8
9 double point::dist() const
10 {
11 const double dx = point_origin.x - X;
12 const double dy = point_origin.y - y;
13
14 return sqrt(dx * dx + dy * dy); /IPythagorean theorem
15}
16
17 //IReturn the distance between this point and another.
18
19 double point::dist(const point& another) const
20{
21 const double dx = another.x - x;
22 const double dy = another.y - y;
23
24 return sqrt(dx * dx + dy * dy);
25}
26
27 /IReturn the area of the triangle whose vertices are points *this, B, and C.
28
29 double point::area(const point& B, const point& C) const
30{
31 return abs(x*B.y+Bx*Cy+Cx*y
32 - Yy *BXx-By*Cx-Cy*x)/2;
33}

Themain function constructs these three points:

PSs 5o A hesenea ©2014 Mark Meretzky

Section 2.11 Friend Functions 203

y
A
B(0, 4)
—1 } } X
C(0, 0) A3, 0)
—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/pointl/main.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "point.h"

4 using namespace std;

5
6 i nt main()
7
8 / IA 3-4-5 right triangle with its right angle at the origin.
9 const point A(3, 0);
10 const point B(0, 4);
11 const point C;
12
13 cout << "A's distance from origin is " << A.dist() << ".\n"
14 << "The distance between A and B is " << A.dist(B) << ".\n"
15 << "The area of triangle ABC is " << C.area(A, B) << ".\n";
16
17 cout << "The midpointof Aand Bis";
18 const point M = A.midpoint(B);
19 M.print();
20 cout <<"\n";
21
22 return EXIT_SUCCESS;
23}

A C or C++ variable that is used only once can be replaced with an anonymous temjtmamyb-
ject Min the abeoe line 18, for example, is used only in line 19. These liwes may therefore be com-
bined to the following statement, calling thent member function of the anonymous object returned by
themidpoint member function oA.

24 A.midpoint(B).print();

Pe3s 5o A hesenea ©2014 Mark Meretzky

25

204 ObjectsWithout Inheritance Chapter 2

A | . | midpoint (1 B]) .| print 0

Our first example of a call to a member function of an anonymous object returned by a function was in line
2on mp. 137-138.

The abee line 14 output alouble with the << operator In the same way, we will eventually be
able to output @ate with the<< operator instead of therint() function, Lines 17-20 will be com-
bined to

cout << "The midpoint of A and B is " << A.midpoint(B) << ".\n";

which will then be adjoined to thewut statement that begins in line 13.

A’s distance from origin is 3.

The distance between A and B is 5.
The area of triangle ABC is 6.

The midpoint of A and B is (1.5, 2).

Symmetry as a motvation for friend functions

The member functiodist in line 19 of the abee point.C on p. 202 dealsvenhandedly with its
two point ’'s. In fact, it would return the same valuese if the twopoint ’s were interchanged.

But the function is written in a lopsided notation that arbitraalyafs one of the objects. It seems
unfair that onepoint is anonymous, while the other has a narren@ther ”). Inline 21, for &le,
the two x’s are called plain ol&k andanother.x . A more balanced notation would provide names for
both objects. In line 29, the formula in theea function would be easier to read if all thqg@int ’s had
names.

The calls to these functions are also aimf Why should line 14 of the ah® main.C say
A.dist(B) ? What entitlesA to a place in the sun whigis cowers in the parentheses?

Our criticisms are purely aesthetic—sar. f But aesthetic deficiegccauses bgs. Consideithe
Pythagorean theorem in lines 21-24 of thevelpmint.C . This formula is so well knen that we were
able to write the preliminary subtractions correcthgrewith a lopsided notation. But the formula for the
area of a triangle in lines 31-32 is more arcaWe. will soon see that it is a perfectly balancetbtermi-
nant’ from Linear Algebra.But its symmetry is obscured by the lopsided notation: ontydfithe three
objects hae rames. Itook me seeral tries before | was able to transcribe the formula correctly.

Now why don't al three objects in tharea function hae rames? WIl, a member function re-
ceives an mplicit argument pointing to an objecto access the members of that object, the member func-
tion offers us the simplest possible notation: no notation affhihk back to the body of the first member
function of our first classjate::print . We wrote nothing there to identify the object to which the
three members belong. Thbelong to the object targeted by the implicit pointer:

cout << month << "/" << day << "/" << year,

This minimal notation hasabys been the glory of a member function: when concentrating on one
object, the object needs no nanigut nowv that we’re writing functions dealing with the yaie members
of two or more objects passed as arguments aitkward that we hae rames for all of them except onk.
would be simpler if eery argument had a name.

Friend functions

This is wherdriend functionscome in. A friend of a class is the same as a member function of the
class, except that it does not reeean implicit agument pointing to an object of that class. All of the
friend’s aguments must be explicit: declared within the parentheses ofdhenant list. Like a member

PSsso A hesenea ©2014 Mark Meretzky

Section 2.11 Friend Functions 205

function, a friend of a class can mention theatei members of that class.

The member functiodist in lines 17-25 of the alve point.C shambles along with one implicit
argument and one explicitgument. Thdriend functiondist in lines 17-25 of the folling point.C
has both argumentggicit. Thedifference between the member function and the friend is only a matter of
notation: the source code of the friend is more balanDedp in the machine, both functionsddke same
two arguments passed the same way (by reference). The functions do the same work and are equally fast.

Since it has no implicit argument, a friend mustagis say which object it is accessing the members
of. For example, within the bodies of the following friends we mustygd sayA.x or B.x ; we can never
say plain old.

Write the leyword friend only inside the definition of the class that the friend is a friendSee
the declaration in line 24 gdoint.h and the definition in line 19 gfoint.C . A friend of a class can-
not be a member function of the same class, so the custpwmiaty is not written in front of the func-
tion names in lines 19 and 29 p6int.C . But even though thg are not members, we still define the
functions in thgoint.C file.

A friend is a free function (p. 113): it &k no implicit pointer gument. Itis called with the same
syntax as anfree function; see line 14 afain.C .

The catgoriesconst vs. noneonst apply only to member functions, not to friends.const
member function cannot modify the object to which it reeean mplicit pointer (lines 20 and 23 of
point.h). Buta friend receres no mplicit pointer so aconst friend would be meaninglesdnstead,
each agument passed by reference to a friend can be dedarsti or nonconst ; see the tw in line
24 ofpoint.h

When do we hae no choice between a member function and a friend?

A function that does not mention thevate members of a class should be neither a member function
nor a friend of that class. This wilekp the number of suspects as small as possible in case an incorrect
value appears in a pdte data member.

A function that needs to mention thevpre members of a class will V@ o be éher a member
function or a friend of the class. In three cases, we ha choice.

(1) If there are a constructor and destrudttsy must be member functions.

(2) If the function must be dte, it must be a member function. There is no such thing agatepri
friend. Infact, the terms'public” and “private” do not apply to friends at all, only to members. In lines
24, 26, and 30 of the folldng point.h |, we just happened to declare the friends in the public section of
the class, but it would kra made no difierence had we declared them in thegie section. It makes more
sense to declare them in the public section, though.

(3) If a function needs to mention theyate members of tavor more classes, it can be a friend of all
of them. The function carven be a nember of one class and a friend of one or more other claBsis
function cannot be a member function of more than once class: a function cannetreoegethan one
implicit pointer.

This means that if a function needs to mention thesigrimembers of tavor more classes, it can be
a member function of at most one of them and must be a friend of all the rest. Derweed to mention
the private members of tav or more classes? The textbook exampleuld be a function that multiplies a
matrix and a gctot returning the product. Our three examples areotferator>> that takes &cale
on p. 373 (a friend of classesale andpoint); theoperator/ on p. 296 (a member of class
timebomb and a friend of clasdate); and theget on p. 467 (a member of clagame and a friend of
classrabbit).

What should we do when we hee a ¢oice?

Other than the alve @ses, a function that needs to mention thesigrimembers of a class can be ei-
the a member function or a friend. Here are our recommendations.

(1) A function that mentions the pate members of»@ctly one object should be a member function
of the class of that object. See ghiint anddist member functions in lines 20 and 23pmint.h

PS50 A hesenea ©2014 Mark Meretzky

N

5
6
7
8

9

206 ObjectsWithout Inheritance Chapter 2

(2) A function that mentions the pate members of te or more objects should still be a member
function of one of them if that object plays the starring rle. Irafisgn member function in line 21 of
point.h , for exkample, one of the objects acquires a malue while the other remains completely un-
touched. (Whemve do “operator wverloading”, we'll give this member function its ceantional name:
operator=)

(3) A function that uses the pate members of tavor nore objects playing equal rbéles should be a
friend of the class of those objects. Seedisé , midpoint , andarea friends in lines 24, 26, and 30 of
point.h . The area formula in lines 31-32 pbint.C now has names for all threpoint ’'s. Its
derivation remains a mysteriput at least its symmetry is waapparent.

The functionscollinear and contains are neither member functions nor friends of class
point . But they can be declared ipoint.h anyway since thg will be called by most of theC files
that use the class. One function is inline, the other not.

| considered makingontains a member function, since one of its four objects plays a special r6le.
But | decided it was more important tovean unnecessary member functions or frientlge mght have
to introduce a fudge factor intmllinear

Instead of repeating the trio ofgarmentsABCin lines 15 and 31, we’llventually collect them into
one bigger object of clatsangle (pp. 264-265). As we shall see, a big object can contain smaller ob-
jects as its data members.

The point_error in line 7 ofpoint.h is not a data member of clagsint . It merely floats
somavhat unsatisfactorily near itSee the similar disposition of the ar@dgte_length on pp. 114-115.

A smothered friend

A friend must alvays be declared in the class definitidfor example,dist andmidpoint are
declared at lines 24 and 26 in the following definition for cpexsist

dist was too big to be inline, so we defined itpoint.C . But midpoint is inline, and defined
in the class definition. Do we also need a declaratiomfdpoint outside of the class definition?

Surprisingly the answer depends on the arguments of the fri&iden the agumentsA and B of
classpoint in line 18 of the follving main.C , the computer will look for a friend namedidpoint in
the definition for claspoint . The same would be true for arguments of gpe compounded from class

point : ‘“pointer topoint ", “array ofpoint ", etc. Thedeclaration omidpoint in line 26 of
point.h therefore suffices for the call toidpoint in line 18 ofmain.C .

Line 23 ofmain.C prints the address afidpoint . (For the double cast, see line 24 of
reinterpret_cast.C on p. 67.) But line 23 passes no arguments of pgiet to midpoint . The
computer will therefore not look for a friend hammitipoint in the class definition fopoint , even
though it did this as recently as line 18 get line 23 to compile, we must also declariglpoint out-
side of the class definition, at line 33 or line 1(@oint.h . In the latter case, line 10 would require the
sneak previe of the namepoint in line 9. See p. 363 for another example.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/point2/point.h

#ifndef POINTH

#define POINTH

#include <iostream>

#include <cmath> [[for abs
using namespace std;

const double point_error = .0001; [[floating point roundoff error

/ [class point;

10 //point midpoint(const point& A, const point& B);

11

12 class point {

PSss0 A hesenea ©2014 Mark Meretzky

Section 2.11 Friend Functions 207

13 double x,vy;

14 public:

15 point(double initial_x = 0.0, double initial_y = 0.0) {

16 X = i nitial_x;

17 y = initial_y;

18 }

19

20 void print() const {cout << "(" << x << ", " <<y << ")}

21 void assign(const point& another) {x = another.x; y = another.y;}
22

23 double dist() const;

24 friend double dist(const point& A, const point& B);

25

26 friend point midpoint(const point& A, const point& B) {

27 return point((A.x + B.x) / 2, (A.y + B.y) / 2);

28 }

29

30 friend double area(const point& A, const point& B, const point& C);
31}

32

33 point midpoint(const point& A, const point& B);

34

35 //IReturn true if all three points lie along the same line.

36

37 inline bool collinear(const point& A, const point& B, const point& C) {
38 return abs(area(A, B, C)) < point_error;

39}

40

41 bool contains(const point& A, const point& B, const point& C, const point& D);
42 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/point2/point.C

#include <cmath> //for sqrt, abs
#include "point.h"

using namespace std;

const point point_origin;

/ IReturn the distance between this point and the origin.

©CoOo~NOOOUTA, WNPE

double point::dist() const

10 {

11 const double dx = point_origin.x - X;
12 const double dy = point_origin.y - y;
13

14 return sqrt(dx * dx + dy * dy); /IPythagorean theorem
15}

16

17 //IReturn the distance between points A and B.
18

19 double dist(const point& A, const point& B)
20{

21 const double dx = A.X - B.X;

PSsso A hesenea ©2014 Mark Meretzky

208 ObjectsWithout Inheritance Chapter 2

22 const double dy =A.y - B.y;

23

24 return sgrt(dx * dx + dy * dy);

25}

26

27 /IReturn the area of triangle ABC.

28

29 double area(const point& A, const point& B, const point& C)

30{

31 return abs(Ax*By+Bx*Cy+Cx*Ay

32 - Ay*Bx-By*Cx-Cy*AXx)/2;

33}

34

35 /*

36 Return true if the triangle ABC contains the point D, or if D is on the

37 perimeter. Ideally area(A, B, C) would equal sum exactly, but floating point
38 arithmetic is never exact. We return true if area(A, B, C) is within

39 point_error of sum.

40 */

41

42 bool contains(const point& A, const point& B, const point& C, const point& D)
43{

44 const double sum = area(A, B, D) + area(B, C, D) + area(C, A, D);
45 return abs(area(A, B, C) - sum) < point_error;

46}

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/point2/main.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "point.h"

4 using namespace std,;
5

6

7

8

i nt main()
{
/ 1A 3-4-5 right triangle with right angle at the origin.
9 const point A(3, 0);
10 const point B(0, 4);
11 const point C;
12
13 cout << "A’'s distance from origin is " << A.dist() << ".\n"
14 << "The distance between A and B is " << dist(A, B) << ".\n"
15 << "The area of triangle ABC is " << area(A, B, C) << ".\n";
16
17 cout << "The midpoint of Aand Bis";
18 const point M = midpoint(A, B);
19 M.print();
20 cout <<"\n";
21
22 cout << "The address of midpoint is "
23 << reinterpret_cast<void *>(reinterpret_cast<size_t>(midpoint))
24 << "\n"
25
26 cout <<"A, B, and M are " << (collinear(A, B, M) ? "™ : "not ")

PSsso A hesenea ©2014 Mark Meretzky

Section 2.11 Friend Functions 209

27 << "collinear.\n";

28

29 /[Borderline case: M is on on the perimeter.

30

31 cout << "Triangle ABC"

32 << (contains(A, B, C, M) ? "contains" : "does not contain")
33 << " M.\n";

34

35 return EXIT_SUCCESS;

36}

A C or C++ variable that is used only once can be replaced with an anonymous temptadiy
been used only in line 19, for example, we coulkehmmbined 18-19 to the following line. It calls the
print member function of the anonymous object constructed and returned iydip@int friend. See
pp. 203-204.

37 midpoint(A, B).print();

A’s distance from origin is 3.

The distance between A and B is 5.
The area of triangle ABC is 6.

The midpoint of A and B is (1.5, 2).
The address of midpoint is 0x1154c.
A, B, and M are collinear.

Triangle ABC contains M.

v Homework 2.11a: consolidate duplicate code

The member functiodist in lines 7-15 of the alwe point.C can be reduced to a single state-
ment:

/ IReturn the distance between this point and the origin.

double point::dist() const

{
}

r eturn ::dist(*this, point_origin);

OO, WN B

The double colon makes the abdine 5 call thedist that is a free function, i.e., the one in lines
17-25 of the abee point.C . This function happens to be a friend, but the scoping rulesrgi pecial
treatment to friends. The only distinction yteare about is member function vs. free function.

Without the double colon in line 5, the computennd try three possibilities when it sees therav
dist inthatline. See p. 123.

(1) Isdist the name of a locally declared item (the name of a variable, function, typedef, enumeration,

etc., declared within thgcurly brace} of the block)? In our case, ndhis function has no local
declarations at all.

(2) Isdist the name of a member of clgssint ? In our case, yes, and the computer would stop here.
(3) Isdist the name of a global item? In our case, the computer wouél get this far.

So without the double colon, line 5 would try to call the member fundigin . We would then get
an error message because the number of explicit arguments is wrong.

The arguments of thdist friend must bgoint s, not pointers tgoint ’'s. That's why thethis
has a starthis is merely a pointer to jpoint ; the actuapoint is *this

PSsso A hesenea ©2014 Mark Meretzky

210 ObjectsWithout Inheritance Chapter 2

The abwe function is nav short enough to be made inline by moving its definitionpaint.h

But for the time being it has to staypeint.C , becausepoint_origin is in scope only therewWe'll
fix this on p. 239 when we W@ “static” data members.
A

Class point in the C++ Standard Library

The standard library has no class nampenht . But it has a similar one, classmplex , with the
same tw data members. Iratt, we can choose the type of the data members becauseochgex is a
template class, l&kthe standard library classack on pp. 155-157. The reasonable choicedlast
double , andlongdouble

We @an perform arithmetic on compl@wumbers, such as the subtraction in line 17. There are also
functions whose argument is a compéad whose return type is the data type of the data members of the
complex number For example, thabs andnorm functions in lines 15 and 16 retudiouble becauséd
is acomplex<double> . Other functionsgin , sinh) take and return a complex.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/point2/complex.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <complex>

4 #include <cmath> //for sqrt

5

using namespace std;

i nt main()
{
complex<double> a(3); /Nast argument defaults to 0.0
complex<double> b(0, 4);
complex<double> C; /larguments default to 0.0, 0.0
cout <<b<<"\n"
<< "X,y coordinates: " << b.real() << ", " << b.imag() << "\n"
<< 'r, theta coordinates: " << abs(b) << ", " << arg(b) << "\n"
<< "distance from origin: " << sqrt(norm(b)) << "\n"
<< "distance from a: " << sqrt(norm(b - a)) << "\n";
return EXIT_SUCCESS;
(0,4)
X, y coordinates: 0, 4
r, theta coordinates: 4, 1.5708 1.5708 =772 radians is 180°

distance from origin: 4
distance from a: 5

v Homework 2.11b: define four free functions

A free function is one that recess no nvisible aguments. Declarthe following free functions in
date.h . Define the small ones to be inlinedate.h ; define the big ones idate.C .

If a function needs to mention ayate member of class date, neake function a friend. If it does
not need to mention grprivate memberdo ot male the function a friend or a member function.

A friend must be declared inside the class definititmmake the friend mentionable in the absence
of arguments of clasdate , the friend must also be declared outside the class definition. An exarple w
themidpoint friend of the abwee dasspoint

P3sso A hesenea ©2014 Mark Meretzky

A WNPEP

5
6
7
8

Section 2.11 Friend Functions 211

bool equals(const date& d1, const date& d2);
i nt dist(const date& d1, const date& d2);
const date& min(const date& d1, const date& d2);

date midpoint(const date& d1, const date& d2);

You can use theersion of classlate with either one, two, or three data members. But do not re-
move any & the member functions you added to cldage in previous homeorks. Your four nev func-
tions must produce no output. Demonstrate that #he correct by handing in the output of
http://i5.nyu.edu/ COmm64/book/src/date/test2/main.C . And male are that the test
programhttp://i5.nyu.edu/ Cmm64/book/src/date/testl/main.C . gill works.

(1) equals will returntrue if d1 andd2 are the same date. When we do “operat@rloading”,
we'll give tis function its coventional name on p. 278&perator== . For now, the namesquals was
chosen tooid conflict with theequal_to andequal functions in the C++ Standard Library.

(2) dist will return the distance in days between the tlates. Thalistance between mpoint 's
is aways non-ngative, but the distance betweendwlate 's may be positie, negdive, or zero. Thereturn
value should be posite if d1 is later thard2, negdive if d1 is earlier thard2, and zero ifd1l andd2 are
the same datefFor example, ifd1 is January 3, 2014 am? is January 1, 2014, the return value would be
2. Andif d1 is January 1, 2014 amt? is January 3, 2014 the return value would be -2.

When we do operatowerloading, we’ll give this function its coventional nameoperator- . For
now, the namealdist was dhosen to eoid conflict with thedistance function in the C++ Standard Li-
brary.

(3) min will return a read-only reference to the earlier of the tlates. Br compatibility with the
min in the standard librarynin should return a reference to ttiate on the left if the tw arguments are
equal. min does not hee © construct a newdate ; it should return a reference to one of the existing
date 's passed in as guments. Sincéhesedate 's will not be destructed as we return fronin, we @an
get avay with return by reference.

Your min function will belong to no namespacé¬hermin function, belonging to namespace
std , is declared in the header fitealgorithm> . We dd not include this header directljut it might
have been included by one of the headers that we did include.

When you call youmin function (but not when you declare or define it) please write its name as
:min . This will ensure that you call thain that belongs to no namespace; the double colon is needed
only if the headexalgorithm> was included. Assuminthat<algorithm> was included, a call to
std::min would have keen themin function belonging to namespaste , and a call to an unadorned
min would not hae cmpiled.

We will remove tismin function on p. 634.

(4) midpoint will construct and return thegate that is halfvay betweerd1l andd2. For example,
if d1 is January 3, 2014 amt? is January 1, 2014 (or vice versaiidpoint will construct and return a
date whose value is January 2, 201¥ou can measure the distance betwdérandd?2 by calling your
dist function. Therdivide the distance by 2, and add the quotieni?to

If the distance between theadwate ’s is an @ld number of days, construct and return the date that is
immediatelybefore the midpoint. For example, ifd1 is January 4, 2014 amt® is January 1, 2014 (or vice
versa), construct and returrdate whose value is January 2, 2014.

When dividing an odd distance by 2, we must thereforeemale that the division truncate®wn-
wards (towards nedive infinity). For ekample, a quotient of 1% should be rounded to 1, and a quotient of
—-1% should be rounded to —Zhediv function in the C Standard Libraryadys gives us a gotient trun-
cated tovards zero (-1% becomes -1), but a fallapif can easily change the quotient to one truncated
downwards:

#include <cstdlib> [[for div and div_t
using namespace std;

div_t d = div(dividend, 2);

PSs 5o A hesenea ©2014 Mark Meretzky

10
11
12
13
14

212 ObjectsWithout Inheritance Chapter 2

if (d.rem<0){ /lif truncation was in wrong direction
--d.quot; [ltruncate downwards

}

cout << "The quotient truncated downwards is == " << d.quot << "\n";

Unlike min, midpoint will construct and return a medate . This date will be a local ariable
inside ofmidpoint . Like dl local variables, it will be destructed as we return froidpoint
midpoint must therefore return by value, not by referend&e an neer return the address of anable
that is destructed as we return. See pp. 76-77.
A

An array vs. a linked list

Heres another @ample in which (a member function of) one object needs to accesswvdie prem-
bers of other objects of the same class. Our examples ane>fprev andn->next in lines 45 and 54
of node.C on pp. 215-216. The data memipeev is currently public, but it will become pete when
we have “iterators”.

The elements in an array (and lateravector) are stored shoulder to shoulder in memoFfhere
is no wasted space:

But this virtue becomes a liability if we want to insert avr@ement in the middle of the arrall
subsequent elements will\veo be noved one space to the right to makoom for the ne one. Andthere
might be millions of them.

The same problem will happen if we delete an element from the middle of the Alraubsequent ele-
ments will hae o be noved one space to the left to close the gap.

If we anticipate mapinsertions and deletions, it would be faster to store the informatiofinikeal
list. We dop the requirement that the elements be stored consguthey can be spaced far apart in
memory leaving plenty of room for insertions:

PSsso A hesenea ©2014 Mark Meretzky

Section 2.11 Friend Functions 213

But nov we havea rew problem. Hav can a loop nagate from one list element to thext2 This
wasn't a problem in an arrgywhere each element is located immediately after its predecdasiothe ele-
ments of a linked list may be far apart, at irregular intervals.

Each element of a linked list is therefore provided with a pointer giving the address of the next ele-
ment. Inother words, each element iswnan dject with two data members. These objects are called
nodes.The payload data member will be nanvadue (to agree with th@alue_type typedef belw);
the pointer data member will be nanregkt . To loop from left to right along the linked list, we folldhe
next pointers. Theast node hasaext whose value is is zero.

value

— — — 0 next

If we also vant to loop from right to left, each node canénanother pointer namegrev , pointing
to the previous node. The first node hggev whose alue is is zero. The list is nosaid to bedoubly-
linked. (The code looks neater when theothames,next andprev , havethe same number of charac-
ters.)

I’'ve ramed the tw center noded® andd. Imagine that theare linked together in the middle of a
list, holding the valueR0 and40:

a b d e
10 20 40 50 || value
— — — 0 || next
o] - - — || prev

We an insert a ng nodec betweerb andd without moving ag existing node.

a b c d e
10 20 30 40 40 || value
—1 —1 — — 0 || next
0 N~ N— N N~ prev
The insert_this_before function in line 21 ofnode.h deals with tvo nodes. Butone of
them gets inserted while the other is merely a bystandave nadeinsert_this_before a member

function of the object that is inserte&imilarly, thelink function in line 18 mentions the pate mem-
bers of tvo nodes. Buthey play equal réles, so we matiek a friend. Finally thedetach function in
line 19 ofnode.h does not mention the pete members of annode. Ittherefore does not need to be a
member function or a friend. But we made it a member function anpweaye ould call it in line 27 of
main.C with the same syntax as tmesert_this_before in line 19 ofmain.C .

Copying a node might be useful for splicing genes into trees and networks, but it would corrupt our
simple lists. To make aure that no node can be copied, we let they @opstructor in line 10 ofiode.h be
private and undefined as we did with classe#f andrabbit . This made it impossible to pass thguwar

printed 4/8/14 All rights

8:38:59 AM reserved©2014 Mark MeretZky

214 ObjectsWithout Inheritance Chapter 2

ments ofink andinsert_this_before by value.

It is impossible for a node to contain a node—aild blav up to infinite size—but it is okay for a
node to contain a pointer to a node such as the data mepnbersandnext . We assign values to these
data members in lines 10, 25, 27, 34, and 3eoaoke.C , which is wty they had to be pointers, not refer
ences. Areference alays refers to the same object.

Code that constructsreode, or that otherwise requires us to kmthe size of anode, will have ©
wait until after the end of the class definition in line 2Gofle.h . But code that merely mentions class
node , without constructing an actuabde object, can appear watime after line 8. Simple examples are
the pointers in lines 12 and 18. more complicated one is on p. 716.

prev andnext are public to mad it possible for themain function to loop through the listThis
is what is meant by “fast and dirtygrogramming.) V& will make them prvate when we do iterators.

The C++ cowmention is to mak a ypedef namedalue_type for the type of data stored in a con-
tainer (lines 6, 9, and 25 obde.h). Anexample was back on pp. 153-154.

A final curiosity An inline member function or friend, defined within theurly brace} of a class
declaration, can mention a member or friend that has not yet been declared. This allows the destructor in
line 16 ofnode.h to mention thedetach function in line 19.1t is the only place where anything in C or
C++ can be mentioned before it is declared. See p. 119.

The operatorvalue_type member function in line 25 will be explained on pp. 315-316 and
used in line 52 ofinked.C on p. 399.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/node/node.h

1 #ifndef NODEH
2 #define NODEH
3 #include <iostream>
4 using namespace std,;
5
6 t ypedef int value_type;
7
8 class node { /IA node on a doubly-linked list.
9 value_type value;
10 node(const nodeé& another); /[deliberately undefined
11 public:
12 node “*prev;
13 node *next;
14
15 node(const value_type& initial_value);
16 “node() {detach();}
17
18 friend void link(node *n1, node *n2);
19 void detach() {link(prev, next);}
20
21 void insert_this_before(node *n);
22 void insert_this_after(node *n);
23
24 void print() const {cout << value;}
25 operator value_type() const {return value;} //explained in Chapter 3
26},
27 #endif

The leyword this is used in lines 45, 48, 54, and B&le saw it back in lines 101-105 of Version 3
onp. 117.

PSsso A hesenea ©2014 Mark Meretzky

Section 2.11 Friend Functions 215

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/node/node.C
1 #include <iostream>
2 #include <cstdlib> /lfor exit
3 #include <cassert> /ffor assert
4 #include "node.h"
5 using namespace std;
6
7 node::node(const value_type& initial_value)
8 {
9 value = initial_value;
10 next = prev=0;
11}
12

13 //Link the two nodes together.

14 //Sever nl from its successor, if any. Let n2 be the successor of nl.

15 //Sever n2 from its predecessor, if any. Let nl be the predecessor of n2.
16

17 void link(node *n1, node *n2)

18{

19 assert(nl I=n2 || n1 ==0);

20

21 if (n1){

22 if (nl->next){

23 //IMake sure nl->next->prev is correct before blowing it away.
24 assert(nl->next->prev ==nl);

25 nl->next->prev = 0;

26 }

27 nl->next = n2;

28 }

29

30 if (n2){

31 if (n2->prev) {

32 /IMake sure n2->prev->next is correct before blowing it away.
33 assert(n2->prev->next ==n2);

34 n2->prev->next = 0;

35 }

36 n2->prev = nl,;

37 }

38}

39

40 /insert this node into the list that contains n, immediately before or after n.
41

42 void node::insert_this_before(node *n)

43 {

44 if (n){

45 link(n->prev, this);

46 }

47

48 link(this, n);

49}

50

51 void node::insert_this_after(node *n)

52 {

PSsso A hesenea ©2014 Mark Meretzky

216 ObjectsWithout Inheritance Chapter 2

53 if (n){

54 link(this, n->next);
55 }

56

57 link(n, this);

58}

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/node/main.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "node.h"

4 using namespace std,;
5

6

7

8

i nt main()
{
node a(10);
9 node b(20);
10 node d(40);
11 node e(50);
12
13 link(&a, &b);
14 link(&b, &d);
15 link(&d, &e);
16
17 llInsert c between b and d.
18 node ¢(30);
19 c.insert_this_before(&d);
20
21 for (const node *p = &a; p; p = p->next) {
22 p->print();
23 cout <<"\n";
24 }
25
26 cout <<"\n";
27 c.detach();
28
29 for (const node *p = &a; p; p = p->next) {
30 p->print();
31 cout <<"\n";
32 }
33
34 return EXIT_SUCCESS;
35}

PSsso A hesenea ©2014 Mark Meretzky

1
2
3
4

Section 2.12 Enumerations as Members of a Class 217

10 lines 21-24
20
30
40
50

10 lines 29-32
20
40
50

A linked list is faster than an array for making insertions and deletinatgead of moving manele-
ments, an insertion merely had to radke two links in lines 45 and 48 of the almnode.C . The price
we pay for this speed is the two-pointeertiead attached to each list element. Buvamtays we hee
memory to burn, dohwe?

Now that wevve made a linked list, we canweal that a doubly-linked list class has already been writ-
ten for us in the C++ Standard Librajyst as astack class has been prided. Seet on pp. 443-450.

2.12 Enumerationsas Members of a Class

Macros
Does line 8 construc® pril 7" or **July 4"?

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/macro/nomacro.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

date d1(7, 4,1776);

date d2(10, 29, 1929);

date d3(12, 7, 1941);
date d4(7, 20, 1969);
date d5(9, 11, 2001);

d1.print();
cout <<"\n";

d2.print();
cout <<"\n";

d3.print();
cout <<"\n";

d4.print();
cout <<"\n";

d5.print();
cout <<"\n";

PSsso A hesenea ©2014 Mark Meretzky

218 ObjectsWithout Inheritance Chapter 2

29 return EXIT_SUCCESS;
30}

71411776
10/29/1929
12/7/1941
7/20/1969
9/11/2001

We @n male it dearer with the 12 macros in lines 6—1\Ke wse them not only as constructogar
ments, but also in the comments and wiareve mention a month number.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/macro/date.h

#ifndef DATEH
#define DATEH
#include <iostream>
using namespace std;

#define JANUARY 1
#define FEBRUARY 2
8 #define MARCH 3
9 #define APRIL 4
10 #define MAY 5
6
7

NOoO o~ WNPRE

11 #define JUNE

12 #define JULY

13 #define AUGUST 8
14 #define SEPTEMBER 9
15 #define OCTOBER 10
16 #define NOVEMBER 11
17 #define DECEMBER 12

18
19 class date {
20 int year;
21 int month; //JJANUARY to DECEMBER inclusive
22 int day; n to date_length[month] inclusive
23 public:
24 date(int initial_month, int initial_day, int initial_year);
25 void next(int count = 1); //IGo count days forward.
26 void print() const {cout << month << "/" << day << "/" << year;}
27%,
28 #endif
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/macro/date.C

1 #include <iostream>

2 #include <cstdlib>

3 #include "date.h"

4 using namespace std,;

5

6 constint date_length[] = {

7 0, [/dummy element so that JANUARY will have subscript 1

8 31, /IJANUARY

9 28, //[FEBRUARY

P3sso A hesenea ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class

10 31, /IMARCH
11 30, /IAPRIL
12 31, IIMAY
13 30, /IJUNE
14 31, /IJULY
15 31, IIAUGUST
16 30, /ISEPTEMBER
17 31, /IOCTOBER
18 30, /INOVEMBER
19 31 /IDECEMBER
20}
21
22 date::date(int initial_month, int initial_day, int initial_year)
23{
24 if (initial_month < JANUARY || initial_month > DECEMBER) {
25 cerr << "bad month " << initial_month << "/" << initial_day
26 << "' <<initial_year << "\n";
27 exit(EXIT_FAILURE);
28 }
29
30 if (initial_day < 1 || initial_day > date_length[initial_month]) {
31 cerr << "bad day " << initial_month << "/" << initial_day
32 << "' <<initial_year << "\n";
33 exit(EXIT_FAILURE);
34 }
35
36 year = i nitial_year;
37 month = i nitial_month;
38 day = i nitial_day;
39}
40
41 void date::next(int count)
42
43 div_t divide = div(count, 365);
44 if (divide.rem <0){
45 divide.rem += 365;
46 --divide.quot;
47 }
48
49 year +=divide.quot;
50 day +=divide.rem;
51
52 while (day > date_length[month]) {
53 day -=date_length[month];
54 if (++month > DECEMBER) {
55 month = JANUARY;
56 ++year,;
57 }
58 }
59}
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/macro/main.C

1 #include <iostream>

219

PSs 5o A hesenea ©2014 Mark Meretzky

220 ObjectsWithout Inheritance Chapter 2

2 #include <cstdlib>
3 #include "date.h"

4

using namespace std;

date d1(JULY, 4, 1776);
date d2(OCTOBER, 29, 1929);
date d3(DECEMBER, 7, 1941);
date d4(JULY, 20, 1969);
date d5(SEPTEMBER, 11, 2001);

d1.print();
cout <<"\n";

d2.print();
cout <<"\n";

d3.print();
cout <<"\n";

d4.print();
cout <<"\n";

d5.print();
cout <<"\n";

return EXIT_SUCCESS;

71411776
10/29/1929
12/7/1941
7/20/1969
9/11/2001

Enumerations

Consecutiely numbered macros are practical only if there are a small number of them. If we had
mary more, or if thg often had to be inserted, deleted, or reordered, siddwnot want to renumber them
by hand.

The enumeation valuesin lines 7-18 ofdate.h are like mass-produced, conseatdly numbered
macros. lfwe insert, delete, or reordéney will automatically renumber themselves the next time we com-
pile.

By default, the enumerations are numbered starting at zere;lthie line 7 starts the numbering at

1.
Themonth_type inline 6 is the name for a data type which can holdadithese enumeratioraix
ues.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/enum/date.h

1 #ifndef DATEH
2 #define DATEH

PSsso A hesenea ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class 221

3 #include <iostream>
4 using namespace std,;

5
6 enum month_type {
7 j anuary =1,
8 f ebruary,
9 march,
10 april,
11 may,
12 june,
13 july,
14 august,
15 september,
16 october,
17 november,
18 december
19}
20
21 class date {
22 int year;
23 int month; //january to december inclusive
24 int day; n to date_length[month] inclusive
25 public:
26 date(int initial_month, int initial_day, int initial_year);
27 void next(int count = 1); //IGo count days forward.
28 void print() const {cout << month << "/" << day << "/" << year;}
29},
30 #endif
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/enum/date.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std,;
5
6 constint date_length[] = {
7 0, / /dummy element so that january will have subscript 1
8 31, [/ljanuary
9 28, [lfebruary
10 31, /Imarch
11 30, [lapril
12 31, /Imay
13 30, /fjune
14 31, Ijuly
15 31, /laugust
16 30, /Iseptember
17 31, /loctober
18 30, /Inovember
19 31 /ldecember
20 };
21

22 date::date(int initial_month, int initial_day, int initial_year)
23{

printed 4/8/14
8:38:59 AM

All rights
reserved

©2014 Mark Meretzky

222 ObjectsWithout Inheritance

24 if (initial_month < january || initial_month > december) {
25 cerr << "bad month " << initial_month << "/" << initial_day
26 << "' <<initial_year << "\n";

27 exit(EXIT_FAILURE);

28 }

29

30 if (initial_day < 1 || initial_day > date_length[initial_month]) {
31 cerr << "bad day " << initial_month << "/" << initial_day
32 << "' <<initial_year << "\n";

33 exit(EXIT_FAILURE);

34 }

35

36 year = i nitial_year;

37 month = i nitial_month;

38 day = i nitial_day;

39}

40

41 void date::next(int count)

42

43 div_t divide = div(count, 365);

44 if (divide.rem <0){

45 divide.rem += 365;

46 --divide.quot;

47 }

48

49 year +=divide.quot;

50 day +=divide.rem;

51

52 while (day > date_length[month]) {

53 day -=date_length[month];

54 if (++month > december) {

55 month = j anuary;

56 ++year,

57 }

58 }

59}

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/enum/main.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "date.h"

4 using namespace std,;
5

6

7

8

i nt main()
{
date d1(july, 4, 1776);
9 date d2(october, 29, 1929);
10 date d3(december, 7, 1941);
11 date d4(july, 20, 1969);
12 date d5(september, 11, 2001);
13
14 d1.print();
15 cout <<"\n";

printed 4/8/14
8:38:59 AM

All rights
reserved

Chapter 2

©2014 Mark Meretzky

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30}

abrwWwNRE

~

Section 2.12 Enumerations as Members of a Class 223

d2.print();
cout <<"\n";

d3.print();
cout <<"\n";

d4.print();
cout <<"\n";

d5.print();
cout <<"\n";

return EXIT_SUCCESS;

Enumeration arithmetic

We @n cowert an enumeration to ant implicitly, but in the opposite direction we must write a
cast.

i nti=10;

nmonth_type m = january;

i =m / Iconvert enum to int
m = static_cast<month_type>(i); //convert int to enum

The cast makes the agmsion easy to find if anything goes wrongnd something could potentially go
wrong: theint could easily be too big to fit in the enumeration. On the other hand, an enumeration will
(almost alvays) fit in anint .

Incidentally theres a smpler way to write the abe line 5. Although an enumeration is not an ob-
ject, we can pretend it has a constructor taking ogenaent. Insteadf creating the enumeration with a
cast, we can create it with a constructor.

m = nonth_type(i); /lconvert int to enum

To avoid the enumeration cast or constructee kept the data typmt for the first agument of the
constructor for the alve dassdate . This permits both of the following.

date d1(7, 4, 1776); [ffirst argument is an int
date d2(july, 4, 1776); [ffirst argument is an enumeration

The data membemnonth also remained aimt so that line 54 of the akedate.C could still say
++month . We won’t be &le to increment an enumeration until we do operater@ading.

Enumeration members of a class

If the namguly were already taken by the enumeration in line 13 of theeatmte.h , we ould
not have the global ariablejuly in line 7 of the folleving main.C . This would be anxample ofname
space pollution.

To avoid pollution, our enumerations will mobe nmembers of clasdate . This will let us hae a
global variable or a global function namety . Inthe same way, we dso have wo print functions: the
member functioprint and the global functioprint in line 6 ofmain.C .

Inside the body of a member function of cldate , we don't write anything in front of a member of
classdate . We can therefore keep tidate.C file from the previousxample. Init, for example, the
month andjanuary in line 55 will nov be members of clasdate .

PSsso A hesenea ©2014 Mark Meretzky

224 ObjectsWithout Inheritance Chapter 2

But outside the body of a member function of cldate , a member of classlate must alvays be
preceded by something to tell the computer which object it belongt@xample,july andprint are
members of the objedtl in lines 17 and 23 ahain.C .

If the member has the same value feerg object of the class, we can write the name of the class
with a double colon in front of the membeather than the name of an object with a dédr example, the
enumeration membguly in lines 17 and 18 ahain.C will always hare the value 7 ineery object of
classdate , so we write line 19 to &oid accusations ofalvaritism. Anotheradwantage of 19 is that it can
be executed @en when nodate objects &ist. (A static data member will alsoVethe same value forve
ery object of the class. See p. 240 the other hand, the data memimamth can hae a dfferent \alue
in different objects of clasate , and the data members used in the member funptiom can hae df-
ferent values in different objects of clakse .

If there is no object name or class name in front of an identifier outside the body of a member func-
tion, the compiler assumes that it is the name of something that is not a membyecla§sanExampleare
in lines 20 and 22 ahain.C .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/enummember/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std,;
5
6 class date {
7 i ntyear;
8 i nt month; /[date::january to date::december inclusive
9 i nt day; /1 to date_length[month] inclusive
10 public:
11 enum month_type {
12 january =1,
13 february,
14 march,
15 april,
16 may,
17 june,
18 july,
19 august,
20 september,
21 october,
22 november,
23 december
24 3
25
26 date(int initial_month, int initial_day, int initial_year);
27 void next(int count = 1); //IGo count days forward.
28 void print() const {cout << month << "/" << day << "/" << year;}
29},
30 #endif
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/enummember/date.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std,;

PSsso A hesenea ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class

5

6 constint date_length[] = {

7

8

9
10
11
12
13
14
15
16
17
18
19
20 };
21
22 date::
231
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39}
40

0, [/dummy element so that january will have subscript 1
31, [/ljanuary
28, [lfebruary

31, /Imarch

30, [lapril

31, /Imay

30, /ljune

31, july

31, /laugust

30, /Iseptember
31, /loctober
30, /Inovember
31 /[december

date(int initial_month, int initial_day, int initial_year)

if (initial_month < january || initial_month > december) {
cerr << "bad month " << initial_month << "/" << initial_day
<< "' <<initial_year << "\n";
exit(EXIT_FAILURE);
}

if (initial_day < 1 || initial_day > date_length[initial_month]) {
cerr << "bad day " << initial_month << "/" << initial_day
<< "' <<initial_year << "\n";
exit(EXIT_FAILURE);

}

year = i nitial_year;
month = i nitial_month;
day = i nitial_day;

41 void date::next(int count)

42 {
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

div_t divide = div(count, 365);

if (divide.rem < 0){
divide.rem += 365;
--divide.quot;

}

year +=divide.quot;
day +=divide.rem;

while (day > date_length[month]) {
day -=date_length[month];
if (++month > december) {
month = j anuary;
++year;

225

PSsso A hesenea ©2014 Mark Meretzky

226 ObjectsWithout Inheritance

59}
—On the Web at
http://i5.nyu.edu/ Omm64/book/src/enummember/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std,;
5
6 i nline void print() {cout << "the global print\n";}
7 const double july = 80.5; /[Fahrenheit
8
9 i nt main()
10{
11 date di(date::july, 4, 1776);
12 date d2(date::october, 29, 1929);
13 date d3(date::december, 7, 1941);
14 date d4(date::july, 20, 1969);
15 date d5(date::september, 11, 2001);
16
17 cout <<dl.july<<"\n" /lthe member july
18 << d2.july <<™\n" /lthe member july
19 << date:july <<"™\n" //better way to say the member july
20 << july <<"\n"; /lthe non-member july in line 7
21
22 print(); /lthe non-member print in line 6
23 d1.print(); /lthe member print
24 cout <<"\n";
25
26 d2.print();
27 cout <<"\n";
28
29 d3.print();
30 cout <<"\n";
31
32 d4.print();
33 cout <<"\n";
34
35 d5.print();
36 cout <<"\n";
37
38 return EXIT_SUCCESS;
39}

printed 4/8/14
8:38:59 AM

All rights
reserved

Chapter 2

©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class 227

7 line 17
7 line 18
7 line 19
80.5 line 20
the global print

714/1776

10/29/1929

12/7/1941

7/20/1969

9/11/2001 line 38

Now that march , may, and august are members of clagiate , we @an create members named
march , may, andaugust of other classes. (See pp. 1024-1025 for a better wayeddhgim last names.)

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/enummember/main2.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std,;
5
6 class music {
7 public:
8 enum {
9 waltz,
10 march,
11 tango
12 3
13}
14
15 class verb {
16 public:
17 enum {
18 will,
19 shall,
20 can,
21 may
22 3
23}
24
25 class cape {
26 public:
27 enum {
28 canaveral, //[Florida
29 cod, //Massachusetts
30 may /INew Jersey
31 3
32}
33
34 class adjective {
35 public:
36 enum {
37 majestic,
38 sublime,
39 august

PSsso A hesenea ©2014 Mark Meretzky

228 ObjectsWithout Inheritance Chapter 2

40 h
41}
42
43 int main()
44 {
45 cout << date::march <<"\n"
46 << music::march << "\n\n"
47
48 << date:may << "\n"
49 << verb:may <<"\n"
50 << cape:may << "\n\n"
51
52 << date::august << "\n"
53 << adjective::august << "\n";
54
55 return EXIT_SUCCESS;
56 }

3

1

5

3

2

8

2

2.13 Arraysof Objects

An array of integers

An array is a group of griables at equally spaced addresses. The variables are calidentieaits
of the array An aray element must therefore be arigble that has a memory address. This includes ob-
jects and pointers, but not references: a reference has no address/nf iSeap. 80.

It is only fair to warn you that arrays will shortly be supersedededoyovs. Avector will have te
look and feel of an array (e.g., thequare braaktd) but without its dravbacks. ‘éctors will hae wait,
however, until we do “operator werloading”.

Before constructing an array of objects, we will mak aray of integers and an array of structures.
The definition in lines 7-20 creates an array of 12gerte Itis meaningless to ask what orderyttaee
created in: nothing happens when an integer is born, so there is no experiment we could perform to produce
an observable effect showing us the ardére question belongs to the realm of metaphysics.

Use the data typgize t for a variable that holds an array subscript (line 23) or the number of ele-

ments in an array (line 215ee p. 66.Thesizeoffsizeof idiom in line 21 was last seen in line 33 of
wolf.C on p. 198.
But dont use thesize _ti loop in lines 23-25.0n some platforms, the pointprloop in lines

29-31 will run fster It is dso safer If theconst were remaed from line 7, the array could be damaged
by an expression such asafi] but could not be damaged by+*p . The latter expression would not
compile becausp is a read-only pointer.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/array/int.C

PSs 5o A hesenea ©2014 Mark Meretzky

1
2
3

©O© oo~NO OA~

Section 2.13 Arrays of Objects 229

#include <iostream> /lincludes cstddef, where size_t is defined
#include <cstdlib>
using namespace std;

i nt main()
{
constint a] ={
31, /lJanuary

28, [/IFebruary, ignoring for now the possibility of leap year
31, //March
30, /[April
31, //May
30, //June
31, //July
31, //August
30, //ISeptember
31, //October
30, //November
31 /[December

h

const size_t n = sizeof a/ sizeof a[0];
for (size_ti=0;i<n; ++i){
cout <<afil<<"\n"

}

cout <<"\n";

for (constint*p=a;p<a+n; ++p){
cout <<*p<<"\n"

}

return EXIT_SUCCESS;
31
28
31 etc.

An array of structures

The definition in lines 12-25 creates an array of 12 structures, each containing an integer and a point-
er. Agan, it is meaningless to ask what order the structures are creatBdtinng happens when a struc-
ture containing an integer and pointer is born.

In the expressiona]i].length in line 29, the tw operators hee equal precedence and left-to-
right associativity The[] executes before the dot:

al[|i]] . |length

This is exactly the order we need for an array of structures.
(1) Sinceais an arraywe gply a[] operator to it to dekvinto it and get the element we want.

PSsso A hesenea ©2014 Mark Meretzky

230 ObjectsWithout Inheritance Chapter 2

(2) Sincethe element is a structure, we apply a dot operator to it t@ dely it and get the field we

want.

But dont write thesize_ti loop in lines 28-30.The pointerp loop in lines 34-36>ecutes &ster
on some platforms, and is safer because the pointer is readMabBt importantly the p->length in
line 35 is simpler than thei].length in 29.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/array/structure.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 struct month {
6 i ntlength;
7 const char *name;
8 };
9
10 int main()
114
12 const month af] ={ /IC++ doesn’'t need the keyword struct here.
13 {31, "January"},
14 {28, "February"},
15 {31, "March"},
16 {30, "April"},
17 {31, "May'"},
18 {30, "June'},
19 {31, "July"},
20 {31, "August"},
21 {30, "September"},
22 {31, "October"},
23 {30, "November"},
24 {31, "December"}
25 3
26 const size_t n = sizeof a / sizeof a[0];
27
28 for (size_ti=0;i<n;++i){
29 cout << a[i].length << "\t" << aJi].name << "\n";
30 }
31
32 cout <<"\n"
33
34 for (const month *p =a; p <a+n; ++p) {
35 cout << p->length << "\t" << p->name << "\n";
36 }
37
38 return EXIT_SUCCESS;
39}
31 January
28 February
31 March etc.

PSsso A hesenea ©2014 Mark Meretzky

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Section 2.13 Arrays of Objects 231

An array of objects

The definition in lines 8-16 creates an array ses@bjects. Wheran object is born a constructor is
called, possibly with an observable effect such as the production of output. Whewena baay of ob-
jects, it therefore becomes meaningful to ask what order the elements are created in. The array definition
calls the constructors for thevea objectsa[0] throughal6] , in that order Line 31 calls their destruc-
tors in the reerse orderor at kast it would hee if classdate had a destructor.

It's oo bad that we & 10 write the constructos' rame (late), and the parentheses around itpuar
ment list, in lines 9-15. From moon, we will assume that clagate has the 12 public enumerations, so
will feel free to use them asguments of the constructors. Lines 14-15 demonstrate that wehdwato
call the same constructor for each element of the array.

In the epressiomali].print() in line 20, the three operatorsveagual precedence and left-to-
right associativity:

al|[|i|] .| print 0

This is exactly the order we need for an array of objects.
(1) Sinceais an arraywe gply a[] operator to it to dekvinto it and get the element we want.

(2) Sincethe element is an object, we apply a dot operator to it teedaie it and get the member we
want.

(3) Sincethe member is a function, we apply (e operator to it to call it.

But dont write thesize_ti loop in lines 19-22.The pointerp loop in lines 26—29xecutes &ster
on some machines, and is safer because the pointer is readviwdy importantly the p->print() in
line 27 is simpler than thegi].print() in 20.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/array/object.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

i nt main()
{
const date a[] = {
date(date::july, 4, 1776), /ICall the 3-argument constructor.
date(date::october, 29, 1929),
date(date::december, 7,1941),
date(date::july, 20, 1969),
date(date::september, 11, 2001),
date(), /ICall the default constructor.
date(a[5]) /ICall the copy constructor.

h

const size_t n = sizeof a/ sizeof a[0];
for (size_ti=0;i<n; ++i){

a[i].print();
cout <<"\n"

}

cout <<"\n";

PSsso A hesenea ©2014 Mark Meretzky

232 ObjectsWithout Inheritance Chapter 2

25

26 for (constdate *p=a;p<a+n;++p){
27 p->print();

28 cout <<"\n";

29 }

30

31 return EXIT_SUCCESS;

32}

71411776 lines 19-22
10/29/1929

12/7/1941

7/20/1969

9/11/2001

4/8/2014

4/8/2014

71411776 lines 26-29
10/29/1929

12/7/1941

7/20/1969

9/11/2001

4/8/2014

4/8/2014

Call a one-argument constructor for an array element

When calling a one-argument constructor for an array element, wehdow'to write the name of
the constructor and the parentheses around the object. dbjasgas on p. 179-180.

—On the Web at

http://i5.nyu.edu/ Cmmé64/book/src/array/one_arg.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std,;
5
6 i nt main()
7
8 obja]] ={
9 0bj(10), /ICan write name of constructor and parentheses...
10 obj(20),
11 0bj(30)
12 3
13 const size_t na = sizeof a / sizeof a[0];
14
15 obj b[J={
16 40, /l...but don’t have to when constructor has 1 arg.
17 50,
18 60
19 3
20 const size_t nb = sizeof b / sizeof b[0];
21
22 for (size_ti=0;i<nb; ++){

PSs 5o A hesenea ©2014 Mark Meretzky

23
24
25
26
27
28}

29

NOoO o~ WNPRE

Section 2.13 Arrays of Objects 233

b[i].print();
cout <<"\n";

}

return EXIT_SUCCESS;

construct 10
construct 20
construct 30
construct 40
construct 50
construct 60
40

50

60

destruct 60
destruct 50
destruct 40
destruct 30
destruct 20
destruct 10

Line 15 of the abee object.C may therefore be written as

a[5]

Call the default constructor for every array element

A default constructotis one that can be called with n@aments, either because it has rguarents
at all or because it has a default value f@rgamgument. Seep. 134-135.

Here are constructors with no arguments at all:
(1) theconstructor for clasgero on pp. 134-135
(2) theconstructor for clasdate on pp. 142-143
(3) theconstructor for classtack on pp. 149-154
Here are constructors with a default value f@rg argument:
(4) theconstructor for claserminal on pp. 157-163
(5) theconstructor for clasgoint on pp. 201-204
All of the abae ae default constructors.

The definition in line 9 calls the default constructor for each array elerttentll compile only if
there is a defult constructor When providing no explicit initial values, we must write the number of ele-
ments in thg square brackelsin line 9.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/array/no_arg.C

#include <iostream>
#include <cstdlib>
#include "date.h"
using namespace std;

i nt main()

{

P3sso A hesenea ©2014 Mark Meretzky

234 ObjectsWithout Inheritance Chapter 2

8 constsize tn=3;
9 const date a[n]; //Call the default constructor n times.
10
11 for (constdate *p=a;p<a+n;++p){
12 p->print();
13 cout <<"\n";
14 }
15
16 return EXIT_SUCCESS;
17}
4/8/2014 three copies of today’'date
4/8/2014
4/8/2014

C does not allav us to se the value of anvariable in an expression declaring the number of ele-
ments in an array.

18 /¥ C example */
19 const size tn=10;
20 int a[n]; /* won'’t compile, even though n was const */

In C, then in the abwe line 20 would hee © be danged to a literal0, or to an &pression whosealue
does not depend on the value of &ariable or on the return value ofyafunction. Amacro for a lgd ex-
pression could also be used.

C++ lets us write an array dimension as gporession whose value can depend on the value afia v
able, provided that the expression can @uated when the program is compiled. This is callemba:
stant epression.If the value of a constankpression depends on the value of a variable, the variable must
beconst and its initial value must in turn be a constant expression.

21 /[C++ example

22 size t nl=10;

23 const size tn2=nl;

24 const size tn3 =10 + 20;

25 inline size_t f() {return 10;}

26

27 int al[nl]; //won't compile: n1 was not const

28 int a2[n2]; //lwon't compile: initial val of n2 was not a const expr
29 int a3[n3]; /will compile

30 int a4[f()]; //won’t compile: can’t use return value of function

The abee line 30 just happens to compile with the GNU comgiler, but it shouldn't.

Explicit initial values are mpied into an array

We havealready seen an array of objects with explicit initial values.
—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/array/copy.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

nt main()

NOoO o~ WNPRE

i
{

PSs 5o A hesenea ©2014 Mark Meretzky

8
9

10}

NOoO o~ WNPEP

Section 2.13 Arrays of Objects 235

obj a[] = {10, 20, 30};
r eturn EXIT_SUCCESS;

construct 10 Did not call copy constructor.
construct 20

construct 30

destruct 30 Line 9 destructs.

destruct 20

destruct 10

But the computer is within its rights if it creates objects outside of the an@yhen copies them in-
to the array by calling the cgponstructor for each elemendith an older compilgior with the
-fno-elide-constructors option of theg++ compiler the output is the follwing. Seep. 137 for a
non-array example of the compileteecising this right.

construct 10 Construct an object outside the array.
copy construct 10 Copy it into the first array element.
destruct 10 Destruct the object outside the array.

construct 20

copy construct 20

destruct 20

construct 30

copy construct 30

destruct 30

destruct 30 Line 9 destructs.
destruct 20

destruct 10

We nust therefore be allowed to call the gapnstructor for the objects in an array wittpkcit ini-
tial values. Thigs true @en if the compiler is smart enough teoad the actual calls to the cpponstruc-
tor.

v Homework 2.13a:
Version 1.3 of the Rabbit Game: array of rabbits

Remaove the rabbitr in line 19 ofmain.C on p. 194. In its place, define axpécitly initialized ar
ray of at least three nazenst rabbits like the explicitly initialized array oflate ’s in lines 8-16 of
object.C on p. 231. Name the array Initialize each rabbit to a dérent position, making sure that the
X, y arguments of the constructor of eaabbit are on the screen. After defining the ajuse the
sizeoffsizeof idiom to count the array elements. Store this number in a constant named

Remaore the declaration for the undefined gognstructor for classabbit you wrote on p. 200.
The computer will nav provide us with a cop constructoy dlowing the array definition to compileBut
let's hope that the compiler is smart enoughwoic calling this cog constructor We don’t want to dupli-
cate thaabbit ’s.

Change the main loop in lines 21-28naéin.C on p. 194 to the follwing. Thegame will now end
as soon as theolf kills anyrabbit

f or (;; term.wait(250)) {
i f ('w.move()){
goto done;

}

f or (let p be a read/write pointer to each rabbit in the array) {
i f (!'p->move()){

PSsso A hesenea ©2014 Mark Meretzky

10
11
12
13
14

236 ObjectsWithout Inheritance Chapter 2

goto done;

done:;
continue with lines 30ff. on p. 194

Change the message to “You killadrabbit!”, since there is n@ more than one of them.

It's o bad that the alve lines 2—-4 duplicate lines 7-®But for the time being, the duplication has
to remain: the wolf cahbe an ément in an array of rabbits, so it has to bevedceparately When we
do inheritance, avolf and arabbit will become, in some sense, the same species of animal (a
“wabbit "), and will then be able to share the same array.

A

v Homework 2.13b: platform dependent output

In howv mary ways can a C++ programgaly produce diferent output on different platforms2on-
sider expressions whose operators canxXeeuted in diferent orders; global objects in separate source
files; temporaries that can be elided when initializing an object or an array of objects; and objects returned
from a function via pass-by-value.

Is the data typehar signed or unsigned on your machine? Can you write a program where this af-
fects the output? What happens if you try to storalaevinto a signed integral variable that is too small to
hold it? Does a pointer print in ker octal on your machine?

i nti=10;

cout << &i << "\n";

2.14 StaticMembers

2.14.1 StaticData Members

Here is a picture of three rabbits in an arr&ach rabbit has different values in ksandy data
members: we do not allotwo rabbits in the same place at the same tiie.ampersand represents a
pointer \alue. Althoughthe rabbits hee pinters to the same terminalwathey will have dfferent point-
ers when we he mnultiple terminals.

But every rabbit has thesamevalue (r') in its ¢ data memberThis was a non-issue when there
was anly one rabbit. But n@ that we hae an aray of them, we are wasting memory:

& & & ||t
10 20 30| x
3 6 9|y
T T T c
a[0] a[1] a[2]

We @an sae memory by making all the rabbits share just oneyad. It will not be physically in-
side of ag rabbit, but will still be a pviate data member of the class, entitled to all theilpges and pro-
tection pertaining thereto. This kind of member is callsthtic data member.

PSsso A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUOTPA,WNPE

Section 2.14.1 Static Data Members 237

& & & ||t

10 20 30| x

3 6 9|y
al0] all] al2]

No matter hw mary rabbits exist at a gen moment, there will abays be exactly one cgpof the
static data membar. Even dter all of the rabbits hae keen destructed; will persist until the end of the
program. ¢ will also be there before the first rabbit is constructed, areh, weirder will exist even if no
rabbit isever constructed. Astatic data member is as immortal as a global variable.

This means that the constructor for class rabbit isveglief its normal responsibility for initializing
¢, so we wil have o remove the statemert = ’ r’; from line 11 ofrabbit.C on p. 196.

Line 7 declares a static data membEne declaration is the only place where we write #svkrd
static when creating this kind of membeThis keyword means “static membeérdnly when written
within the{ curly brace} of a class declaration. Outside of a class declaration, it has the same meanings it
had in C.

It does not matter whether the declaration comes before or after the non-static data members. In ei-
ther case, the static data member will be created long before the @bedeclare it first because it is cre-
ated first. (If there were twvor more static data members, yheould be created in the order yheere de-
clared in.)

/ [Excerpt from the file rabbit.h.
#ifndef RABBITH

#define RABBITH

#include "terminal.h"

class rabbit {
static const char c; /ldeclaration
const terminal *t;
unsigned x, y;

But we must do more than just declareWe must also define it, i.e., create and initialize it. Do this
in line 16, abwe te function definitions in thebbit.C file. Donot repeat thedyword static here.

10 //Excerpt from the file rabbit.C.
11 #include <iostream>

12 #include <cstdlib>

13 #include "rabbit.h"

14 using namespace std;

15

16 const char rabbit::c = 'r’; //definition

17

18 rabbit::rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
19 {

20 t = &initial_t;

21 X = i nitial_x;

22 y = initial_y;

23 /[Do notinitialize ¢ here; c has already been initialized.

PSsso A hesenea ©2014 Mark Meretzky

238 ObjectsWithout Inheritance Chapter 2

The definition in the ah@ line 16 consists of the same three parts as a simpler definition such as
inti=10;

name of name of initial
data type variable value
int i = 10;
const char rabbit::c = r;

Newer versions of C++ let us declare and define a static data member in a single line. But this nota-
tion can be used only if the member is also constant, and integral (p. 61) or an enumeration, and if its initial
value is a constant expression (p. 234).

Since our data memberand its initial value meet all the requirements, we can declare and define it
in one statement in line 30, removing theablne 16.

24 [[Excerpt from the file rabbit.h.
25 #ifndef RABBITH

26 #define RABBITH

27 #include "terminal.h"

28

29 class rabbit {

30 static constcharc="r"; /ldeclaration and definition
31 const terminal *t;

32 unsigned X, V;

¥ Homework 2.14.1a:
Version 1.4 of the Rabbit Game: static data member for classe®lf and rabbit

Let thec data member of claggbbit be static. Do the same for tliedata member of class
wolf , even though there is currently only oneolf . Use the abee line 30 if you can; lines 7 and 16 if
you must. Nav thatc is static, declare it before the other data members.

We airrently hae anly one terminal, so we could maket data members static too. But dbdd
this. We would only hae o undo it when we hze multiple terminals.
A

v Homework 2.14.1b: another way to think of a static data member

Weve seen seeral variables that we kan’t known where to put. Each one was floating, Senfmet
unsatisfactorilynear an associated class.

(1) date_length floating near clasdate in lines 5-19 ofversion3.C on p. 115;
(2) life_ymax andlife_xmax floating near claséfe in lines 5-6 ofife.h on pp. 145-146;
(3) stack_max_size floating near classtack in line 5 ofstack.h on p. 148;

(4) point_error andpoint_origin floating near claspoint , in line 7 ofpoint.h on p. 206
and line 5 opoint.C on p. 202.

Each ariable had no official connection with its class. It was not a data member; it merely had the
name of the class and an underscore prefixed to its own name.

For security, we would like the variable to be prate data member of its associated class. And no
we hare a vay to do this.We @n let the variable be a staticyate data member.

Make the following changes, except for cldi$s

(1) Let date_length be a pwate static data member of cladate and rename itength
You'll have © write the number of elements in thequare braakq of the declarationWrite this number
asl12+1 |, rather tharl3, to make the magic numbet?2 visible.

Since an array is not an integral data type, yoo'ile ale to define it in the class declaration in the
.h file. Defineitin thedate.C file.

PSs 5o A hesenea ©2014 Mark Meretzky

Section 2.14.1 Static Data Members 239

Now thatlength is a private data membepbsene that we can change it with no repercussions be-
yond the member functions of the clagsr example, we could renve the dummy element from the start
of the array But just obserg this—dont do it.

(2) We will eventually letlife_xmax andlife_ymax be private static data members of class
life , renaming themxmax andymax. They must be initialized before being used by the array declara-
tion in line 4. This means that tlyecan be static data members only in versions of C++ that permit the ini-
tialization in line 30 on p. 238.

1 class life {

2 static const size_t xmax = 10;

3 static const size_t ymax = 10;

4 bool matrix[ymax][xmax];

5 / letc.
But even if the initializations are permitted, we calét xmax andymax be static data members yéthe
problem is that themust also be initialized before being used by the typedefgdomatrix_t and
_life_matrix_t , which currently must be writtelmefore the declaration for clagge

6 constsize tlife_xmax = 10;
7 constsize_tlife_ymax = 10;
8
9 t ypedef bool life_matrix_t[life_ymax][life_xmax];
10 typedef bool _life_matrix_t[life_ymax + 2][life_xmax + 2]; //internal use only

11

12 class life {

13 _life_matrix_t matrix;
14 /letc.

The eventual solution will be to mee the typedef into the class itself (pp. 423-424).

15 class life {

16 static const size_t xmax = 10;
17 static const size_t ymax = 10;
18 typedef bool _life_matrix_t[ymax + 2][xmax + 2]; [lprivate typedef
19 _life_matrix_t matrix;
20 public:
21 typedef bool life_matrix_t[ymax][xmax]; /Ipublic typedef
22 life(const life_matrix_t initial_matrix);
But dont do this yet.

(3) Let stack_max_size be a pwate static data member of clastack , and rename it
max_size . Butstack_max_size is used as the dimension of an arigystack_max_size must
have a aluebefore the array is declaredThereforestack_max_size can be a static data member only
in versions of C++ that permit the initialization in line 30 on p. 238

23 class stack {

24 static const size_t max_size = 100;
25 value_type a[max_size];
(4) Letpoint_error and point_origin be private static data members of clgssint , and

rename thenerror andorigin . The member functiodist with no explicit arguments can wde-
come inline; see p. 210. Note that it would be impossible for plasis$ to have apoint as a non-static
data member—aoint object would blev up to infinite size—but claspoint can hae apoint as a
static data member.

A

PSs s A hesenea ©2014 Mark Meretzky

240 ObjectsWithout Inheritance Chapter 2

v Homework 2.14.1c: another static data member for class date

Let the following array be a mdte static data member of clagaste . In the initialization for a static
data membeme an mention the names of other static data membeas pevate ones.

1 / /Excerpt from date.C.
2
3 / /INumber of days in the year before each month. For example, pre[3] is
4 | /59 == 31 + 28, because there are 59 days in the year before March 1.
5
6 constint date::pre[] = {
7 0, / /dummy element to give january subscript 1
8 0, / ljanuary
9 pre[1] + length[1], [ffebruary
10 pre[2]+ length[2], //march
11 pre[3]+ length[3], [april
12 pre[4] + length[4], //may
13 pre[5]+ length[5], /ljune
14 pre[6] + length[6], Ijuly

15 pre[7]+ length[7], /laugust
16 pre[8]+ length[8], //september

17 pre[9]+ length[9], /loctober

18 pre[10] + | ength[10], //november
19 pre[11] + | ength[11] //december
20}

If your classdate is implemented with three data members, letistian ~ member function be a
single statement.

21 return pre[month] + day;

The function can ne be inline for ezen more speed.

If your date is implemented with one data membget rid of the loop in the constructor for the
one-data-member cladate .

22 day = 365 *initial_year + pre[initial_month] + initial_day - 1;

A

v Homework 2.14.1d: another static data member for class date

It's expensve b get the current date and time from the operating system wirane all the dehult
constructor for clasdate . Remedy tis by declaring the the followingyate member for clasgate .

1 static const date today;

Initialize it as follows in thedate.C file. Thekeyword static in lines 2 and 3 is the Celword that
means “visible only in this fil&" The static data member in line 4 should notédthe lkeyword static

N

static const time_t t = time(0);
static const tm *const p = localtime(&t);
4 const date date::today(p->tm_mon + 1, p->tm_mday, p->tm_year + 1900);

w

Then the default constructor can simply gdipe data member(s) ¢dday into the nevborndate . Let's
hope the program doesikeep running across a midnight, though.
A

PSsso AN hesenea ©2014 Mark Meretzky

Section 2.14.1 Static Data Members 241

v Homework 2.14.1e: find the bug

Let's say we hae a pogram that constructs and destructs objects of the following classy Abent
in time, the static data membecount in line 7 should be the number obunted objects that x@st.
After all, it's initialized to zero in line 3 afounted.C , incremented in the constructor in line 9 of
counted.h , and decremented in the destructor in line 1@afnted.h

_count has an underscore because a public member function rauetl will be introduced in
the next example, and a class cannetha ta member and a member function with the same name (p.
159). Theburden of the underscore is placed on thegbeimember.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/counted1/counted.h
1 #ifndef COUNTEDH
2 #define COUNTEDH
3
4 class counted {
5 i nti;
6 public:
7 static unsigned _count; //data member temporarily public for simplicity
8
9 counted(int initial_i) {i = initial_i; ++_count;}
10 “counted() {--_count;}
11}
12 #endif
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/countedl/counted.C
1 #include "counted.h"
2
3 unsigned counted::_count = 0;

O©CoOoO~NOOOUOTA,WNPE

Within the{ curly brace} of the class declaration in lines 4-11 of thewexmunted.h , and with-
in the body of a member function of clagsunted , we're on a first-name basis with all the members of
classcounted , including the static data membecount . But elsewhere we must write something in
front of _count to indicate which class it is a member of. Lines 21-23 are three ways to do this, since
_counted has the same value foryaabject of clascounted . But these lines are anyiagly arbitrary
Why select the objeca in line 21? Whas wrong withb?

We therefore prefer line 24Write the name of the class and a double colon instead of the name of an
arbitrarily selected object of the class and a dot. Use this notationyfaneanber that has the samalue
for every object of the class. The static membeunted::_count is one example; another is the enu-
meration membedate::july in line 19 ofmain.C on p. 226.

Another advantage of line 24 is that it wilbvk even if no objects of the class aree constructed.
Lines 21-23 will work only if objecta, b, and ¢ exst at that point.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/counted1/main.C

#include <iostream>
#include <cstdlib>
#include "counted.h"
using namespace std;

void f();
i nt main()

{

P3sso A hesenea ©2014 Mark Meretzky

242 ObjectsWithout Inheritance Chapter 2

10 f0;
11 cout << "There are " << counted::_count << " objects.\n";
12 return EXIT_SUCCESS;
13}
14
15 void f()
16 {
17 counted a = 10;
18 counted b = 20;
19 counted ¢ = b;
20
21 cout << "There are " << a._count << " objects.\n"
22 << "There are " << b._count << " objects.\n"
23 << "There are " << c._count << " objects.\n"
24 << "There are " << counted::_count << " objects.\n";
25}
There are 2 objects. Lines 21-24: thee are actually 3 objects at this point.

There are 2 objects.
There are 2 objects.
There are 2 objects.
There are 4294967295 objects. Line 11: thee are actually O objects at this point.

The abwe line 19 calls a copconstructor for classounted , but it's not ary copy constructor that
we wrote. The computer beles as if we tad written the follaving copy constructor incounted.h and
called it in line 19. See p. 135.

26 public:
27 counted(const counted& another) {i = another.i;}

But the cop constructor in the abw line 27 isnt good enough: it forgot to incrementount . We there-
fore have 10 write the cop constructor ourselves:

28 public:
29 counted(const counted& another) {i = another.i; ++_count;}

A

2.14.2 StaticMember Functions

The data membercount in the previous example shouldvee havebeen public. The folling
line 5 nav makes it pivate. Thepublic is granted read-only access to it via the public member function
count in line 12. (See p. 159 for anotherample.) Aclass cart’ havea data member and a member
function with the same name, so wevgan underscore to the member that igenenentioned in the out-
side world.

Until now, every member function has reged an mplicit argument pointing to the object to which
the member function belongs. Thiwigible pointer lets the member function access a member of the ob-
ject simply by mentioning its name. Our original example waptimt member function of the class
date inlines 99-107 ofrersion3.C on pp. 116-117.

But there is one kind of member function, callestatic member functiothat receres no mplicit
pointer agument. Themember functiorcount in line 12 is static towaid burdening it with an implicit
pointer that it does not need. Since the data memimint in line 12 is not in ayobject, the function
needs no pointer to accessAtithough it is a member function, a static member function is a free function
(p. 113) because it rewes no mplicit pointer argument.

PSsso A hesenea ©2014 Mark Meretzky

Section 2.14.2 Static Member Functions 243

Line 12 demonstrates that a static member function can access a static member simply by mentioning

its name. But a static member functionglik fiend function, wuld not compile if it tried to access a non-
static member simply by mentioning its nanWe would have © write something in front of the member
to indicate which object it belonged to.

A const member function cannot change the data members of the object it belongs to, i.e., the ob-

ject to which it recaies an nvisible pointer Once again, our original examplegdate::print . Buta
static member function does not belong ty abject. Itwould therefore be meaningless (andgég to
malke it const .

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/counted2/counted.h
1 #ifndef COUNTEDH
2 #define COUNTEDH
3
4 class counted {
5 static unsigned _count;
6 i nti;
7 public:
8 counted(int initial_i) {i = initial_i; ++_count;}
9 counted(const counted& another) {i = another.i; ++_count;} //copy constructor
10 “counted() {--_count;}
11
12 static unsigned count() {return _count;}
13}
14 #endif
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/counted2/counted.C
1 #include "counted.h"
2
3 unsigned counted::_count = 0;

10
11
12

As in the abee main.C , we prefer the following line 24 to the three afeat.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/counted2/main.C

#include <iostream>
#include <cstdlib>
#include "counted.h"
using namespace std;

void f();
i nt main()

fO;
cout << "There are " << counted::count() << " objects.\n";
return EXIT_SUCCESS;

13}

14

15 void f()
16 {

17
18

counted a = 10;
counted b = 20;

P3sso A hesenea ©2014 Mark Meretzky

244 ObjectsWithout Inheritance Chapter 2

19 counted c¢ = b;
20
21 cout << "There are " << a.count() << " objects.\n"
22 << "There are " << b.count() << " objects.\n"
23 << "There are " << c.count() << " objects.\n"
24 << "There are " << counted::count() << " objects.\n";
25}
There are 3 objects. lines 21-24

There are 3 objects.
There are 3 objects.
There are 3 objects.
There are 0 objects. line 12

v Homework 2.14.2a:
Version 1.5 of the Rabbit Game: static member functions for clagerminal

The beep member function (line 29 dérminal.h on p. 160) recees an mplicit pointer to an
object of classerminal . But the pointer is ner used:beep does not mention gmon-static member
of the object.We @n therefore lebeep be static, getting rid of the pointer and making the functisief.

Here is hav to identify the member functions that must be non-static.
(1) A constructor and destructor must be non-static.

(2) A member function must be non-static if it uses the pothtsr , explicitly or implicitly. Two
examples are in iwersion3.C on p. 117. Line 106 accesses the non-static data members of the object
to which the implicitthis points; line 105 does the same thing with aplieit this . The member func-
tion print in line 99 must therefore be non-static. In the same program, line 83 calls a non-static member
function of the object to which the implichis points; line 82 does the same thing with an explicit
this . The member functionext in line 74 must therefore be non-static.

(3) All the other member functions can, and therefore should, be static.

Let every possible member function of clagsminal be static. Note that a static member func-
tion cannot beonst . const would mean that the function reees an mplicit pointer that is read-only
But a static member function reees no mplicit pointer at all. You must therefore let your newly static
member functions be narenst .

A

The choice between a friend and a static member function

| gavethe same definition for a friend and a static member function: both are giatrikmal (non-
static) member function, except thatythheceve ro invisible pointer The next section will st that there
actually is a slight difference between them. But fow,nany friend could easily be rewritten as a static
member function and viceevsa. Thg are equal in space and speed.

The choice between them is important, hestebecause it shows thietent of the function.

(2) If the function operates on more than one object, write it as a friend; see p. 206Af &am-
ple is the functioraverage declared in line 20 and defined in 33-36. Line 34 shows that a friend can
mention a static membhdmt must indicate which class the member belongdria friend defined in the
class declaration (lines 15-18), this indication is not necessary.

(2) If the function does not operate on objects at all, write it as a static member fufid¢tefunc-
tionscount andexist in lines 22 and 25 access only members that are static, i.e., hgt abjant of
the class.

(3) If the function operates orxactly one object, or if one object plays the starring réle, write it as a
non-static member function. Anxample is the functioprint in lines 27-30. Line 28 shows that a non-
static member function can mention a static menthgwe already kne this from lines 11-13. A

P3sso A hesenea ©2014 Mark Meretzky

Section 2.14.2 Static Member Functions 245

_count needs no preliminargounted:: inside the body of a member function (line 28) oyveimere
inside the curly braces of the class declaration in lines 7 and 31 (line 16). But outside of these places, the
counted:: is needed (line 34).
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/friend_vs_static/counted.h
1 #ifndef COUNTEDH
2 #define COUNTEDH
3 #include <iostream>
4 #include <cassert>
5 using namespace std;
6
7 class counted {
8 static unsigned _count;
9 i nti;
10 public:
11 counted(int initial_i) {i = initial_i; ++_count;}
12 counted(const counted& another) {i = another.i; ++_count;}
13 “counted() {--_count;}
14
15 friend bool equal(const counted& c1, const counted& c2) {
16 assert(_count > 0);
17 return cl.i==c2.;
18 }
19
20 friend int average(const counted& c1, const counted& c2);
21
22 static unsigned count() {return _count;}
23
24 /IReturn true if any counted objects currently exist.
25 static bool exist() {return _count > 0;}
26
27 void print() const {
28 assert(_count > 0);
29 cout <<i;
30 }
31}
32
33 inline int average(const counted& c1, const counted& c2) {
34 assert(counted::_count > 0);
35 return (clii+c2.i)/2;
36}
37 #endif
—On the Web at
http://i5.nyu.edu/ Omm64/book/src/friend_vs_static/counted.C

1 #include "counted.h"
2
3 unsigned counted::_count = 0;

A static member function and a friend with the same name

There is only a tvial difference between a static member function and a friend: the former is a mem-
ber while the latter is not. But this tautology is valg because the scoping rules on pp. 122-124 treat

PSsso A hesenea ©2014 Mark Meretzky

246 ObjectsWithout Inheritance Chapter 2

members and non-members differently.

The functiong in line 12 is a member of clagsyclass . On the other hand, the global functioihs
andg in lines 5-6 are non-members, despite the additional declarations in lines el if they were
declared outside the class (lines 32-33) and defined inside (37-38)ahlel still be global.

Themain function is also global. In a global function,dwgroups of names are in scope: the locals
and the globals. Line 24 therefore calls the glahalot the membeg. Thus, in the body of a free func-
tion, a friend eclipses a member with the same nafoeall the member functiog, line 25 needs the bi-
nary scope operator and the name aj’s class.

Theh in line 14 is a member functionn a member function, three groups of names are in scope: lo-
cals, members, and globals. Line 16 therefore calls the mambet the globaly. Thus, in the body of a
member function, a member eclipses a friend with the same rnEonall the friendg, line 17 needs the
unary scope operatar .

The:: in line 17 was necessary only because there was a member with the samd.in@m&
does not need it. Earlier examples of thewere on p. 123, line 14; and, in clggsnt , on p. D9, line 5.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/friend_vs_static/eclipse.C

1 #include <iostream>
2 #include <cstdlib>

3 using namespace std;

4

5 i nline void f() {cout << "friend f\n";}

6 i nline void g() {cout << "friend g\n";}

7

8 class myclass {

9 public:
10 friend void f(); /Ithe function in line 5
11 friend void g(); [lthe function in line 6
12 static void g() {cout << "static member function g\n";}
13
14 void h() const {
15 f(); /lthe friend in lines 5 and 10
16 a(); /lthe static member function in line 12
17 :g0); /lthe friend in lines 6 and 11
18 }
19}
20
21 int main()
224
23 f(); /Ithe friend in lines 5 and 10
24 a(); /Ithe friend in lines 6 and 11
25 myclass::g(); /lthe static member function in line 12
26 cout <<"\n%
27
28 myclass x;
29 x.h();
30 return EXIT_SUCCESS;
31}

P3s 50 A hesenea ©2014 Mark Meretzky

abhwNPE

Section 2.15.1 A Pointer to a Free Function 247

friend f line 23

friend g line 24

static member function g line 25

friend f line 29 calls 14, whie calls 15, 16, and 17
static member function g

friend g

We havealready seen a class with a member and a friend having the same nanpaictasand its
dist functions. lItis actually quite natural and cgmient.

2.15 Pointers to Non-Static Members

A “‘pointer to a memberbf a class is a variable whose value answers the questibich member
of the class are we talking about?t is not really a pointer at all; it is more dilan @umeration. Br a
class with three members, all of the same data type, a pointer to a member wewtkhaf three possible
non-zero values.

There are tw types of pointers to members: pointers to data members and pointers to member func-
tions. We'll begin with pointers to data members, sinceytire simpler In each case we’ll shwa the syn-
tax followed by a motiating example.

Before we introduce gmew type of pointerhoweve, we will review a type we already he in C: a
pointer to a free function.

2.15.1 APainter to a Free Function

A free function is one that takes no invisible pointer; see p. 113. The name of anvih@y the
subscripting operatdt after it, stands for the address of the arr@ynilarly, the name of a free function,
without the function call operatd) after it, stands for the address of the function. An example is the
name of thesgrt function in line 8; we could also Y& written &sqrt . Line 8 stores this address into a
very specific kind of pointer: one that can point only to a function takishguble and returning a
double . The pointer igconst : it will always point to the same function.

The standard library has three square root functions.

/ [Excerpt from <cmath>

f loat sqrt(float);
double sqgrt(double);
| ong double sqgrt(long double);

Thesqgrt in line 8 is the address of theuble function because it is stored into the poigent is a iare
example of an expression whose value depends on the surrounding context.

Line 11 prints the value of this pointefhe C++ Standard Library has operators that can print a
pointer tovoid or a pointer to a variable, but none that can print a pointer to a function of the type of
sqgrt . Neither astatic_cast nor areinterpret_cast were willing to cowmert a pointesto-func-
tion directly into a pointer-to-nonfunction such as a poitderoid . Line 11 therefore casts the pointer to
asize_t andthento &oid * . Since asize_t can hold the number of bytes inyaslock of memory
it should be able to hold all the bits in a pointer with no loss of information.

If we tried to outpuip without ary casting, it would be comrted to abool and printed as such.
bool is the only data type for which the library has<anoperator and to which this type of pointer may
be cowerted without a cast.

Of course, if all we want to do is to print the address of a function, wé mked to store it into the
pointer \ariablep in line 8. We @n just print the address directly in lines 13-15. But this requuas e
more elaborate casting. The cast in line 15 specifies which of the three square root functicarg;we w

PSsso A hesenea ©2014 Mark Meretzky

1
2
3
4

248 ObjectsWithout Inheritance Chapter 2

those in 14 and 13 are the ones we sall.

The epression(*p)(2.0) in line 18 calls the function to whigh points. Ithas tw operators.
First it applies the dereferencing operatdo the epressiorp, retrieving whatp points to. Since this is a
function, it then applies the function call opergfor (with a2.0 inside it) to the function. The parenthe-
ses around th¥p are not an operatoiThey merely force thé to execute before the function call operator

0 -

Finally, line 18 stores the return value imto

Of course, if all we wnt to do is to call the function and print its return value, wetdeaed to store
the value into the variabkin line 18. We @n just print it directly in line 20.

The use op in the expression(*p)(2.0) in lines 18 and 20, and the declarationgan line 8,
have the same operators in the same redatrder. | usually figure out he to write the use of the pointer
first, and then paste it into the declaration.

In the expression(*p)(2.0) in lines 18 and 20, the dereferencing operata optional in C and
C++. Lines22 and 24 repeat this expression without*théAnd nav that the* is gone, we no longer need
the parentheses that forced it to go first.

In C, making the dereferencing operator optional was merely\emence. InC++, it will make it
possible for a “template functiorto use the same syntax foravdifferent types of guments: a pointer to
a function, and a “function object’ Seepp. 764-770.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/pointer_to_function/free.C

#include <iostream> //C++ example
#include <cstdlib>

#include <cmath> /ffor sqrt
using namespace std;

double (*const p)(double) = sqrt;

cout <<"p=="
<< reinterpret_cast<void *>(reinterpret_cast<size t>(p)) << "\n"
<< "sgrt=="
<< reinterpret_cast<void *>(
reinterpret_cast<size_t>(
static_cast<double (*)(double)>(sqrt)))
<< "\n\n";

double d = (*p)(2.0);
cout <<"d=="<<d<<"\n"
<< "sgrt(2.0) ==" << (*p)(2.0) << "\n\n";

d = p(2.0);
cout <<"d=="<<d<<"\n"
<< "sgrt(2.0) ==" << p(2.0) << "\n";

return EXIT_SUCCESS;

PSsso A hesenea ©2014 Mark Meretzky

Section 2.15.1 A Pointer to a Free Function 249

The abee line 8 could be split into

28 double (*p)(double);

29 p = sgr;
But why would we want to?To permit the assignment in line 29, we would/éd remove the const
from line 12.
p == 0x2112c lines 10-11: base 16 on my platform
sqrt == 0x2112c lines 12-13
== 1.41421 line 19
sqrt(2.0) == 1.41421 line 20
== 1.41421 line 23
sqrt(2.0) == 1.41421 line 24

Why would we want a pointer to a function?

Heres amain function that decides which of four other functions to call. It hasifeelse
—On the Web at

S.

http://i5.nyu.edu/ COmmé64/book/src/pointer_to_function/before4.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 void fO();
6 void f1();
7 void 2();
8 void f3();
9
10 int main()
114
12 int i; //uninitialized variable
13 cin >>i;
14
15 if (i==0){
16 fO();
17 } elseif (i==1){
18 f1();
19 } elseif (i==2){
20 f2();
21 } elseif (i==3){
22 3();
23 } else{
24 cerr <<'"input" <<
25 << " must be in the range 0 to 3 inclusive\n";
26 return EXIT_FAILURE;
27 }
28
29 return EXIT_SUCCESS;
30}

A simpler way to do the same job is with the array of pointers to functions in line 12. The declara-
tion for the array is rather mysterious. An easiaywo see the data type of the array is by looking at the

PSsso A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUOTPA,WNPE

250 ObjectsWithout Inheritance Chapter 2

initial values in lines 13-16. Tlyeshow thata an array of pointers to functions.

The pression(*a[i])() in the comment in line 29 calls the function to whagfj points. It
has three operators. First it applies the subscripting opdtattw the arrayretrieving an array element.
Since this element is a pointdtr applies the dereferencing operatoito the pointerretrieving what the
pointer points to. Since this is a function, it applies the function call opgdatéo the function. The
parentheses around th&i] are not an operatoiThey merely force the to execute before the function
call operatox) .

The use ofr in the expression(*a[i])() in the comment in line 29, and the declarationaan
line 12, hae the same operators in the same red¢atrder | usually figure out he to write the use of the
array first, and then paste it into the declaration.

In the expression(*ali])() in the comment in line 29, the dereferencing operatgroptional in
C and C++. Line 29 has this expression without theAnd naw that the* is gone, we no longer need the
parentheses that forced it to go first.

The epressiom][i]() in line 29 nav does all the work of the ale before4.C , except for the
error checking which has been neatly isolated in lines 23-27. It is also faster than thié listanfl
else s, dnce it leaps directly to the correct function.

Theinti in line 12 ofbefore4.C has become size_t in line 20 ofafter4.C . This is the
data type that should be used foy array subscript in C or C++; see p. 68.should also be used for the
number of bytes in a block of memoags in heoffsetof = macro on pp. 254-255Sincesize_t is un-
signed, line 23 does not need to chedk i$ less than zeroA negdive rumber stored im would become
a large positte rumber.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/pointer_to_function/after4.C

#include <iostream>
#include <cstdlib>
using namespace std;

void fO();
void f1();
void 2();
void f3();

10 int main()
11

12
13
14
15
16
17
18
19
20
21
22
23
24

void (*const af])() ={
fo, /lor &f0, with explicit "address of" operator
f1,
f2,
f3
¥

const size_t n = sizeof a/ sizeof a[0];

size_t i; /luninitialized variable
cin >>i;

if (i>=n){
cerr <<"input" <<i<<"mustbeintherange0to"<<n-1

PSsso A hesenea ©2014 Mark Meretzky

Section 2.15.1

25 << " i nclusive\n";

26 return EXIT_FAILURE;

27 }

28

29 ali](); /lor (*a[i])() with explicit dereferencing operator
30 return EXIT_SUCCESS;

31}

A Pointer to a Free Function

251

Not convinced yet? et’s scale up thexample. Herghemain function decides which of six func-
tions to call, arranged in @3 matrix. Unfortunatelytheif statements are starting to nest and multiply.

—On the Web at

http://i5.nyu.edu/

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 void f00(); void f01(); void f02();
6 void f10(); void f11(); void f12();
7
8 i nt main()
9 {
10 int x; /l/uninitialzied variable
11 cin >>x;
12
13 int y; /luninitialzied variable
14 cin >>vy;
15
16 if (y==0){
17 if (x==0){
18 f00();
19 } elseif (x==1){
20 f01();
21 } elseif (x==2) {
22 f02();
23 } else{
24 cerr << "xvalue " << x
25 << " must be in the range 0 to 2 inclusive\n®;
26 return EXIT_FAILURE;
27 }
28 } elseif (y==1){
29 if (x==0){
30 f10();
31 } elseif (x==1){
32 f11();
33 } elseif (x==2) {
34 f12();
35 } else{
36 cerr << "xvalue " << x
37 << " must be in the range 0 to 2 inclusive\n";
38 return EXIT_FAILURE;
39 }
40 } else{
41 cerr <<"yvalue " <<y
42 << " must be in the range 0 to 1 inclusive\n";

printed 4/8/14
8:38:59 AM

COmmé64/book/src/pointer_to_function/before2by3.C

All rights
reserved

©2014 Mark Meretzky

252 ObjectsWithout Inheritance Chapter 2

43 return EXIT_FAILURE;
44 }

45

46 return EXIT_SUCCESS;
47}

A simpler way to do the same job is with thex23 aray of pointers to functions in line 1ZLhis
time, the declaration for the array iseg more mysterious. But the initial values in lines 13—-14vshivat
it's a 2x 3 an aray of pointers to functions. Since we provided an initial valueeryeclement, the left-
most dimension in line 12 can be left blank. But all subsequent dimensions must be specified.

The expressioraly][x]() in line 36 nav does all the wrk of the abge before2by3.C , except
for the error checking which has been neatly isolated in lines 21-25 and 3m3rry that they comes
before thex in thealy][x]() , but it has to be this ay. In a wvo-dimensional array in C or C++, the first

subscript is the @ and the second is the column.
—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/pointer_to_function/after2by3.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 void f00(); void f01(); void f02();
6 void f10(); void f11(); void f12();
7
8 i nt main()
9 {
10 const size txmax = 3;
11
12 void (*const a[][xmax])() = {
13 {f00, fo1, f02}, /lor &f00 with explicit "address of" operator
14 {f10, f11, f12}
15 3
16 const size_t ymax = sizeof a / sizeof a[0];
17
18 size t X; /luninitialized variable
19 cin >>x;
20
21 if (x>=xmax) {
22 cerr << "xvalue" << x << "mustbeintherange 0 to"
23 << xmax - 1 << "inclusive\n";
24 return EXIT_FAILURE;
25 }
26
27 size t y; /luninitialized variable
28 cin >>vy;
29
30 if (y>=ymax){
31 cerr <<"yvalue" <<y <<"mustbeintherange 0to"
32 << ymax -1 << "inclusive\n";
33 return EXIT_FAILURE;
34 }
35
36 alylix]o; /lor (*a[y][x])() with explicit dereferencing operator
37 return EXIT_SUCCESS;
38}

PSsso A hesenea ©2014 Mark Meretzky

©CoOoO~NOOOUOTA~,WNPE

10}
11

Section 2.15.3 A Pointer to a Data Member 253

2.15.2 APainter to a Static Member

A ‘‘pointer to a membeéris always assumed to be a pointer to a non-static menmbtre member is
static, we can use the normal kind of pointer.

The static data membegris initialized in its declaration in line 8ormally, therefore, we would not
need a separate definition for it; see p. 238. But because evitstakidress in line 18, it must be defined in
line 13.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer_to_member/static.C

#include <iostream>
#include <cstdlib>
using namespace std;

class myclass {
public:
static int i;
static const int j = 20;
static void f() {cout << "myclass::fin";}

12 int myclass::i = 10;
13 const int myclass::j; /Ineeded because we're taking address of j

14
15 int main()
16 {
17 int *pl=&myclass:i;
18 const int *p2 = &myclass::j;
19
20 cout <<"myclass:i=="<<*pl<<"\n"
21 << "myclass:j ==" << *p2 << "\n";
22
23 void (*p3)() = myclass::f; /lor &myclass::f with explicit "address of"
24 p3(); /lor (*p3)() with explicit dereferencing operator
25
26 return EXIT_SUCCESS;
27}
myclass::i == 10
myclass::j == 20
myclass::f

2.15.3 APointer to a Data Member

Well do pointers to data members before pointers to member functions, because pointers to data
members hae fewer parentheses. In each case we’llvehioe syntax followed by a metiting example.
We reviewed pointers to free functions because we will need thir syntax when we do pointers to member
functions.

Assume that clasgate has the following memberd=or simplicity, we’ll make them public:

i ntyear, month, day;
void print() const;

PSs 5o A hesenea ©2014 Mark Meretzky

B

PO OWoOoO~NOOUODWNPE

254 ObjectsWithout Inheritance Chapter 2

A pointer to an object is aaviable that tells us which object we're interested kor example, the
pointerpl in line 5 points to the object. pl can point only to @ate object.

A pointer to a data member is a variable that tells us which data member we're interebwrdia.
ample, the pointgp2 in line 3 “points to’ the data memberear of classdate . p2 can point only to an
int data member of claskte .

A pointer to a data member really isa’pointer, and p2 certainly does not contain the address of the
year data member of gnobject. 1o emphasize this, we initializeg2 before we constructed yamlate
object at all. We'll return to this issue of what a pointer to a data member really is.

Lines 10-11 form a little table with twows and two columns, showing four binary operatorfhe
ones in the bottom vomust be used when dereferencing a pointer to a member.

- >
.* _>*

In column 1 of lines 10 and 11, our choice of the olgeist hard-coded in. In column 2, our choice of ob-

ject is indicated by the variabpel .

Similarly, in line 10, our choice of the data mempear is hard-coded in. In line 11, our choice of
data member is indicated by the varigh®e

#include "date.h"

i nt date::*p2 = &date::year; /lampersand required
date d; /ltoday’s date
date *pl = &d;

/ IFour ways to output the year data member of the object d:

/ Ithe object d /lthe object pointed to by p1

cout <<d.year; cout << pl->year; //the data member year

cout <<d.*p2; cout << pl1->*p2; /lthe data member pointed to by p2
2014 2014
2014 2014

See line 33 opoint.h on p. 725 for an exampe of a pointer to a data member under actual combat
conditions.

What does a pointer to a member really hold?

A pointer to a member tells us what member we're interesteBunhit does not identify the member
by holding the membes’address. lidentifies the member by holding the membeffset, i.e. its distance
in bytes from the start of its object.

To show how a inter to a data member actuallpsks, here is hw a C pogram would mad a \ari-
able indicating which field of a structure we're interested in. The C Standard Library has a macro named
offsetof that returns the offset of a field from the start of its structunee 13 stores the value of the
macro into the ariableoffset to indicate that we are interestedfigld2 . Line 19 use®ffset to
accesdield2 of the structures. When an integer is added to a pointer in C and C++, the integer is im-
plicitly multiplied by the number of bytes in each pointed-to object. Line 19 cafstitea pointer to a
char , so hat the implicit multiplication will be a multiplication by 1. The sum is cast to a pointer to an
int , so hat we can retriee anint field from the structureFinally, the pointer to aint is dereferenced
with a leadingt, the cherry on the sundae.

All of this virtuoso pointer arithmetic is hidden in thgpeessionsd.*p2 and pl->*p2 in the
above line 11.

PSs 5o A hesenea ©2014 Mark Meretzky

Section 2.15.4 A Pointer to a Member Function 255

Incidentally the %uin line 16 is not portable. On my machis&e t is another name for
unsigned , but on your machine it might be different.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/pointer_to_member/offsetof.c
1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3 #include <stddef.h> /* for offsetof */
4
5 struct mystruct {
6 i ntfieldl;
7 i ntfield2;
8 };
9
10 int main()
114
12 /¥ We're interested in field2. */
13 const size_t offset = offsetof(struct mystruct, field2);
14 struct mystruct s = {10, 20};
15
16 printf("The field starts %u bytes from the start of mystruct.\n", offset);
17
18 printf("The field of mystr that we're interested in has the value %d.\n",
19 *(int *)((char *)&s + offset));
20
21 return EXIT_SUCCESS;
22}

The field starts 4 bytes from the start of mystruct.
The field of mystr that we're interested in has the value 20.

2.15.4 APainter to a Member Function

A pointer to a member function is anable that tells us which member function we're interested in.
For example, the pointep2 in line 3 “points to’ the print member function of clasdate . p2 can
point only to aconst member function of clagfate that takes no arguments and returns no value.

Lines 10-11 form a little table with ttwows and two columns. Incolumn 1 of lines 10 and 11, our
choice of the objed is hard-coded in. In column 2, our choice of object is indicated by the vapiable

Similarly, in line 10, our choice of thprint member function is hard-coded in. In line 11, our
choice of member function is indicated by the varigtde

The dot and armwe operators in line 10 k& higher precedence than the function call opergtarso
they need no surrounding parentheses to enhkm eecute first. But the* and->* operators in line 11
have lower precedence than the function call operatortey must be surrounded with parentheses to
malke them execute first. See p. 873, line 11, for an example of#ie operator.

1 #include "date.h"

void (date::*p2)() const = &date::print; /lampersand required
date d; /ltoday’s date
date *pl = &d;

/ IFour ways to call the print member function of the object d:

O~NO O WN

PSss0 A hesenea ©2014 Mark Meretzky

9 / Ithe object d /lthe object pointed to by p1
10 d.print(); pl->print(); [lthe member function print
11 (d.*p2)(); (p1->*p2)(); /Ithe member function pointed to by p2
4/8/2014 4/8/2014
4/8/2014 4/8/2014
The.* operator cannot beverloaded. Neitherby the way can the. (dot) operator.
The abee pinter to a member function is needed only to point to a non-static member function.
What are pointers to member functions for?
Lines 9-13 ofmain.C are a menu with mgpossible actions: cut, cgppaste, etc. Each action can
be selected with agly pressed down: the shifelg the control ley, or no key & all.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer_to_member/action.h
1 #ifndef ACTIONH
2 #define ACTIONH
3 #include <iostream>
4 using namespace std,;
5
6 classaction{ //aterm from jurisprudence
7 const char *p;
8 public:
9 action(const char *initial_p) {p = initial_p;}
10
11 void plain() const {cout << p << " plain\n";}
12 void shifted() const {cout << p << " shifted\n";}
13 void controlled() const {cout << p << " controlled\n";}
14 };
15 #endif
To avoid the complgity of displaying the menu and getting the mouse clicks agsttokes, lines 27
and 28 pick the action and accompanyiry & random.
Line 29 demonstrates the gbace of arrays and pointers to member functions. It would be instruc-
tive 1 rewrite this line without using pointers to member functions.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer_to_member/main.C
1 #include <iostream>
2 #include <cstdlib> [[for srand, rand, exit, EXIT_SUCCESS
3 #include <ctime> [for time
4 #include "action.h"
5 using namespace std;
6
7 i nt main()
8 {
9 const action menu[] ={ //array of objects
10 "cut",
11 "copy",
12 "paste”
13 3
14 const size_t menu_size = sizeof menu / sizeof menu[0];
15

256 ObjectsWithout Inheritance Chapter 2

PSsso A hesenea ©2014 Mark Meretzky

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33}

Section 2.16 Aggregation 257

/larray of pointers to the member functions of the above objects
void (action::*const key[])() const = {

&action::plain,

&action::shifted,

&action::controlled
%

const size_t key_size = sizeof key / sizeof key[0];
srand(static_cast<unsigned>(time(0)));

for (inti=0;i<3;++i){
const size_tm =rand() % menu_size; //which object of class action
const size_tk =rand() % key_size; //which member function of class action
(menu[m].*key[K])(); /ICall member function k of object m.

}

return EXIT_SUCCESS;

copy controlled
paste plain
cut plain

2.16 Aggregation

Three ways to build a bigger class out of smaller classes or other data types

Programming has whys been the craft of building bigger things out of smaller olfore there
were objects, we had bigger functions calling smaller oehierarchical structure was imposed on the
program by the diagram, real or imagined, of who called whom. Tianiaation was proudly called
“ structured programming”, but is nodisparaged as “procedural programming”.

Nowadays most of ourariables will be data members, and most of our functions will be member
functions. Thebigger things that weuild out of smaller ones will therefore be classes. C++ has three
ways of building bigger classes out of smaller classes or other data types.

style of pogramming othemames for it what it means
Object-based programming aggeton, containment, composition The big objbes alittle object.
Object-oriented programming inheritance, dation Thebig objectis alittle object.
Generic programming templates, instantiation The little data type is
plugged intothe big class.

Aggregation is the use of little objects as the data members of big objetdisritance is the cre-
ation of a ne class with a head start: themelass will hae dl the members that an old class had, plus
more. Atemplatelets us write a blank that will be filled in latperhaps by another person, with the name
of a data typeFor example, “an object of the meclass contains objects of the old class ", or “the

new class is deried from the old class .

Objects as data members

Our original clasglate contained threént ’s: year , month, andday. In fact, eery data mem-
ber of eery class has hitherto been of a built-in type (p. 27) or pointer thereto, or array thereof.

It is also possible for the data members to be objeftsobject of the following clasemployee
contains tw date objects. DSincé¢he big object has tlittle objects inside it, we say that there isas-

P3sso A hesenea ©2014 Mark Meretzky

258 ObjectsWithout Inheritance Chapter 2

a relationship between the big object and the little objettere is also &as-arelationship between the
data type of the big object and the data types of its data members.

The header file for the containing classals begins by including the header files for the contained
classes (line 3 afmployee.h). For rthe same reason, the header file for dlalsbit began by includ-
ing the header file for classrminal on p. 195.

The data members arenalys constructed before, and destructed affter object that contains them.
Here is a motion picture showing the order in whicremployee , and the tw objects inside of it, are
constructed. Théhree objects are rectangles, theesdntegers are squares.

1) (2) ©) (4) (5) (6) (7) (8) ©) (10)

year

month

day

birth

year

month

day

hired

SS employee

To explain why the inner objects are constructed first, we introduce some termindlbgyf curly
brace$ of a function and the enclosed statements) arédhdg of the function. When we return from the
body of a constructpether by reaching the closifgor by eecuting areturn statement, the object be-
ing constructed is said to bempletely constructed

Suppose that we were somehmterrupted between steps (9) and (10) in theva@loslagram. Then
the two objectsbirth andhired would be completely constructed, and #mployee object would not
be. Thisblack-and-white vier of the world is very clean:very object is either completely constructed or it
isn’t.

Now suppose that the outer object was constructed flfsive were then interrupted before con-
structing thebirth andhired inside of it, the outer objectauld be a hollev shell. We would hare ©
classify it as a “completely constructed object with missing guiéd one wants this shade of gray.

Theres another reason whthe data members must be constructed before the object that contains
them. Adate has no idea whether it is part of a surroundingployee : the filesdate.h anddate.C
malke no mention of clasemployee . The error check in lines 9 and 23@hployee.C therefore can
not be performed by a constructor for cldage . It must be performed by a constructor for class
employee , which must bexecuted after the constructors for tihate 's.

On my platform, annt is big enough to hold a nine-digit social security number (line 5). On other
platforms we might ha o use along ; if the gwernment adds extra digits or letters, we mightehta use
an object.For the time being, we assume thasat is fast enough to pass by value.

When we hae qperator eerloading, we will simplify the constructors for classiployee (p. 340)
and itsprint andretire member functions (pp. 340 and 286).

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/employee/employee.h

1 #ifndef EMPLOYEEH
2 #define EMPLOYEEH

PSsso A hesenea ©2014 Mark Meretzky

Section 2.16

#include "date.h"

3
4
5 typedefintss_t; //social security number; not portable
6
7 class employee {

8

date birth;

9 date hired;
10 ss t ss;
11 public:
12 employee(const date& initial_birth, ss_t initial_ss);
13 employee(int initial_month, int initial_day, int initial_year,
14 ss_t initial_ss);
15 “employee() {cout << "Employee # " << ss << " gets a pink slip.\n";}
16
17 date retire() const {date d = birth; d.next(65 * 365); return d;}
18 void print() const;
19}
20 #endif

Aggregation 259

| wish the error messages in the following lines 10-12 and 24-26 could be writemn to But the
print function in lines 11 and 25 is hardwired to writectut . We’'ll fix this on p. 340 wheiprint is

replaced with awperator<< function.
Line 35 would not compile if we changed it to

1 cout << birth.month << "/" << birth.day << "/" << birth.year << "\n";

Classemployee does contain date , but that doesrt'give employee permission to mention the pate
members oflate . Anyway, we don’t even know if there is a member nametbnth in this clasglate .

It might be the clasdate with only one data member.
—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/employee/employee.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "employee.h"
4 using namespace std,;
5
6 employee::employee(const date& initial_birth, ss_t initial_ss)
7 birth(initial_birth), hired()
8 {
9 i f (dist(hired, birth) < 16 * 365) {
10 cout << "employee bornon";
11 birth.print();
12 cout << " <<too young to hire\n";
13 exit(EXIT_FAILURE);
14 }
15
16 ss = i nitial_ss;
17}
18
19 employee::employee(int initial_month, int initial_day, int initial_year,
20 ss_t initial_ss)
21 :birth(initial_month, initial_day, initial_year), hired()
22 {
23 if (dist(hired, birth) < 16 * 365) {
24 cout << "employee bornon";

printed 4/8/14
8:38:59 AM

All rights
reserved

©2014 Mark Meretzky

260 ObjectsWithout Inheritance

25 birth.print();

26 cout << "<<too young to hire\n";
27 }

28

29 ss = i nitial_ss;

30}

31

32 void employee::print() const

33{

34 cout << "birth date: ";

35 birth.print();

36 cout << "\thired on:"; I\t is the tab character
37 hired.print();

38 cout <<"\tss#: "<<ss;

39}

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/employee/main.C

#include <iostream>
#include <cstdlib>
#include "employee.h"
using namespace std;

i nt main()

{
const date birthday(date::july, 12, 1955); [lthe author’s birthday
const employee el(birthday, 123456789);

10 el.print();

O©CoOoO~NOOOUTA,WNPE

11 cout <<"\n"

12

13 const employee e2(date::may, 1, 1957, 987654321);

14 e2.print();

15 cout << "\n\n";

16

17 cout << "The second employee will retire on ";

18 const date r = e2.retire();

19 r.print();

20 cout <<"An"

21

22 cout << "The second employee will retire on ";

23 e2.retire().print(); /land then destruct the anonymous date
24 cout <<"\n\n";

25 return EXIT_SUCCESS; //destruct r, e2, el, birthday, in that order
26}

The birthday in the abee line 8 is used only once, in line We may therefore reduce it to an
anorymous temporary and combine lines 8-9 to the ¥alg. Ourfirst example of an anonymous object

passed to a function was in line 6 on p. 138.

27 const employee el(date(date::july, 12, 1955), 123456789);

Chapter 2

Be sure to tell the computer the names of all the non-header files that constitute the program.

1$ g++ -0 “/binfemployee main.C employee.C date.C

PSsso A hesenea ©2014 Mark Meretzky

Section 2.16 Aggregation 261

birth date: 7/12/1955 hired on: 4/8/2014 ss #: 123456789
birth date: 5/1/1957 hired on: 4/8/2014 Ss #: 987654321

The second employee will retire on 5/1/2022.
The second employee will retire on 5/1/2022.

Employee # 987654321 gets a pink slip.
Employee # 123456789 gets a pink slip.

The colon notation for calling a constructor for a data member

Let us tentatiely suppose .. . that 'x +y =y + x’ does hold as a genuine identi-
ty; i.e., that the order of summands is wholly immaterfalnotation of addition
more suggeste than x +y’, then, would consist in simply superimposing ‘and
'y’ in the manner of a monogram.

—W. V. Quine, inThe Philosophy of Alfred North Whitehead 128

The constructors for the data members asewedbefore the body of the constructor for the object
that contains the data membe&milarly, the destructors for the data members aeewdedafter the body
of the destructor for the containing object.

For example, line 9 omain.C calls the constructor with warguments for clasemployee . Nor-
mally we would go straight from this line to line 9erhployee.C , which is the first line of the body of
the constructorBut we male wo detours along the wayFrom line 9 ofmain.C we go to line 7 of
employee.C . This “colon line” calls the constructors for the data membdairth andhired and
gives them their aguments. Theopy constructor is called fdoirth and the default constructor for
hired . Only after these tar constructors hee exeuted do we proceed to line 9arhployee.C .

The birth data member is constructed beftwieed because of the order of the declarations in

lines 8-9 ofemployee.h . It has nothing to do with the order in which the data members are mentioned

in line 7 ofemployee.C . birth would still be constructed befotered evenif line 7 of
employee.C had said

hired(), birth(initial_birth)
But there$ no eason to write the names in a misleading order.

Line 7 ofemployee.C passes no arguments to the constructohiigd . The line would there-
fore usually be written as folles. Thedefault constructor fohired would still be called after the cgp
constructor fobirth

birth(initial_birth)
The, hired() can also be renved from line 21 ofemployee.C .

Even if there is no colon line at all, a constructor for each data member will still be called. In this

case it will be the default constructaend the program will compile only ifvery data member has one.
But even if it does compile, the program may be wasting tirker example, lets remove the colon line
from our constructor.

employee::employee(const date& initial_birth, ss_t initial_ss)

{
birth = initial_birth;

i f (dist(hired, birth) < 16 * 365) {
cout << "employee born on ";
birth.print();
cout << "<<too young to hire\n";
exit(EXIT_FAILURE);

PSsso A hesenea ©2014 Mark Meretzky

262 ObjectsWithout Inheritance Chapter 2

13
14 ss = i nitial_ss;
15}

The default constructors fduirth andhired will still be called at the ab@ line 3%%. This will
initialize birth to todays date, and will then wipe it out in line 5.

The best way to define thedvaigument constructor for clagmployee is the follawving. Line17
calls the cop constructor forbirth and the default constructor foired . It also calls the‘tonstruc-
tor” for the data membess . This member is merely aulit-in (p. 27), not an object. But we are alled,
and in Bct encouraged, to use a syntax that makes it look aerif member were an object. If we pro-
gram in the same style with all our variablagijtiins and objects, we will be able to et our code into
“ templates’more easily See p. 634.

16 employee::employee(const date& initial_birth, ss_t initial_ss)

17 : birth(initial_birth), ss(initial_ss)

18{

19 if (dist(hired, birth) < 16 * 365) {

20 cout << "employee bornon";

21 birth.print();

22 cout << "<<too young to hire\n";
23 exit(EXIT_FAILURE);

24 }

25}

Initialization vs. assignment

Initialization puts the first value into a wevariable. Assignmentputs a ne value into an xsting
variable. Althoughwe hare dways written them with the same symbel)),(we can readily tell them apart.

=Y

i nti=10; /Nnitialize i.
2 i = 20; //Assign toi.

For the hiilt-in data types (p. 27), pointers, and enumerations, initialization and assignment differ in

only one way: we can initialize@nst but cannot assign to it.

3 constinti=10; /[can initialize a const
4 i = 20; /lcan’t assign to a const: won’'t compile

If the variable is not aonst , initialization and assignment are the same operation.

The originalss = initial_ss in line 16 ofemployee.C is the notation for assigning alue
to ary variable. The s s(initial_ss) in the abwe line 17 is the notation for initializing aaxiable
that is a data membeSincess is a noneonst built-in, our preference for initializationver assignment
is merely a matter of style. But$#s eve becomes aonst , we will be forced to initialize it (p. 266).
And if ss becomes an object, weugasen that it will be initialized whether we write the colon line or not.
Therefore the ahe@ line 17 initializesss now, 0 we won'’t haveto change it later.

An object is alays initialized by calling its constructofor an objectjnitialization andconstruc-
tion are two names for the same operation. But pp. 302-303 willstat for an object, initialization and
assignment may be very different operations, initialization often being cheapethese reasons,vedys
put the initial value into anobject by initialization, not assignmenin fact, do this when possible foryan
variable.

Destruction

Eachemployee ’'s destructor will be called automatically in line 25 of theabmain.C . After
executing the body of this destructor (line 15avhployee.h), we automatically call the destructors for
the data membetsred andbirth (in the order opposite to that of lines 8-%afiployee.h). To e
the order in which the three objects are destructed, read the dhgram from right to left.

PSsso A hesenea ©2014 Mark Meretzky

N -

o o b~

10

11
12
13
14

15
16

N -

Section 2.16

v Homework 2.16a: initialize the data members

Wherever possible, go back and malhe constructors initialize the data members, rather than assign

Aggregation 263

to them. It will make a dfference if the data membengeebecome objects in their own right. This could
happen without ounen knowing it, when we switch to templates.

(1) On pp. 145-146, the constructor currently begiresthils:

| ife::life(const matrix_t& initial_matrix)
{
g =0;
Change it to
| ife::life(const matrix_t& initial_matrix)
9(0)
{
(2) In line 11 ofstack.h on p. 150, classtack has an inline constructor:
stack() {n = 0;}

Change it to
stack(): n(0) {}

(3) In Homavork 2.6b on pp. 152-153, thewmelassstack has a similar constructor:

stack() {p = a;}

Change it to

stack(): p(a) {}

The data membgr should also be initialized by the goponstructor for the e classstack . The data
membera, howeve, is an aray, and there is no syntax for initializing an array with a colon. The/ cop-

structor for the n& classstack will have o continue to assign ta with thefor

loop.

(4) In lines 9-12 opoint.h on p. 201, claspoint has an inline constructor with defaullves
for both its arguments:

point(double initial_x = 0.0, double initial_y = 0.0) {
X = i nitial_x;
y = initial_y;
}
Change it to
point(double initial_x = 0.0, double initial_y = 0.0)
x(initial_x), y(initial_y) {}

(5) Make this change to classdsio andmono on pp. 135-137.

(6) Make this change to clagerminal in lines 7-23 oterminal.C

tialize the data memberbackground
functionsterm_xmax andterm_ymax .

Where is there room to do that in the colon line?

on

p. 160.It's easy to ini-

. To initialize the other tw data members, we must call the C
But before we call them, we must cédrm_construct

C and C++ hae a tick for writing two expressions where the syntax permits only owe can huild
a big expression out of te snaller ones with theomma opeator. The two smaller expressions arex-e
ecuted from left to right (p. 13)lts most common use is to let us change the valuesmfawables in a

loop.

/ IThe righmost comma is a comma operator.
for(inti=0,j=1;i<10; ++i,) *=2){

printed 4/8/14
8:38:59 AM

cout << "2 to the power " <<i<<"is" << j<<"\n";

All rights
reserved

©2014 Mark Meretzky

264 ObjectsWithout Inheritance Chapter 2

4 }

When a comma operator is written in an argument list, ilsspressions must be surrounded by parenthe-
ses. Thas how the computer knows &'the comma operatorather than the comma that separatgsi-ar

ments.
5 void f(int a, int b); [/[function declarations
6 void f(int a, int b, int ¢);
7
8 f ((++i, --j), k); /[call 2-arg f; leftmost , is the comma operator
9 f (++i, -+, k); /lcall 3-arg f; none of these is the comma operator

Since we are writing the comma operator in trguarent list of the constructor foxmax, its two oper-
ands must be enclosed in parentheses.

10 terminal::terminal(char initial_background)

11 . _background(initial_background),

12 _xmax((term_construct(), term_xmax())),
13 _ymax(term_ymax())

14 {

A similar use of parentheses is to enclosestloperator in a template preamble; see p. 693.

I’'m not hapyy about this bizarre syntax, but lant the data members of classminal to be ini-
tialized. Soorthey will have be . 269).

(7) Make this change to clagandom in line 9 ofmyrandom.h on p. 176.
(8) Make this change to all three constructors for clatgs in lines 9-11 obbj.h on p. 180.
(9) Make this change to the constructor for classle in line 15 ofnode.h on p. 214.

(10) Male this change to the constructor for claston in line 10 ofaction.h on p. 256.
A

¥ Homework 2.16b:
Version 1.6 of the Rabbit Game: initialize the data members of classe®I|f and rabbit

The constructors for classesbbit andwolf currently assignalues to their three non-static data
members. Lethem initialize the data members instead.
A

v Homework 2.16c: create a class whose data membersabjects

Before we had objects, we had to pass the addresses piimlardual variables to a functionAn
example was in line 32 ofersion1.C on p. 107.

1 date_print(&year, &month, &day);
After we had objects, all we had to pass was ovieibie address. See line 41\@frsion3.C on p. 109.
2 d.print();

Now look at the calls to tharea andcontains functions in lines 15 and 32 afiain.C on pp.
208-209. Lile the originaldate_print , we haveto pass them three separate variables.

3 cout << area(A, B, C) <<"\n"
4 << contains(A, B, C, D) << "\n";

Define a n& class,triangle , whose data members will be threeint ’'s namedA, B, and C. Remove
the existingarea andcontains functions and reincarnate them as member functions of class

triangle . Thecontains function will construct thre&riangle objects as anonymous temporaries,
and compare the sum of their areas with the area ofifimgle of which thecontains is a member.

5 t riangle t(A, B, C);

3550 AN hesenea ©2014 Mark Meretzky

~N O

[

(€3]

Section 2.17 Constant Non-static Data Members 265

cout << t.area() <<"\n"
<< t .contains(D) << "\n";

You can irvent additional member functiongerimiter , center ,is_right , etc. Shouldrian-
gle ABCbe equal to trianglaCB?

The header filg¢riangle.h will have © includepoint.h . To compute the area without men-
tioning the pwate members of clagmint , triangle::area can use Heror'formula. Leta, b, and
c be the lengths of the sides. Let
_atb+c
2

Then the area of the triangle will be
VIE=aE " HEO)

Better yet, gte dasspoint the following public member functions. Call them franangle::area

and lettriangle::area use the original formula for the area.
double get_x() const {return x;}
double get_y() const {return y;}

A

v Homework 2.16d: should this class hae data members that ae djects?
Let's assume we ha a tasspoint whose data members are

double x;
doubley;
We @an easily create a clalise by giving it the data members
point A,; /Imust be two different points!
point B;

Let’'s asssume that our clasime is to represent an infinitely long line, not a lingreent. Thewo
points would therefore contain too much information, a total of dmuble ’'s. A smaller way to repre-
sent the line would be

point p; //any point on the line
double slope;

A line now contains a total of thregouble ’s, but one of them could be infinity.*

Is there an wen more compact represenation forline ? Should atriangle contain three
line ’sinstead of threpoint 's?
A

2.17 ConstantNon-static Data Members

* There may be a way to stoxeinto adouble without attempting to divide by zero. See the
has_infinity data member and thefinity member function of the template class
numeric_limits

PSs 5o A hesenea ©2014 Mark Meretzky

O©CoOo~NOOOTA, WNPE

266 ObjectsWithout Inheritance Chapter 2

Initialize a constant non-static data member

We havealready seen eonst static data membein line 7 on p. 237 We @an also hee aconst
non-static data memben the following line 8. Line 12 will therefore not compile: we cannot assign to a
const .

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/const_data_member/badinterval.h

#ifndef INTERVALH
#define INTERVALH
#include <iostream>
#include "date.h"
using namespace std;

class interval {
const date begin;
date end;

10 public:

11
12
13
14
15
16
17

interval(const date& initial_begin, const date& initial_end) {
begin = i nitial_begin;
end = i nitial_end;

}

void change_end(const date& new_end) {end = new_end;}
void print() const {cout << "(" << begin << ", " << end << ")";}

18}
19 #endif

abhwNPE

23
24
25
26

27
28

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/const_data_member/badincluder.C

#include "badinterval.h"
i nt main()

{
}

The “discard qualifiers‘message means you're trying to do something witbrest object that can
only be done with a nooenst object.

In file included from badincluder.C:1:0:

badinterval.h: In constructor 'interval::interval(const date&, const date&)’:
badinterval.h:12:11: error: passing 'const date’ as 'this’ argument of 'date&
date::operator=(const date&)’ discards qualifiers

Instead of the assignment in &bdine 12, the constructor for clasgerval will have 1 initialize
begin inline 24:

interval(const date& initial_begin, const date& initial_end)
begin(initial_begin) {
end = i nitial_end;
}

The constructor in the abe lines 23-26 still has a bug, although it is only a performange o
see it, obsemrthat the abee line 24 really does the same thing as line 28:

interval(const date& initial_begin, const date& initial_end)
begin(initial_begin), end() {

PS50 A hesenea ©2014 Mark Meretzky

29
30

31
32

[

O©CoOoO~NOOOUTA,WNPE

Section 2.17 Constant Non-static Data Members 267

end = i nitial_end;
}

Now we can see that line 24 uselessly initialieggl to todays date, and then the next line assigns
initial_end toend. To avoid this waste of timegnd should be initialized to the correct value:

interval(const date& initial_begin, const date& initial_end)
begin(initial_begin), end(initial_end) {}

We can't assign to an object that contains a const data member.

The equal signs in lines 9 and 14 perform the initialization operafibay call copy constructors.
The equal signs in lines 10 and 15 perform the assignment operatien assign the value of each data

member in their right operand to the corresponding data member in their left operand. Line 15 is therefore

a shorthand for

i 1.begin =i2.begin; /lwon’t compile
i 1.end =i2.end; [Iwill compile

which is wly line 15 will not compile.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/const_data_member/main.C

#include <cstdlib>
#include "date.h"
#include "interval.h"
using namespace std;

i nt main()

{
date d1; /Initialization: call the default constructor.
date d2 = d1; /lInitialization: call the copy constructor.
d2 = di; //Assignment.
d2.next(10);
interval i1(d1, d2);//Initialization: call the two-arg constructor.
interval i2=1il; /lInitialization: call the copy constructor.
i1 =12 /[This assignment won’t compile.
return EXIT_SUCCESS;

In file included from main.C:3:0:

interval.h: In member function ’interval& interval::operator=(const interval&):
interval.h:7:16: error: non-static const member 'const date interval::begin’,
can’t use default assignment operator

main.C: In function ’int main()’:

main.C:15:7: note: synthesized method ’interval& interval::operator=(const
interval&)’ first required here

Two ways to male the data members constant

The clasonst_members in lines 4-19 shows one way of making a data member condimt.
have chosen to maddl of themconst , but we didnt haveto. Thedata members are constant throughout
its lifetime, so the increments and decrements in lines 9 and 14 would not compile.

PSsso A hesenea ©2014 Mark Meretzky

268 ObjectsWithout Inheritance Chapter 2

Although its data members acenst , the objectol in line 36 is notconst . The calls to the
nonconst member functiori in line 37 will therefore compile.

Another way of making constant data members is by declaring the whole objeadadsbe in line
39. Thistime, every data member will alays be constantBut the object does not becomenst until it
reaches the closing curly brace at the end of the constructor in lingr2if then the data members can
still be modified, and we can still call naonst member functions.The object ceases to lmenst
when it reaches the opening curly brace at the start of the destructor in line 29. After that the data members
can again be modified, and noonst member functions can be called.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/const_data_member/const_members.C
1 #include <cstdlib>
2 using namespace std;
3
4 class const_members {
5 constinti;
6 constint j;
7 public:
8 const_members(int initial_i, int initial_j): i(initial_i), j(initial_j){
9 [I++i or ++j would not compile here
10 fQ);
11 }
12
13 “const_members() {
14 /-] or --i would not compile here
15 fQ);
16 }
17
18 void f(){} //a non-const member function
19}
20
21 class obj {
22 int i
23 int
24 public:
25 obj(int initial_i, int initial_j): i(initial_i), j(initial_j) {
26 ++i; ++j; f();
27 }
28
29 obj) {f();) i}
30
31 void f(){} //a non-const member function
32}
33
34 int main()
35
36 const_members 01(30, 40);
37 01.f(); /Iwill compile: 01 is not const object
38
39 const obj 02(10, 20);
40 1102 .1(); /lwon’t compile: 02 is a const object
41
42 return EXIT_SUCCESS;
43}

PSsso A hesenea ©2014 Mark Meretzky

Section 2.17 Constant Non-static Data Members 269

¥ Homework 2.17a:
Version 1.7 of the Rabbit Game: constant data member for classe®If and rabbit

Let thet data member of classesIf andrabbit be constant.They will now haveto be initial-
ized with a colon likinterval::begin . (You havealready done this if your homwverk is up-to-date.)

The data membar is a pointer Recall from pp. 50-52 that there areotways of making a pointer
constant.t is already constant in the sense of beinggead-only’ ponter Keep it constant thatay, but
also mak it constant in the sense ¢dlways pointing to the sanmterminal " . This will keep the animal
tethered to the santerminal throughout its life.

Do not change the data types of the arguments of the constructors of wialésesdrabbit
A

¥ Homework 2.17b:
Version 1.8 of the Rabbit Game: constant data members for clagsrminal

No member function or friend of clasminal changes the three data members of that class.
force this by making thermonst . See pp. 263-264 for instructions ornvhto initialize the data members.
A

PSsso A hesenea ©2014 Mark Meretzky

