
2
Objects Without Inheritance

2.1 Pass a Structure to a Function

A calendar computation

An ‘‘object’’ l ets us package together a group of variables and the functions that operate on them.
We will present objects with a program that performs the calendar computation in the box on p. 108.The
three versions of the program will perform the same computation and produce the same output.Version 1
will have individual variables; Version 2, a structure; and Version 3, our first object.

Employing an object in such a simple program is like using a sledgehammer to kill ants.Even Ver-
sion 1 has more machinery than is needed.A computation this simple would normally be done entirely in
themain function; it is split into four separate functions only to foreshadow the object that will appear in
Version 3.

At this point we do not wish to burden the reader with a program complicated enough to show what
an object is good for. For now, we will just show what an object is.To avoid issues that have nothing to do
with objects, we will make three simplifying assumptions about our calendar system.

(1) Thereare no leap years, and never were.

(2) Therewas a Year Zero between 1B.C. and 1A.D. We will refer to B.C. years as negative years: 1B.C.

will be the year −1.

(3) Thecalendar has always been Gregorian, never Julian. Theswitch-over in September, 1752 never
happened.

September 1752

S M Tu W Th F S

1 2 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

2.1.1 Version 1: Pass Individual Variables to a Function
To do the computation, the program must know the lengths of the twelve months. We embody this

knowledge as the array of twelve integers in lines 5−19.(Thirteen, actually. The subscripts start at zero, so
we added a dummy element to let January be subscript 1.)Since an initial value was provided for each ele-
ment, there was no need to write the number of elements in the square brackets in line 5.

The main character of the program is the trio of integer variablesyear , month , day in lines 27−29,
and the three functions in lines 21−23 that operate on them. When we get to Version 3, all six will be pack-
aged as one unit. The language will help us think of them as a single entity.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

106 ObjectsWi thout Inheritance Chapter 2

The simplest function isdate_print , called in line 32 and defined in line 67. There was no need
to pass the trio todate_print by reference.Pass-by-value would have been simpler than the pointer ar-
guments in line 67.

1 v oid date_print(int year, int month, int day) //arguments passed by value
2 {
3 c out << month << "/" << day << "/" << year;
4 }

But it will be easier for Version 3 to introduce objects if all the functions take arguments of the same type,
and the arguments of the other functions will have to be pointers.

To ensure thatdate_print does not change the values of the trio, line 67 declares the pointer ar-
guments to be read-only. We hav eto write the keyword const three times; six times, if we include the
declaration in line 23.

Line 69 outputs the month before the day, separated by slashes, to follow the American convention;
we will internationalize on pp. 1031−1057.

The functiondate_next is called in line 38 and defined in 45. This time, the arguments must be
passed by reference to let the function change the values of our trio of variables. Itmakes repeated calls to
another function in line 51 to do the real work, passing along the first three arguments unchanged.The two
functions have the same name; we can get away with this because their numbers of arguments are different.

The loop in line 50 will work correctly only ifcount is initially non-negative; this will be fixed on
pp. 128−129. The increment in line 62 will work correctly only if the year does not already have the maxi-
mum value for an integer. We will check for this when we have ‘‘exceptions’’, on pp. 599−600.

We could have let the trio be global variables, making them accessible to the functions without the
need for pointer arguments. Butglobals are cursed with immortality. They cannot be created, destroyed,
and re-created while the program is running. See p. 464.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/version/version1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c onst int date_length[] = {
6 0, / /dummy element so that January will have subscript 1
7 31, //January
8 28, //February, ignoring for now the possibility of leap year
9 31, //March

10 30, //April
11 31, //May
12 30, //June
13 31, //July
14 31, //August
15 30, //September
16 31, //October
17 30, //November
18 31 //December
19 };
20
21 void date_next(int *pyear, int *pmonth, int *pday, int count);
22 void date_next(int *pyear, int *pmonth, int *pday);
23 void date_print(const int *pyear, const int *pmonth, const int *pday);
24
25 int main()

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

26 {
27 int year = 2014;
28 int month = 1; //1 to 12 inclusive
29 int day = 1; //1 to date_length[month] inclusive
30
31 cout << "How many days forward from ";
32 date_print(&year, &month, &day);
33 cout << " do you want to go? ";
34
35 int count; //uninitialized variable
36 cin >> count;
37
38 date_next(&year, &month, &day, count);
39 cout << "The new date is ";
40 date_print(&year, &month, &day);
41 cout << ".\n";
42 return EXIT_SUCCESS;
43 }
44
45 void date_next(int *pyear, int *pmonth, int *pday, int count)
46 {
47 //Call the three-argument date_next (line 55) count times.
48 //Pass along the three pointers we received.
49
50 while (--count >= 0) {
51 date_next(pyear, pmonth, pday);
52 }
53 }
54
55 void date_next(int *pyear, int *pmonth, int *pday)
56 {
57 //Move to the next date.
58 if (++*pday > date_length[*pmonth]) {
59 *pday = 1;
60 if (++*pmonth > 12) {
61 *pmonth = 1;
62 ++*pyear;
63 }
64 }
65 }
66
67 void date_print(const int *pyear, const int *pmonth, const int *pday)
68 {
69 cout << *pmonth << "/" << *pday << "/" << *pyear;
70 }

Let’s look at a representative expression in the body of one of the functions, the++*pday in the
above line 58. The value of the subexpression*pday is the variableday in line 29, so the++ adds 1 to
day .

It is good that the++ does not add 1 topday , which is a pointer today . If we added 1 topday , it
would point somewhere else, probably to garbage. Fortunately, there is no way that the++ could possibly
accesspday . Because of their equal precedence and right-to-left associativity, the subexpression*pday is
evaluated before the++ is executed. We express this graphically by surrounding the subexpression*pday
with a box. An operator outside a box cannot reach into the box and single out a sub-subexpression such as

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.1.1 Version 1: Pass Individual Variables to a Function 107

108 ObjectsWi thout Inheritance Chapter 2

thepday in *pday . From the++’s point of view, the subexpression*pday is a monolithic whole.

++ * pday

Line 58 therefore does the work of the following two lines. Thinkof them as an exploded view of line 58.

71 *pday = * pday + 1;
72 if (*pday > date_length[*pmonth]) {

To sum up, our major problem is how to make the trio of variables available to the functions that
work on them.The main possibilities are pass-by-value, pass-by-reference (in read/write and read-only fla-
vors), and global variables. We hav e settled on pass-by-reference, leaving our function bodies bristling
with asterisks.

How many days forward from 1/1/2014 do you want to go? 280
The new date is 10/8/2014.

2.1.2 Version 2: Pass A Structure to a Function
Eachdate consists of a trio of integers:year , month , day . A thousanddate ’s would be three

thousand separate integers. We could keep track of them more easily by clumping each trio into a structure.
The main character of the program is now the single variabled in line 33 and the three functions in lines
27−29 that operate on it.

Lines 21−25 are the definition for a new data type nameddate . Despite being called a ‘‘definition’’,
they do not create any variable of this type.They are merely the blueprint, describing what one of these
variables would contain if we went ahead and created one. This is done in line 33.

Of course, our little program has only one date.Writing it as a structure is overkill, as was the divi-
sion of the program into separate functions. The structure and functions are introduced only to prepare the
way for the object in Version 3.

In C a structure data type was a second-class citizen, and line 33 would have needed the keyword
struct . This is unnecessary in C++.

1 s truct date d = {2014, 1, 1}; /* line 33 written in C */

The simplest function isprint , called in line 36 and defined in line 71.To use the pointer argument
p in line 73, we apply the dereferencing operator* , retrieving the pointed-to variable. Sincethis variable
turns out to be a structure, we apply the dot operator and the name of a field.To execute the* before the
dot, line 73 needs the parentheses in the expression(*p).month ; without them, the dot would have gone
first because of its higher precedence.We saw these parentheses on p. 48.

Line 73 will work, but is commented out because 74 is a simpler way to do the same thing. The ar-
row operator-> does the work of the star and dot.And now that there is only one operator, the parentheses
are no longer needed.

To ensure thatprint does not change the values of the fields of the structure, line 71 declares the
pointer argument to be read-only. This time, we have to write the keyword const only once.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/version/version2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c onst int date_length[] = {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

6 0, / /dummy element so that January will have subscript 1
7 31, //January
8 28, //February
9 31, //March

10 30, //April
11 31, //May
12 30, //June
13 31, //July
14 31, //August
15 30, //September
16 31, //October
17 30, //November
18 31 //December
19 };
20
21 struct date {
22 int year;
23 int month; //1 to 12 inclusive
24 int day; //1 to date_length[month] inclusive
25 }; //Version 3 will need this semicolon, too.
26
27 void next(date *p, int count);
28 void next(date *p);
29 void print(const date *p);
30
31 int main()
32 {
33 date d = { 2014, 1, 1}; //curly braces around initial values
34
35 cout << "How many days forward from ";
36 print(&d);
37 cout << " do you want to go? ";
38
39 int count; //uninitialized variable
40 cin >> count;
41
42 next(&d, count);
43 cout << "The new date is ";
44 print(&d);
45 cout << ".\n";
46 return EXIT_SUCCESS;
47 }
48
49 void next(date *p, int count)
50 {
51 //Call the one-argument next (line 59) count times.
52 //Pass along the pointer we received.
53
54 while (--count >= 0) {
55 next(p);
56 }
57 }
58
59 void next(date *p)

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.1.2 Version 2: Pass A Structure to a Function 109

110 ObjectsWi thout Inheritance Chapter 2

60 {
61 //Move to the next date.
62 if (++p->day > date_length[p->month]) {
63 p->day = 1;
64 if (++p->month > 12) {
65 p->month = 1;
66 ++p->year;
67 }
68 }
69 }
70
71 void print(const date *p)
72 {
73 //cout << (*p).month << "/" << (*p).day << "/" << (*p).year;
74 cout << p->month << "/" << p->day << "/" << p->year;
75 }

Let’s look at the representative expression in this version, the++p->day in the above line 62. The
value of the subexpressionp->day is the fieldd.day in line 33, so the++ adds 1 tod.day .

It is good that the++ does not add 1 top, which is a pointer tod. If we added 1 top, it would point
somewhere else, probably to garbage. Fortunately, there is no way that the++ could possibly accessp.
Because the precedence of-> is higher than that of prefix++, the subexpressionp->day is evaluated be-
fore the++ is executed. We express this graphically by surrounding the subexpressionp->day with a
box. Anoperator outside a box cannot reach into the box and single out a sub-subexpression such as thep
in p->day . From the++’s point of view, the subexpressionp->day is a monolithic whole.

++ p -> day

Line 62 therefore does the work of the following two lines. Thinkof them as an exploded view of line 62.

76 p->day = p->day + 1;
77 if (p->day > date_length[p->month]) {

Version 2 collected the trio of disparate variables into one structure.Version 2 also runs faster be-
cause it passes fewer arguments to the functions. But the bodies of the functions have become more com-
plicated: the arrows in Version 2 are more baroque than the stars in Version 1. What we want is the speed
of Version 2 with a notation as simple as Version 1. This is what Version 3 will deliver, and more.

As a footnote, the function names in Version 2 have been simplified.The Version 1 function argu-
ments were of a plain vanilla data type: pointer toint . We therefore had to adddate_ to the name of
each function to allow for the possibility of other functions taking arguments of the same type.

78 void date_print(const int *pday, const int *pmonth, const int *pyear);
79 void time_print(const int *phour, const int *pminute, const int *psecond);

But the Version 2 function arguments are of a distinctive data type: pointers to a very specific type of struc-
ture. We are now in a position to overload the function name.

80 void print(const date *p);
81 void print(const time *p);

In Version 1, we could easily have passed a date to the function that prints a time:

82 time_print(&day, &month, &year);//bug not caught by compiler

In Version 2, the same error would require an explicit cast.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

83 print(reinterpret_cast<const time *>(&d));

In addition, we can no longer accidentally pass a date to the function that prints a time, or a time to the
function that prints a date. If we try to do this, the program will not compile.

The name of the array will also be reduced, fromdate_length to length when we do ‘‘static
data members’’ on pp. 238−239. In fact, any compound name that we invent is for temporary use only.
Eventually, we will use the language itself, rather than a compound name with an underscore, to indicate
what goes with what.

How many days forward from 1/1/2014 do you want to go? 280
The new date is 10/8/2014.

2.1.3 Version 3: Call Member Functions of an Object

An object is a structure passed to a function

I dislike inv enting new terminology . . .

—Bjarne Stroustrup,The Design and Evolution of C++, p. 31

Our program has only three major variables,year , month , and day . It is simple enough to do all
its work inmain . But with more variables and greater complexity, we would want to clump the variables
into structures and divide the program into functions. Our problem would then be to pass these structures
down to the functions where the work is done.

Objects will eventually be a new ‘‘paradigm’’ f or programming (pp. 163−179). But we will begin
with a much more mundane definition.An object is a structure that can be passed to a function as quickly
as the structures in Version 2, with a notation even simpler than that of Version 1.

Theclassof an object is its data type. The objectd is of the classdate defined in line 37 of
version3.C on p. 115. As in the previous example, the class definition does not create any variables. It
is merely a blueprint.

We say ‘‘class of an object’’ rather than ‘‘data type of a structure’’ because the terminology of C++ is
borrowed from the language Simula67 rather than C.

Note that the word ‘‘structure’’ can mean two things in C: a certain kind of data type, or a variable of
that type. In C++, these ideas have separate words: ‘‘class’’ and ‘‘object’’.

Members of an object

In C, a structure hasfields, all of which must be variables. InC++, a class hasmembers,which can
be variables or functions. From this difference will proceed all of object-oriented programming.

The first three members of classdate , declared in lines 22−24, are variables, like the fields of a C
structure. They are calleddata members. The last four members, declared in lines 26−29, are functions,
and have no direct counterpart in C.They are calledmember functions.Our convention will be to declare
the data members before the member functions; page 119 will explain why the reverse order would some-
times upset the human reader. Thepublic: in line 25 will be explained on p. 114.

A data member is located physically inside of the object to which it belongs, as a field is inside a
structure in C.But a member function has an entirely different relationship to the object to which it be-
longs. Whenwe say that we are calling a member function that ‘‘belongs’’ to a particular object, we mean
only that we are passing the address of that object to the function, using the special notation described be-
low. A member function is not located inside of an object, as a data member is.A member function is
shared by all the objects of its class.We could just as easily pass it the address of some other object of the
class.

Line 41 shows the special notation for calling a member function of an object, i.e., for passing the ad-
dress of the object to the member function. The ‘‘dot’’ operator has the same operands it had in C: a struc-
ture or object on the left, and a field or member on the right.When the right operand is a data member, the

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.1.3 Version 3: Call Member Functions of an Object 111

112 ObjectsWi thout Inheritance Chapter 2

dot has the same meaning it had in C. (Line 40 is an example, although it will not compile.) But when the
right operand is a member function, it calls the member function and passes it the address of the object
which is the left operand of the dot. Line 41 calls theprint member function of the objectd, i.e., it pass-
es the address of the objectd to the member functionprint .

Let’s walk through the order in which the subexpressions of line 41 are evaluated. To use the object
d we apply the dot operator and the name of a member, which delves into the object and accesses the mem-
ber. Since the member turns out to be a member function, we then apply the function call operator (the
parentheses that surround the argument list).To execute the dot before the function call operator, no paren-
theses are needed.They hav eequal precedence and left-to-right associativity, so the dot goes first. See p.
48 for a similar sequence of subexpressions.

d . print ()

The functionprint in line 41 receives no arguments other than the address ofd. The function
next in line 47 receives the argumentcount as well as the address ofd.

The definition of the member functions

Theprint member function in line 99 has the simplest definition.It must name the class to which
the function belongs, since there could be a function with the same name belonging to another class.

1 v oid date::print() const //first line of definition of our function
2 v oid time::print() const //first line of definition of another function

The name of the class and the member function are pasted together with the scope operator:: . Its oper-
ands are always a last name and a first name. In the expressionstd::cout on p. 20, the operands were a
namespace and one of its members. In thedate::print in line 99, they are a class and one of its mem-
bers.

A member function always receives the address of its object as animplicit (invisible) argument. The
argument is not declared in the parentheses in line 99, and is usually never mentioned at all. If its value
must be used explicitly, howev er, it is available as a pointer namedthis . Whenprint is called from line
41, for example, the value ofthis in lines 101−106 will be the address of the objectd. this can be
mentioned only in the body of a member function.

There is nothing wrong with lines 101 and 102.I commented them out only to make all three ver-
sions of the program produce the same output.Whenprint is called from line 41, the pointerthis in
line 102 is the address of the objectd, and *this is the value ofd. Applying the dereferencing operator*
to any pointer in C or C++ will get us the value of the pointed-to variable.

Lines 104 and 105 are the same as lines 73 and 74 of the above version2.C , with the pointerp
now namedthis . They are commented out because line 106 is a simpler way to do the same thing. In the
body of a member function of a class, a member of that class with no dot or arrow in front of it is always a
member of the object to which the member function belongs, i.e., the object to which the member function
has received the implicit pointer. After all, the simplest notation is—no notation at all.Whenprint is
called from line 41, themonth in line 106 will be themonth data member of the objectd in line 41.

A member function may also receive explicit (visible) arguments. Inthe next function called in
line 47 and defined in 74, we have one implicit and one explicit argument.

Lines 81−83 correspond to lines 104−106, but with a member function instead of a data member.
They demonstrate that a member function of an object can easily call another member function of the same
object. Lines104 and 105 are commented out because 106 is a simpler way to do the same thing; 81 and
82 are commented out because 83 is a simpler way to do the same thing. In the body of a member function
of a class, a member of that class with no dot or arrow in front of it is always a member of the object to
which the member function belongs, i.e., the object to which the member function has received the implicit
pointer. When the one-explicit-argumentnext is called from line 47, the no-explicit-argumentnext in

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

line 83 will be the no-explicit-argumentnext member function of the objectd in line 47.

The member function namesnext , next , and print are only provisional. Whenwe do operator
overloading, we will give them their proper C++ names:operator+= (pp. 282−285),operator++ ,
(pp. 288−289), andoperator<< (pp. 337−340). Some adjustment of their arguments and return values
will also be necessary.

const member functions

A const member function is one that cannot change the value of any data member of its object.We
declaredprint to beconst in lines 29 and 99.A non-const member function is one that can change
the value of the data members of its object; that in fact is theraison d’êtreof thenext functions.

We hav ealready seen that one member function can call another member function of the same object
(line 83). A non-const member function can call any member function of its object. But aconst mem-
ber function can call only theconst member functions of its object.

If a member function isconst , the pointer passed to it is read-only. In date::print , the pointer
is implicitly declared as

3 c onst date *const this;

But in thedate::next functions, it is implicitly declared as

4 date *const this;

Note that in both cases the pointer is*const .

Member functions and free functions

For the time being, a member function is one that receives an implicit pointer argument. Afree func-
tion is one that receives no implicit pointer argument. Every C function is free; and in both languages the
main function is always free.

It sounds like every function is either a member or free, but not both.We will see later that there is
one exceptional kind of member function that receives no implicit pointer. It is a free member and is called
a ‘‘static’’ member function. See pp. 242−247.

A constructor

The most important member functions of a class are itsconstructors.One of these functions is al-
ways called when we create a new object of the same class. In fact, we usualy speak ofconstructingan ob-
ject rather than creating it.A constructor has the same name as the class to which it belongs. Ours is de-
clared in line 26 and defined in 55.

The job of a constructor is to make a newborn object ready to assume its responsibilities. The re-
sponsibilities of our object are to hold a valid date, move it forward, and print it.A constructor must leave
the object in a state in which its other member functions will operate correctly.

For the moment, we will assume that a constructor must put valid values into all the data members of
the newborn object.Later, we will see constructors that do less (p. 149) and more (p. 195).For the mo-
ment, we also assume that the number of arguments of the constructor will be the same as the number of
data members of the newborn object. Later, we will see that this is not always so. (p. 125.)

Our constructor is called in line 37. As usual, the arguments are in parentheses; recall that the corre-
sponding line 33 ofversion2.C had{ curly braces} . The objectd is the main character of our program.

When adate is constructed, the data members are created in the order in which they are declared in
lines 22−24.For the present, however, this is only of academic interest. No one cares what order integers
are created in, because nothing observable happens when an integer is born.

But the order may become important in the future. It is possible for the data members of an object to
be little objects, just as the fields of a structure can be little structures (pp. 257−265). If we letyear ,
month , and day be objects in their own right, each will have its own constructor. When that happens, the
error checking for themonth data member now in lines 57−61, and the error checking for theday data

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.1.3 Version 3: Call Member Functions of an Object 113

114 ObjectsWi thout Inheritance Chapter 2

member now in lines 63−67, will be moved to the constructors for these month and day objects.Observe
that lines 57−61 must be executed before 63−67, because themonth value must be validated before it is
used as an array subscript in line 63. When they become objects, we will therefore have to construct the
month before theday . Lines 22−24 do this now even though it is not currently necessary. It will be one
less thing to change when our three data members change from integers to objects.

A constructor returns the object that it constructs; we will take advantage of this on pp. 137−138.
But the object is always returned implicitly. Do not declare a return type for the constructor, not even
void . And do not write areturn statement with an expression inside a constructor.

1 r eturn; //okay
2 r eturn something; / /won’t compile

Public and private members

The members of a class fall into two groups,public andprivate. The private ones are those declared
at the start of the class declaration (year , month , day); the public ones are those declared after the label
public: in line 25 (date , next , next , print). We could have inserted the labelprivate: at line
21½, but this would have been redundant.

The public members of a class can be mentioned by any function. Themain function mentions two
of them:print in lines 41 and 49, and the one-explicit-argumentnext in line 47. But the private mem-
bers can be mentioned only in the bodies of the member functions of that class (and in the class declaration
itself, lines 21−30). The membersmonth , day , year can be mentioned in line 106 by theprint mem-
ber function, but not in line 40 bymain . Uncomment line 40 and see what the error message is.

It takes more effort to plan a C++ class than a C structure.Any function can access any field of any
C structure. Butwe have to decide in advance which functions will be able to access the private members
of a C++ class; they will have to be member functions of the class.We will also have to decide which func-
tions will have read/write access to the members; they will have to be non-const member functions.

For the time being, let the data members of a class be private to make it easier to debug and modify.
A data member should certainly be private if not every value is legal for it, or if the legal range of values
depends on the value of another data member. For example, a value of 31 is legal for day only for certain
values ofmonth .

There are two other places where a private member can be mentioned.We bring them up now only
for completeness; don’t worry about them yet.A private member can be mentioned in the initial value for a
‘‘ static’’ data member, pp. 236−242.A private member that belongs to no object can be mentioned be-
tween its declaration and the curly brace that ends the class declaration.

3 c lass exotic {
4 s tatic size_t s; //a "static" data member
5 c har a[sizeof s]; //Can mention s here even though it’s private.
6 } ; / /end of class declaration
7
8 s ize_t exotic::s = sizeof a; //Can mention a here even though it’s private.

A variable that is not a data member (yet)

The date_length array in lines 5−19 is intended for use only by the member functions of class
date . For safety, it should be inaccessible to every other function.We already know how to do this: by
making the array a private data member of classdate .

But doing this now would waste space if we had more than onedate object. Thereis no need for
eachdate to contain its own copy of the array. We will have to wait until we talk about a different kind of
data member, the ‘‘static’’ ones on pp. 238−239.For the present, we merely observe that the array has yet
to receive its final disposition.Somewhat unsatisfactorily, it remains a separate variable, floating near its
associated class.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

To indicate that the array has some kind of connection to classdate , we temporarily gav eit a name
starting withdate_ . When it becomes a member of the class, thedate_ will be removed.

How vulnerable is the array in the meantime? Not very. A const global variable in C++ can be
mentioned only in the.C file in which it is defined.(To change this, we could declare the array with the
keywordextern at the start of line 5.)

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/version/version3.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c onst int date_length[] = {
6 0, / /dummy element so that January will have subscript 1
7 31, //January
8 28, //February
9 31, //March

10 30, //April
11 31, //May
12 30, //June
13 31, //July
14 31, //August
15 30, //September
16 31, //October
17 30, //November
18 31 //December
19 };
20
21 class date {
22 int year;
23 int month; //1 to 12 inclusive
24 int day; //1 to date_length[month] inclusive
25 public:
26 date(int initial_month, int initial_day, int initial_year);
27 void next(int count); //Go count days forward.
28 void next(); //Go one day forward.
29 void print() const; //Output date to cout (function declaration).
30 }; //Don’t forget ; at end of class declaration.
31
32 int main()
33 {
34 //Construct d by p assing three arguments to the constructor for d.
35 //The constructor will initialize d’s data members.
36
37 date d(1, 1, 2014); //parentheses around function arguments
38
39 cout << "How many days forward from ";
40 //cout << d.month << "/" << d.day << "/" << d.year; //won’t compile
41 d.print(); //Pass the address of d to the print member function.
42 cout << " do you want to go? ";
43
44 int count; //uninitialized variable
45 cin >> count;
46

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.1.3 Version 3: Call Member Functions of an Object 115

116 ObjectsWi thout Inheritance Chapter 2

47 d.next(count);
48 cout << "The new date is ";
49 d.print();
50 cout << ".\n";
51
52 return EXIT_SUCCESS;
53 }
54
55 date::date(int initial_month, int initial_day, int initial_year)
56 {
57 if (initial_month < 1 || initial_month > 12) {
58 cerr << "bad month " << initial_month << "/" << initial_day
59 << "/" << initial_year << "\n";
60 exit(EXIT_FAILURE);
61 }
62
63 if (initial_day < 1 || initial_day > date_length[initial_month]) {
64 cerr << "bad day " << initial_month << "/" << initial_day
65 << "/" << initial_year << "\n";
66 exit(EXIT_FAILURE);
67 }
68
69 year = i nitial_year;
70 month = i nitial_month;
71 day = i nitial_day;
72 }
73
74 void date::next(int count)
75 {
76 //Call the no-explicit-argument next (line 87) count times.
77 //Pass along the implicit pointer we received.
78
79 while (--count >= 0) {
80 //call another member function of same object
81 //(*this).next();
82 //this->next();
83 next();
84 }
85 }
86
87 void date::next()
88 {
89 //Move to the next date.
90 if (++day > date_length[month]) {
91 day = 1;
92 if (++month > 12) {
93 month = 1;
94 ++year;
95 }
96 }
97 }
98
99 void date::print() const //This is a function definition.

100 {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

101 //cout << "The address of this object is " << this << ".\n";
102 //cout << "Size in bytes of this object is " << sizeof *this << ".\n";
103
104 //cout << (*this).month << "/" << (*this).day << "/" << (*this).year;
105 //cout << this->month << "/" << this->day << "/" << this->year;
106 cout << month << "/" << day << "/" << year;
107 }

The expression in above line 90 corresponds to the ones we examined in Versions 1 and 2.It is now
simple enough to need no exploded view.

How many days forward from 1/1/2014 do you want to go? 280
The new date is 10/8/2014.

The above lines 101−102 would produce the following extra output on my platform.

The address of this object is 0xffbff03c.
Size in bytes of this object is 12. 3 int ’s of 4 bytes each

The above line 40 would cause the following trio of error messages on my platform.

version3.C: In function ’int main()’:
version3.C:23:6: error: ’int date::month’ is private
version3.C:40:12: error: within this context
version3.C:24:6: error: ’int date::day’ is private
version3.C:40:30: error: within this context
version3.C:22:6: error: ’int date::year’ is private
version3.C:40:46: error: within this context

▼ Homework 2.1.3a: deliberately introduce compilation errors

What is the error message on your platform when you try to violate each of the following rules?

(1) We can mention a private member of a class only in the body of the class declaration (lines 21−30
above) or in the body of a member function of the class.Uncomment line 40 of the above version3.C
and see what happens.

(2) this is a*const pointer, so it always points to the same place.Try to make it point elsewhere.

1 ++this;

(3) Since thedate::print member function isconst , there are three things it cannot do to the
object to which it belongs.We would never want to do them in a ‘‘print’ ’ f unction, but let’s try them any-
way.

(3a)date::print cannot change the value of a data member of the object.

2 ++day;

(3b) date::print cannot call a non-const member function of the object, because that could
change the value of a data member.

3 next();

(3c) date::print cannot return a pointer granting read/write access to the object.You will also
have to change thevoid to date * in the above line 29.

4 date *date::print() const
5 {
6 c out << month << "/" << day << "/" << year;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.1.3 Version 3: Call Member Functions of an Object 117

118 ObjectsWi thout Inheritance Chapter 2

7 r eturn this;
8 }

If we could get away with the above lines 4−8, we could use the returned pointer to change the value of a
data member:

9 c onst date d(1, 1, 2014); //should not be allowed to change d
10 date *p = d.print(); //p is a pointer to a date. Don’t let this compile!
11 p->next(); //change the value of a data member of d

Verify that date::print could return a pointer that is read-only. You will have to change the
void to const date * in the above line 29.

12 const date *date::print() const
13 {
14 cout << month << "/" << day << "/" << year;
15 return this;
16 }

Test the newdate::print like this:

17 date d(1, 1, 2014);
18 const date *p = d.print();
19 cout << "\n";
20
21 cout << p << "\n" //should output the address of d
22 << &d << "\n"; //should output the same address

▲

2.2 NotationalConveniences

2.2.1 InlineMember Functions
The member functionprint is small enough to be inline.We already know one way to do this.

(1) Addthe keyword inline to the start of the function definition in line 99 of the above
version3.C .

(2) Move the definition in lines 99−107 up to line 31, because the definition of a function must be seen
before we can make an inline call to it.

If the function is a member function, there is a more compact notation for making it inline.

(1) Remove the function’s definition in the above lines 99−107.

(2) Changethe declaration in the above line 29 to the following line 9, which is both a declaration and
definition. Writeno semicolon after the closing curly brace, just as there was no semicolon after the
closing curly brace in the above line 107. After theyear , howev er, write a semicolon as in the
above line 106.

1 c lass date {
2 i nt year;
3 i nt month; //1 to 12 inclusive
4 i nt day; //1 to date_length[month] inclusive
5 public:
6 date(int initial_month, int initial_day, int initial_year);
7 v oid next(int count); //Go count days forward.
8 v oid next(); //Go one day forward.
9 v oid print() const {cout << month << "/" << day << "/" << year;}

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

10 };

Surprisingly, an inline member function defined this way can mention another member before that
member has been declared.We could actually have written the following line 16, mentioning themonth ,
day , andyear before their declarations in lines 18−20.For another example, see p. 214.

11 class date {
12 public:
13 date(int initial_month, int initial_day, int initial_year);
14 void next(int count); //Go count days forward.
15 void next(); //Go one day forward.
16 void print() const {cout << month << "/" << day << "/" << year;}
17 private:
18 int year;
19 int month; //1 to 12 inclusive
20 int day; //1 to date_length[month] inclusive
21 };

But moving the definition to the above line 16 would just get people upset.Keep it in line 9.With only one
other exception, a C or C++ variable or function can never be mentioned before its declaration.*

Given the compact notation, why would we ever want to use the other one? Sometimes we have no
choice. Ifmonth_before_day had to be declared in line 33 for some reason, and ifprint mentioned
month_before_day , then the definition ofprint must come after line 33.

22 class date {
23 int year;
24 int month; //1 to 12 inclusive
25 int day; //1 to date_length[month] inclusive
26 public:
27 date(int initial_month, int initial_day, int initial_year);
28 void next(int count); //go count days forward
29 void next(); //go one day forward
30 void print() const;
31 };
32
33 bool month_before_day = true;
34
35 inline void date::print() const
36 {
37 if (month_before_day) {
38 cout << month << "/" << day << "/" << year;
39 } else {
40 cout << day << "/" << month << "/" << year;
41 }
42 }

2.2.2 AHeader File for a Class Declaration
To use the same class in many different C++ programs without having to copy and paste, write the

declaration for the class (including the definitions of its inline member functions) in a separateheaderfile
named after the class. Write the definitions of the non-inline member functions of the class in a.C file, al-
so named after the class. This file is sometimes called the class’simplementationfile.

* The other exception involves ‘‘templates’’. Seep. 751.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.2.2 A Header File for a Class Declaration 119

120 ObjectsWi thout Inheritance Chapter 2

If a header file contained the definition for a variable (not merely the declaration), and if it were in-
cluded in more than one.C file of the same program, we would have more than one copy of the variable
and would be wasting memory. For this reason, the definition of the arraydate_length is written in the
implementation filedate.C .

In C++, a constant global variable is static by default: it can be used only in the file in which it is de-
fined. Thearray can therefore be used only by the functions in the filedate.C . In C, the array would
have needed the keyword static to make it static. InC++, the array would have needed the keyword
extern to make it non-static.

For the ifndef machinery in lines 1, 2, and 16, see pp. 81−82.date.h must includeiostream
and use namespacestd because line 14 mentionscout and <<. date.C includesdate.h , which
makes it redundant to includeiostream and usestd in lines 1 and 4 ofdate.C . We keep lines 1 and 4
in date.C anyway, just in case someone removes them fromdate.h . This could happen if theprint
function was made non-inline and moved back todate.C .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/date/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5
6 c lass date {
7 i nt year;
8 i nt month; //1 to 12 inclusive
9 i nt day; //1 to date_length[month] inclusive

10 public:
11 date(int initial_month, int initial_day, int initial_year);
12 void next(int count); //Go count days forward.
13 void next(); //Go one day forward.
14 void print() const {cout << month << "/" << day << "/" << year;}
15 };
16 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/date/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 c onst int date_length[] = {
7 0, / /dummy element so that January will have subscript 1
8 31, //January
9 28, //February

10 31, //March
11 30, //April
12 31, //May
13 30, //June
14 31, //July
15 31, //August
16 30, //September
17 31, //October
18 30, //November
19 31 //December

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

20 };
21
22 date::date(int initial_month, int initial_day, int initial_year)
23 {
24 if (initial_month < 1 || initial_month > 12) {
25 cerr << "bad month " << initial_month << "/" << initial_day
26 << "/" << initial_year << "\n";
27 exit(EXIT_FAILURE);
28 }
29
30 if (initial_day < 1 || initial_day > date_length[initial_month]) {
31 cerr << "bad day " << initial_month << "/" << initial_day
32 << "/" << initial_year << "\n";
33 exit(EXIT_FAILURE);
34 }
35
36 year = i nitial_year;
37 month = i nitial_month;
38 day = i nitial_day;
39 }
40
41 void date::next(int count)
42 {
43 //Call the other next count times.
44 while (--count >= 0) {
45 next();
46 }
47 }
48
49 void date::next()
50 {
51 //Move to the next date.
52 if (++day > date_length[month]) {
53 day = 1;
54 if (++month > 12) {
55 month = 1;
56 ++year;
57 }
58 }
59 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/date/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d(1, 1, 2014);
9

10 cout << "How many days forward from ";
11 d.print();

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.2.2 A Header File for a Class Declaration 121

122 ObjectsWi thout Inheritance Chapter 2

12 cout << " do you want to go? ";
13
14 int count; //uninitialized variable
15 cin >> count;
16
17 d.next(count);
18 cout << "The new date is ";
19 d.print();
20 cout << ".\n";
21
22 return EXIT_SUCCESS;
23 }

When compiling on Unix we mention only the names of the.C files, not the names of the.h files.

1$ g++ -o ˜/bin/prog main.C date.C Create˜/bin/prog .
2$ ls -l ˜/bin/prog
3$ prog

How many days forward from 1/1/2014 do you want to go? 280
The new date is 10/8/2014.

2.3 ScopingRules

Tw o groups of variables in scope in a free function

Suppose that the name of a variable is encountered in the body of a member function, and the name is
not immediately preceded by any of the operators. , -> , or :: , or the more exotic ones.* or .-> . The
computer will first check if there is a local variable (one declared earlier in the body of the function) with
the same name. If so, the computer decides that this variable is the local one. If not, the computer will then
check if there is a global variable with the same name.If so, the computer decides that this variable is the
global one. If not, the computer gives up and issues an error message.

A variable whose name can be mentioned at a certain point in a program is said to bein scopeat that
point. Inthe body of a free function two groups of variables are in scope.We repeat the order in which the
computer checks them.

(1) Thevariables declared in the body of the function. These variables are calledlocal because they are
in scope only in the body of the function in which they were declared.

(2) Thevariables that are not local.These variables must be declared earlier in the file, and are called
global because they are in scope throughout the file.

A local variable and a global variable can have the same name (lines 5 and 1). Since the computer
checks the local names before the global ones, the local will hide the global (line 7).We would need the
unary scope operator:: in line 8 to access the eclipsed global when there is a local with the same name.

1 i nt i = 10;
2
3 v oid f()
4 {
5 i nt i = 20;
6
7 c out << i << "\n"; //the local i in line 5
8 c out << ::i << "\n"; //the global i in line 1
9 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

In practice, you should never hav ea local and a global with the same name. The names of local vari-
able should be short and conventional: i for a loop counter, p for a pointer. Global names should have
more individuality:max_users , current_window .

Three groups of variables in scope in a member function

In the body of a member function of a class, three groups of variables are in scope.

(1) Thelocal variables.

(2) Themembers of the class.

(3) Thevariables that are neither local nor members, which we will now call the globals.

If the name of a variable is encountered in the body of a member function of a class, and if the name
is not immediately preceded by one of the operators. , -> , or :: , or the more exotic ones.* or .-> , the
computer first considers the locals, then the members of the class, and finally the globals.

If a local and a member have the same name (day in lines 7 and 3), the local will hide the member
(line 9). We would need the binary scope operator:: in line 10 or thethis-> in line 11 to access the
eclipsed member when there is a local with the same name. If a member and a global have the same name
(month in lines 3 and 1), the member will hide the global (line 13).We would need the unary scope oper-
ator :: in line 14 to access the eclipsed global when there is a member with the same name.And as be-
fore, a local will hide a global.

1 i nt month = 10;
2
3 / /Class date has data members named year, month, day
4
5 v oid date::print() const
6 {
7 i nt day = 20;
8
9 c out << day << "\n" //the local day in line 7

10 << date::day << "\n" //the day member of class date (binary ::)
11 << this->day << "\n"; //the day member of class date
12
13 cout << month << "\n" //the month member of class date
14 << ::month << "\n"; //the global month in line 1 (unary ::)
15 }

When we do inheritance, four or more groups of variables will be in scope in the body of a member
function of a ‘‘derived class’’. Seepp. 479−480.

The above rules apply not only to variables, but also to anything that can have a name: functions,
typedefs, enumerations, etc.(Keywords such asmain , this , and sizeof do not count as names.)A lo-
cal (in this case, an enumeration) will hide a member with the same name (line 24), and a member (in this
case, a member function) will hide a global with the same name (line 28).

16 void print(); //Declaration for a function that is not a member function.
17
18 //Class date has a data member named day and a member function named print.
19
20 void date::next() const
21 {
22 enum {day, night};
23
24 cout << day << "\n" //the local day in line 22
25 << date::day << "\n" //the day member of class date
26 << this->day << "\n"; //the day member of class date
27

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.3 Scoping Rules 123

124 ObjectsWi thout Inheritance Chapter 2

28 print(); //the print member of class date
29 ::print(); //the global print declared in line 16
30 }

2.4 Structures vs. Objects

Why a C++ object is better than a C structure

(1) A member function of an object has a simpler body than a function that takes an explicit pointer.
Here are corresponding lines from each body.

60 if (++*pmonth > 12) { //Version 1, p. 107
64 if (++p->month > 12) { //Version 2, p. 110
92 if (++month > 12) { //Version 3, p. 116

Does the++ in Version 1 increment thepmonth or the*pmonth ? Does the++ in Version 2 increment
thep or thep->month ? These questions disappear in Version 3.

(2) A member function of an object has fewer explicit arguments than a function that takes pointers.
Here are corresponding function calls.

38 date_next(&day, &month, &year, count); //Version 1, p. 107
42 next(&d, count); //Version 2, p. 109
47 d.next(count); //Version 3, p. 116

(3) A C structure can easily be created without being initialized, leaving it full of garbage. Buta C++
object cannot be created without being initialized, at least if we write a constructor for its class.

(4) If a field of a C structure receives the wrong value, any function in the program might be guilty.
But if a data member of a C++ object receives the wrong value, it’s easy to make a list of every possible
suspect: it must be one of the non-const member functions of that object.

(5) If we change the name or data type of a field of a structure, there’s no easy way to list all the
functions that would have to be rewritten. Butif we change theprivate members of an object, only the
member functions of the object’s class would have to be rewritten. Noother function in the program would
need to be changed.

For example, here are the private data members of Version 3.

22 int year;
23 int month; //1 to 12 inclusive
24 int day; //1 to date_length[month] inclusive

If we change them to

22 int year;
23 int julian; //1 to 365 inclusive (we’re ignoring leap years)

then only the member functions of classdate would have to change, and not even all of them.

Let’s walk through a call to the constructor of a two-data-memberdate object, passing it the three
arguments 10, 8, and 2014 for October 8, 2014.In line 15 the data memberyear will receive the value
2014, and in line 17 the data memberjulian will receive 8.

(1) Thefirst time we decrementinitial_month in line 17, it becomes 9 (for September) and
julian is 8.

(2) Thesecond time we decrementinitial_month in line 17, it becomes 8 (for August) and
julian is 8 + 30 = 38.

(3) Thethird time we decrementinitial_month in line 17, it becomes 7 (for July) and
julian is 8 + 30 + 31 = 69.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

(4) Thetenth (and last) time we decrementinitial_month in line 17, it becomes 0 (for no month at
all) andjulian is 8 + 30 + 31 + 31 + 30 + 31 + 30 + 31 + 28 + 31 = 281.We then leave the loop.

Conversely, let’s walk through a call to theprint member function of adate of this type that con-
tains October 8, 2014. In line 40, the data memberjulian contains 281.

(1) Thefirst time we do the> comparison in line 43,mis 1 (for January) andd is 281, which represents
the outrageous date January 281, 2014.

(2) Thesecond time we do the comparison in line 43,m is 2 (for February) andd has been reduced to
250, which represents the slightly less outrageous date February 250, 2014.

(3) Thethird time we do the comparison in line 43,m is 3 (for March) andd has been reduced to 222,
which represents the even less outrageous date March 222, 2014.

(4) Thetenth (and last) time we do the comparison in line 43,m is 10 andd (for October) has been re-
duced to 8, which represents the legitimate date October 8, 2014.We then leave the loop.

If the min line 41 was declared in the loop in lines 43−45, we would not be able to mention it in line
47 outside the loop.

1 date::date(int initial_month, int initial_day, int initial_year)
2 {
3 i f (initial_month < 1 || initial_month > 12) {
4 c err << "bad month " << initial_month << "/" << initial_day
5 << " /" << initial_year << "\n";
6 exit(EXIT_FAILURE);
7 }
8
9 i f (initial_day < 1 || initial_day > date_length[initial_month]) {

10 cerr << "bad day " << initial_month << "/" << initial_day
11 << "/" << initial_year << "\n";
12 exit(EXIT_FAILURE);
13 }
14
15 year = i nitial_year;
16
17 for (julian = initial_day; --initial_month > 0;
18 julian += date_length[initial_month]) {
19 }
20 }
21
22 void date::next(int count) //same as 3-data-member version
23 {
24 while (--count >= 0) {
25 next();
26 }
27 }
28
29 void date::next() //simpler than 3-data-member-version
30 {
31 //Change to the next date.
32 if (++julian > 365) {
33 julian = 1;
34 ++year;
35 }
36 }
37
38 void date::print() const //more complicated than 3-data-member version

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.4 Structures vs. Objects 125

126 ObjectsWi thout Inheritance Chapter 2

39 {
40 int d = j ulian; //compute month and day of month
41 int m = 1;
42
43 for (; d > date_length[m]; ++m) {
44 d -= date_length[m];
45 }
46
47 cout << m << "/" << d << "/" << year;
48 }

Are there any other functions that could possibly have to be rewritten as a result of the above change
to the private data members of classdate ? Only if our functions try to ‘‘x-ray’’ classdate , which they
have no business doing.

49 if (sizeof (date) == 3 * sizeof (int)) { //no longer true

50 date d(12, 31, 2014);
51 //no longer gets the year, month, day
52 int year = reinterpret_cast<int *>(&d)[0];
53 int month = reinterpret_cast<int *>(&d)[1];
54 int day = reinterpret_cast<int *>(&d)[2];

▼ Homework 2.4a: modify the member functions of class date

Make the following changes to the member functions of the classdate with the threeint data
membersyear , month , day .

Throughout these changes, thenext function that takes one explicit argument should remain a pub-
lic, non-const , non-inline member function of classdate . It must continue to take exactly one explicit
argument (anint) and returnvoid . As before, it should change the contents of thedate (at least, when
its argument is non-zero), and it must produce no output. Do not remove the print member function or
the constructor. print should remainconst . Do not add any data members to classdate . Do not use
the value of the dummy array elementdate_length[0] : your program should still work even if the ele-
ment contains garbage. Assumethere are no leap years.

To demonstrate that your new classdate is still correct, run a program consisting of your class
date and themain function and other code in
http://i5.nyu.edu/ ∼mm64/book/src/date/test1/main.C . Make no changes to this file.
Themain function will create many date objects and test their member functions.It examines the stan-
dard output of yourprint member function and would become confused by any debugging output direct-
ed to the standard output.You should therefore send any debugging output to the standard error output.
Hand in your newdate.h , date.C , and the output of the program, in that order. Do not hand in
main.C .

(1) A Julian date is an integer in the range 1 to 365 inclusive giving the day of the year for a particu-
lar date.For any yearA.D. or B.C.,

(a) TheJulian date of January 1 is 1.

(b) TheJulian date of January 31 is 31.

(c) TheJulian date of February 1 is 32.

(d) TheJulian date of December 31 is 365, since we are still ignoring leap years.

Write a member function namedjulian that will return thedate ’s Julian date. Recall how the
print function required no explicit arguments because the date it printed came from the data members of
the date object to which theprint function belonged. In the same way, the julian function will re-
quire no explicit arguments because the date whose Julian date it returns will come from the data members
of thedate object to which thejulian function belongs.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

julian must be a publicconst member function of classdate . It must output nothing and re-
turn anint .

If you create any local variables inside the body ofjulian , destroy them as soon as you are done
with them. For example, a variable that is used only within afor should be declared after the(of the
for loop.

(2) A member function can easily call another member function of the same object.For example, the
one-argumentnext function (one explicit argument, that is) called the no-argumentnext function (no ex-
plicit arguments) in thewhile loop in lines 79−84 ofversion3.C on p. 116.

But the one-argumentnext would be faster if it did all its work itself, without calling the no-argu-
mentnext . Transplant the body of the no-argumentnext (lines 89−96 ofversion3.C on p. 116) into
the body of thewhile loop in the one-argumentnext .

1 v oid date::next(int count)
2 {
3 while (--count >= 0) {
4 / /Move to the next date.
5 i f (++day > date_length[month]) {
6 day = 1;
7 i f (++month > 12) {
8 month = 1;
9 ++year;

10 }
11 }
12 }
13 }

For the time being, continue to assume (pray) that thecount argument will be non-negative.

(3) Remove the no-argumentnext function, now that it is no longer called by the one-argument
next function. Butwe still want to be able to say

14 date d(1, 1, 2014)
15 d.next(); //with no argument

To permit this, provide a default value of 1 for the argument of the one-argumentnext . Remember that a
default value is specified only in the function declaration, not in the function definition; see p. 95.

(4) The one-argumentnext function (which is now our only next function) advances one day to-
ward the answer with each iteration of itswhile loop. Butwe can do better. Recall that in the two-data-
member classdate on pp. 124−126, the constructor and theprint member function strodeone full
month toward the answer with each iteration of their loops. In the same way, let thenext function of the
three-data-member classdate advance one full month with each iteration of its loop. Continue to assume
that thecount argument will be non-negative.

(5) To make our next function even faster, lines 18−19 break thecount into a quotient and remain-
der. The addition in line 21 will get us to within one year of the target date in a single bound.Thewhile
loop in lines 23−24 will therefore never need to loop more than 11 times. Continue to assume that the
count argument is non-negative.

16 void date::next(int count)
17 {
18 const int quotient = count / 365;
19 const int remainder = count % 365; //in range 0 - 364 inclusive
20
21 add quotient to year;
22
23 the while loop you wrote in ¶ (4) to move year, month, and day
24 remainder additional days forward;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.4 Structures vs. Objects 127

128 ObjectsWi thout Inheritance Chapter 2

25 }

(6) Deep in most machines, the/ in the above line 18 actually computes both the quotient and the re-
mainder. The quotient is stored in a variable and the remainder is discarded.The %in line 19 also com-
putes both values. Thistime, the remainder is stored and the quotient is discarded.

To get the quotient and remainder with no wasted effort, call the C Standard Library functiondiv . It
returns adiv_t structure containing two integer fields,quot andrem. Continue to assume that the
count argument is non-negative.

26 #include <cstdlib> //for div and div_t
27 using namespace std; //because div, like cout, belongs to namespace std
28
29 void date::next(int count)
30 {
31 const div_t d = div(count, 365);
32 //quotient is d.quot, remainder is d.rem

(7) So far, our next function works only if its argument is non-negative. Make it work for a neg-
ative argument as well:

33 date d(10, 8, 2014);
34
35 cout << "280 days before ";
36 d.print();
37 cout << " is ";
38 d.next(-280);
39 d.print();
40 cout << ".\n";

We will be able to write the above more legibly when we have ‘‘operator overloading’’.

41 date d(10, 8, 2014);
42
43 cout << "280 days before " << d << " is ";
44 d -= 280; //d = d - 280;
45 cout << d << ".\n";

280 days before 10/8/2014 is 1/1/2014.

For a non-negative count argument, thediv function will give us a remainder in the range 0 to 364
inclusive. For example, acount of 368 will give us aquotient of 1 and a remainder of 3.Unfortunately, a
negative count will give us a remainder in the range −364 to 0 inclusive. A count of −368 will give us a
quotient of −1 and a remainder of −3.*

In the above ¶ (4) we wrote awhile loop that advances a non-negative number of days.To continue
to use this loop, without modification, our remainder will have to be non-negative. A count of −368 will
have to giv e us a quotient of −2 and a remainder of 362.The if in lines 50−53 will perform this adjust-

* A t least thediv function is portable. The/ and%operators are not. On some platforms, we have

-368 / 365 == -1
-368 % 365 == -3

On other platforms, we have

-368 / 365 == -2
-368 % 365 == 362

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

ment, yielding a remainder that is always non-negative. A count of −368 will now move us 2 years back
and 362 days forward.

46 void date::next(int count)
47 {
48 div_t d = div(count, 365); //no longer const
49
50 if (the remainder is negative) {
51 make the remainder non-negative by adding 365 to it;
52 subtract 1 f rom the quotient to compensate for the addition;
53 }
54
55 add quotient to year;
56
57 the while loop you wrote in ¶ (4) to move year, month, and day
58 remainder additional days forward;
59 }

▲

▼ Homework 2.4b: modify the data members of class date

On pp. 124−126, we changed the three data members of classdate

1 i nt year;
2 i nt month; //1 to 12 inclusive
3 i nt day; //1 to date_length[month] inclusive

to two data members.

4 i nt year;
5 i nt julian; //1 to 365 inclusive

Now change them to one data member

6 i nt day; //number of days before or after Jan 1, 0 A.D.

Demonstrate that your new classdate is still correct by handing in the output of
http://i5.nyu.edu/ ∼mm64/book/src/date/test1/main.C . Hand in your newdate.h ,
date.C , and the output, in that order. Do not hand inmain.C .

Your class will be the most simple if your data member contains the number of days before or after
January 1, 0A.D. (We are pretending that there was a year 0A.D.) Your class will be unnecessarily compli-
cated if your data member contains the number of days before or after December 31, −1A.D. Here are
some examples of correct values.
day will contain 0 when the object contains January 1, 0A.D.

day will contain 1 when the object contains January 2, 0A.D.

day will contain 30 when the object contains January 31, 0A.D.

day will contain 31 when the object contains February 1, 0A.D.

day will contain 59 = 31 + 28 when the object contains March 1, 0A.D.

day will contain 364 when the object contains December 31, 0A.D.

day will contain 365 when the object contains January 1, 1A.D.

day will contain 365× 2014 = 735,110 when the object contains January 1, 2014A.D.

day will contain −1 when the object contains December 31, −1A.D. (i.e., 1B.C.)
day will contain −365 when the object contains January 1, −1A.D. (i.e., 1B.C.)

After dividing the data member by 365, make the remainder non-negative by writing an if like the
one in lines 50−53 of the previous Homework. Thequotient will then give the year. The remainder will be
in the range 0 to 364 inclusive, giving the day of the year. Add 1 to get the Julian date.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.4 Structures vs. Objects 129

130 ObjectsWi thout Inheritance Chapter 2

If a function needs both the quotient and the remainder, call thediv function. If only the remainder
is needed, use the%operator.

Classdate must have no data member other than theint day . Create no global variables or static
local variables. Donot use the value of the dummy array elementdate_length[0] . Assume there are
no leap years.

Make no change from the previous Homework in the names, argument types, return values, or
const ’ness of the public member functions of classdate . For example, the constructor fordate must
still take three arguments (month, day, year) even though classdate now has only one data member. And
theprint member function must still output thedate in the formatm/d/y . Thenext member function
must still accept an argument that is non-negative or neg ative. The default value of this argument must still
be1. The julian member function will still take no arguments and return anint in the range 1 to 365
inclusive.

If any of the member functions are now short enough, make them inline. If your date.h file no
longer needs to includeiostream or usenamespace std , remove these lines.If the lines are now
needed indate.C , move them there.
▲

2.4.1 ConstantObjects and Pointers Thereto

Which member functions can we call?

We can call any member function of a non-const object.

1 date d(12, 31, 2014);
2 d.print(); //a const member function
3 d.next(); //a non-const member function

But we can call only theconst member functions of aconst object.

4 c onst date e(12, 31, 2014);
5 e.print(); //will compile because print is const
6 e.next(); //won’t compile because next isn’t const

Any member function that can beconst should beconst so that it can be called for aconst object
such ase. A member function can beconst if it changes no data member of its object and calls no
non-const member function of its object.

Why can the above line 4 call the constructor, which is not aconst member function?A const
object becomes constant when we return from its constructor, either by areturn statement or simply by
reaching the} at the end of the constructor’s body. Until then, we can still modify the object’s data mem-
bers and call its non-const member functions. (On p. 268, we will see the moment when aconst object
ceases to beconst .)

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_obj/const_obj.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass obj {
6 i nt i;
7 public:
8 obj(int initial_i) {i = initial_i; f();}
9 v oid f() {cout << "I am not currently a const object.\n";}

10 };
11

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

12 int main()
13 {
14 const obj o(10); //will compile, even though constructor calls f
15 //o.f(); //won’t compile: too late to call f
16 return EXIT_SUCCESS;
17 }

I am n ot currently a const object.

Pointers and references to objects

A pointer and reference to an object have the same syntax as a pointer and reference to a structure.
In the following program, the structure is in column 1 and the object in column 2.

Line 22 applies the dereferencing operator* to the pointer to get the pointed-to variable. Sincethe
variable turns out to be a structure or object, we then apply the dot operator and the name of a field or mem-
ber. Parentheses are necessary to execute the* operator before the dot operator. When the member is a
member function, there is one more step: we apply the function call operator. It comes last because it and
the dot have left-to-right associativity.

But don’t write line 22. Line 26 is a simpler way to do the same thing. The arrow operator-> does
the work of the two operators* and dot. And now that there is only one operator, we no longer need the
parentheses.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_obj/pointer.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 s truct mystruct {
7 i nt field1;
8 i nt field2;
9 } ;

10
11 int main()
12 {
13 mystruct s = { 10, 20}; date d(12, 31, 2014);
14
15 cout << s.field1 << "\n"; d.print();
16 cout << "\n\n";
17
18 //A pointer to a structure and a pointer to an object.
19 mystruct *p1 = &s; date *p2 = &d;
20
21 //Don’t write this.
22 cout << (*p1).field1 << "\n"; (*p2).print();
23 cout << "\n\n";
24
25 //Write this instead.
26 cout << p1->field1 << "\n"; p2->print();
27 cout << "\n\n";
28
29 //A reference to a structure and a reference to an object
30 mystruct& r1 = s; date& r2 = d;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.4.1 Constant Objects and Pointers Thereto 131

132 ObjectsWi thout Inheritance Chapter 2

31
32 cout << r1.field1 << "\n"; r2.print();
33 cout << "\n";
34
35 return EXIT_SUCCESS;
36 }

10 lines 15−16
12/31/2014

10 lines 21−23
12/31/2014

10 lines 25−27
12/31/2014

10 lines 32−33
12/31/2014

What types of pointers can point at a const object?

Only a read-only pointer can point to aconst object; only a read-only reference can refer to a
const object. Thepointers are in column 1; the references, in column 2.

1 c onst date d(12, 31, 2014);
2
3 / /won’t compile
4 date *p = &d; date& r = d;
5
6 / /will compile
7 c onst date *p = &d; const date& r = d;

If the above line 4 were legal, we could change aconst object by sayingp->next() or
r.next() .

Which member functions can we call with a read-only pointer or reference?

Once again, the pointers are in column 1; the references, in column 2.

The object in line 1 is notconst . But the pointer and reference to it in line 4 are read-only. Using
them, we can call only theconst member functions of the object. Of course, by going directly to the ob-
ject in line 12 we can still call any member function.

1 date d(12, 31, 2014);
2
3 / /read-only pointer and reference
4 c onst date *p = &d; const date& r = d;
5
6 / /will compile because print is const
7 p->print(); r.print();
8
9 / /won’t compile because next isn’t const

10 p->next(); r.next();
11
12 d.next();

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

An object can be broken into

Hiding [making the data membersprivate] is for the prevention of accidents,
not the prevention of fraud.

—Bjarne Stroustrup in Booch,Object-Oriented Analysis and Design, 2nd ed., p. 54

The values of the private data members of an object can be changed by a determined intruder, even if
it is not a member function of the object.For example, here is a differentmain function for Version 3.

Line 9 performs ‘‘type punning’’. The expression&d is a pointer to adate , not a pointer to achar ,
so we need areinterpret_cast to store it intop. The value ofp is now the address of the first byte
of d.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_obj/broken.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d(12, 31, 2014);
9 c har *const p = reinterpret_cast<char *>(&d);

10
11 for (size_t i = 0; i < sizeof d; ++i) {
12 p[i] = ’ \0’; //Overwrite d with zeroes.
13 }
14
15 d.print();
16 cout << "\n";
17 return EXIT_SUCCESS;
18 }

0/0/0

2.5 Constructors

Declare and define a constructor

A constructor has four distinguishing features. Compare the rules for a ‘‘destructor’’ on p. 154.

(1) A constructor’s name is the same as that of its class.For example, inversion3.C the class is
nameddate (p. 115, line 21) and the class’s constructor is also nameddate (declared in line 26, called in
line 37, defined in lines 55−72).

(2) Do not declare a return type for the constructor. Don’t even declare the constructor’s return type
to bevoid : just write nothing at all for the return type as in lines 26 and 55 ofversion3.C . Do not
write a return statement that returns any value from the constructor. The constructor will implicitly re-
turn the newly-constructed object.

(3) Don’t declare the constructor to beconst (asprint was in version3.C on pp. 115−116,
lines 29 and 99), even if it changes the value of no data member and calls no non-const member function
of the same object.

(4) For the time being, a constructor must always be public, not private. (Ourfirst private constructor
will be on p. 295; examples in the standard library will be in the stream classes on pp. 324−326 and the
type_info class on p. 1017.) If the constructor for a class wereprivate , it could be called only by the

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.5 Constructors 133

134 ObjectsWi thout Inheritance Chapter 2

member functions of another object of that class.That other object could have been constructed only by a
third object. We would have an infinite regress (a ‘‘chicken and egg’’ situation).

My convention is to name each argument of the constructor after the data member that it initializes,
with a leadinginitial_ . The same name could be used for the argument and the data member, if we
write a:: or -> in front of it when it refers to the data member. But using the same name for two different
variables is always confusing. Line 3 uses the scope operator we saw on p. 123, line 10. Line 9 uses the ar-
row we saw on p. 123, line 11; and on p. 117, line 105 ofversion3.C . For brevity, we do not show the
error checking.

1 date::date(int month, int day, int year)
2 {
3 date::year = year;
4 date::month = month;
5 date::day = day;
6 }

7 date::date(int month, int day, int year)
8 {
9 t his->year = year;

10 this->month = month;
11 this->day = day;
12 }

For the time being, a constructor should initialize every member of the object. (Our first exception
will be the constructor for classstack on p. 149.) The number of arguments of the constructor does not
necessarily have to be the same as the number of data members. An example was the constructor for the
above classdate with a julian data member.

Syntax for calling a constructor in a declaration

When calling a constructor with two or more arguments (line 26), we must surround them with
parentheses. We saw this syntax in line 37 ofversion3.C on p. 115.

When calling a constructor with exactly one argument, we have a choice of notation.We can sur-
round the argument with the parentheses in line 29, or precede it with the equal sign in line 30. Since both
do the same thing (subject to the caveat on p. 137), the choice serves only as documentation. Write the
parentheses to emphasize that a function is called to initialize the object. Write the equal sign to make the
user think of the object as merely a holder for a value.

The equal sign notation was provided so that we could use the same syntax when declaring variables
of all data types.A variable of a built-in type is initialized with an equal sign (line 36), and now we can do
the same for an object (line 30), at least when its constructor has exactly one argument. Conversely, an ob-
ject is initialized with parentheses (lines 26 and 29), and we can also do the same for a built-in (line 37).
We can pretend that each built-in data type has a constructor that takes one argument of the same type.Us-
ing the same syntax for objects and built-ins will make a feature called ‘‘templates’’ applicable to all these
types (p. 634).

The default constructor

Classzero has no data members. It would be unheard-of for a C structure to have no fields, but it is
quite reasonable for a C++ class to have no data members. Examples are on pp. 590, 625, and 842.

Classzero has adefault constructor:one that can be called with no arguments, either because it
has no arguments at all, or because every argument has a default value.

We would expect that line 33 would be the syntax for calling a default constructor. But in C and
C++, this syntax is already used for declaring a function.

1 i nt f(); //declare a function that takes no arguments and returns an int
2 z ero z1(); //declare a function that takes no arguments and returns a zero

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

To call the default constructor, we must write line 34. (When the object constructed by a default construc-
tor is anonymous, the parentheses have to be written; see p. 137.Yet another syntax for calling a deafult
constructor, for use only within a template, will be given on p. 660.)

The copy constructor

A copy constructorcreates a copy of an existing object. It takes exactly one argument, a read-only
reference to another object of the same class as the one being constructed. The copy constructor for class
mono is declared in line 16, defined in lines 57−61, and called in line 39 (and maybe called also in line 30;
see the caveat on p. 137).Classmono can have two constructors (lines 15 and 16) because their arguments
are different; this is an example of function name overloading. Onthe other hand, a class can have at most
one default constructor and at most one copy constructor.

Our convention is to use the nameanother for the argument of a copy constructor. It mustalways
be passed by reference.Were it passed by value, it would have to be copied before the function call (pp.
69−70). Butanother is an object, and the only way to copy an object is to call its copy constructor.
Therefore every call to the copy constructor would have to be preceded by another call to the same copy
constructor, and we would go into an infinite loop.

A member function can always access the private members of its own object. This copy constructor
is our first example of a member function that can also access the private members of another object of the
same class (p. 201). When called from line 39, for example, theanother.member1 in line 60 is a mem-
ber of the objectm1, and the plainmember1 in line 60 is a member of the objectm3.

The copy constructor must not change the value ofm1 in line 39. To ensure this, we declare its refer-
ence argument to beconst in lines 16 and 57.

Had we not defined a copy constructor for classmono, line 39 would have worked anyway. The
computer would have behaved as if we had defined the following one.

3 mono::mono(const mono& another)
4 {
5 / /"memberwise" copy: copy each data member of the other object
6 / /into the corresponding member of the new object.
7
8 member1 = another.member1;
9 }

(We’ll see on p. 261 that the computer actually behaves as if we had written a copy constructor with a
colon.

10 mono::mono (const mono& another)
11 : member1(another.member1)
12 {
13 }

With the colon, itinitializes rather thanassigns toeach data member of the newborn object.)

While learning C++, the author often put an output statement into a constructor just to verify that the
constructor is called.We wrote our own copy constructor only because the one provided implicitly would
not have had the output statement in line 59.Sometimes, however, there is a non-trivial reason to write our
own copy constructor. This will happen on pp. 153 and 306−307, when we have a data member that is a
pointer.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/constructor/duo.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass duo {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.5 Constructors 135

136 ObjectsWi thout Inheritance Chapter 2

6 i nt member1;
7 i nt member2;
8 public:
9 duo(int initial_member1, int initial_member2);

10 };
11
12 class mono {
13 int member1;
14 public:
15 mono(int initial_member1);
16 mono(const mono& another); //copy constructor
17 };
18
19 class zero {
20 public:
21 zero();
22 };
23
24 int main()
25 {
26 duo d1(10, 20);
27 //duo d2; //won’t compile: constructor needs arguments
28
29 mono m1(10);
30 mono m2 = 10; //another way to do the same thing when the
31 //constructor has exactly one argument
32
33 //zero z1(); //creates no object, calls no constructor
34 zero z2; //call a c onstructor that has no arguments
35
36 int i = 1 0;
37 int j(10); //another way to do same thing
38
39 mono m3 = m1; //call copy constructor: m3.mono(m1)
40
41 return EXIT_SUCCESS;
42 }
43
44 duo::duo(int initial_member1, int initial_member2)
45 {
46 cout << "constructor for duo\n";
47 member1 = i nitial_member1;
48 member2 = i nitial_member2;
49 }
50
51 mono::mono(int initial_member1)
52 {
53 cout << "constructor for mono\n";
54 member1 = i nitial_member1;
55 }
56
57 mono::mono(const mono& another) //copy constructor
58 {
59 cout << "copy constructor for mono\n";

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

60 member1 = another.member1;
61 }
62
63 zero::zero()
64 {
65 cout << "constructor for zero\n";
66 }

One final caveat. Mostmodern compilers will createm2 in the above line 30 by calling the construc-
tor that takes an integer.

constructor for duo line 26
constructor for mono line 29
constructor for mono line 30 constructsm2
constructor for zero line 34
copy constructor for mono line 39

But the compiler would be within its rights if it createdm2in a more roundabout way. An older com-
piler, or the g++ compiler with the option-fno-elide-constructors , could create ananonymous
temporaryobject—one that has no name—when it sees the= 10 in the above line 30. It would do this by
calling the constructor that takes an integer (line 51).*Thenm2could be created by calling the copy con-
structor (line 57).

constructor for duo line 26
constructor for mono line 29
constructor for mono line 30 constructs an anonymous temporarymono
copy constructor for mono line 30 copies the anonymous temporary intom2
constructor for zero line 34
copy constructor for mono line 39

As we saw in the first box of output, a newer compiler willelide the anonymous temporary in line 30.For
other examples of elision, see pp. 190−191, 234−236, and 660.

Construct an anonymous object

We hav emade it sound as if a constructor can be called only in a declaration for an object. But it can
also be called to create an anonymous temporary object.A variable needs no name if it would be men-
tioned only once. Our examples will be adouble and adate .

(1) To print the square root of 2, all we have to do is to print thedouble returned by thesqrt func-
tion in line 1. There is no need to declare the unnecessary variable in line 5 to hold the square root and
print it in line 6.

Similarly, to print adate , all we have to do is to print thedate returned by the constructor function
in line 1. A constructor returns the newly-constructed object, even though we return no explicit value when
defining the constructor. When constructing an anonymous object, the name of the constructor must always
be followed by parentheses, even if the parentheses enclose no arguments. Thereis no need to declare the
unnecessary variable in line 5 to hold thedate and print it in line 6.

The << operator that outputs thedate in line 1 will not compile yet; we’ll make it work on p. 335
when we do operator overloading. Inthe meantime, line 2 can call theprint member function of the
anonymous temporary object returned by the constructor. At least this is better than an unnecessary decla-
ration. (Thisis our first example of calling a member function of an anonymous temporary object returned
by a function. Others will be line 11 ofreturn_obj.C on p. 190 and line 11 ofreturn.C on p. 191;

* This is legal because the constructor in line 51 was declared without the keyword
explicit .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.5 Constructors 137

138 ObjectsWi thout Inheritance Chapter 2

pp. 203−204 and 209; p. 292; line 20 ofpath.C on p. 322; line 8 on p. 326.)

1 c out << sqrt(2.0) << "\n"; //cout << date(12, 31, 2014) << "\n";
2 date(12, 31, 2014).print();
3 c out << "\n";
4
5 double unnecessary_double = sqrt(2.0); date unnecessary_date(12, 31, 2014);
6 c out << unnecessary_double << "\n"; cout << unnecessary_date << "\n";

(2) To pass the square root of 2 to a functionf , all we have to do is to take thedouble returned by
thesqrt function and pass it tof in line 7. There is no need to declare the unnecessary variable in line 9
to hold the square root and pass it tof in line 10.

Similarly, to pass adate to a functionf , all we have to do is to take thedate returned by the con-
structor function and pass it tof in line 7. There is no need to declare the unnecessary variable in line 9 to
hold thedate and pass it tof in line 10. (Thanks to function name overloading, thef that receives the
double is not the same function as the one that receives thedate .)

7 f (sqrt(2.0)); f(date(12, 31, 2014));
8
9 double unnecessary_double = sqrt(2.0); date unnecessary_date(12, 31, 2014);

10 f(unnecessary_double); f(unnecessary_date);

(3) Line 11 creates the variablex . To change the value ofx to the square root of 2, all we have to do
is to take thedouble returned by thesqrt function and assign it tox in line 12. There is no need to de-
clare the unnecessary variable in line 14 to hold the square root and assign it tox in line 15.

Similarly, line 11 creates the variabled. To change the value ofd to a new date , all we have to do
is to take date returned by the constructor function and assign it tod in line 12. There is no need to de-
clare the unnecessary variable in line 14 to hold the newdate and assign it tod in line 15.

11 double x = 1 0.0; date d(1, 1, 2014);
12 x = sqrt(2.0); d = date(12, 31, 2014);
13
14 double unnecessary_double = sqrt(2.0); date unnecessary_date(12, 31, 2014);
15 x = unnecessary_double; d = unnecessary_date;

(4) To return the square root of 2 from a function, all we have to do is to return thedouble returned
by thesqrt function in line 16. There is no need to declare the unnecessary variable in lines 18−19 to
hold the square root and return it in line 20.

Similarly, to return adate from a function, all we have to do is to return thedate returned by the
constructor function in line 16. There is no need to declare the unnecessary variable in lines 18−19 to hold
the date and return it in line 20. (The unnecessary variables in lines 19−19 could beconst ’s because
they will never be changed. They are destructed in the very next line.)

16 return sqrt(2.0); return date(12, 31, 2014);
17
18 const double const date
19 unnecessary_double = sqrt(2.0); unnecessary_date(12, 31, 2014);
20 return unnecessary_double; return unnecessary_date;

If the constructor has exactly one argument, we can omit the name of the constructor and the paren-
theses around the argument in the above line 16.

21 return duo(10, 20); //Must write "duo" & parentheses.
22 return mono(10); //Could write "mono" & parentheses,
23 return 10; //but don’t have to.

This will work only if the constructor was declared without the keyword explicit .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

(5) A final warning. Never write the following call to thesqrt function in a statement all by itself
in C or C++. It would return an anonymousdouble , which would then be discarded without having been
used. Inother words, it would be a dead value; see p. 37.Similarly, nev er write the following call to the
constructor function for classdate in a statement all by itself. It would construct and return an anony-
mousdate object, which would also be a dead value.

24 sqrt(2.0); date(12, 31, 2014);

Can one constructor call another one for the same object?

The following classmyobj has the two constructors called in lines 26 and 27.Let’s call them the
‘‘ ID constructor’’ and the ‘‘DI constructor’’ respectively. Since they do the same work, we want to write it
only once.We’l l do the work in the ID constructor, and the DI constructor will merely be a call-through to
the ID constructor.

The DI constructor attempts to call the ID constructor in line 13.We hope this will work because the
syntax of line 13 imitates that of line 10, which successfully calls another member function of the same ob-
ject. We saw one member function calling another member function of the same object as early as lines
80−83 of Version 3 on p. 116.

But this syntax will work only if the other function is not a constructor. If the other functionis a
constructor, as in line 13, we will be committing the blunder in the above line 24. Line 13 does not call an-
other member function of the same object.It constructs and discards a separate, anonymous object, which
has no effect on the object that the DI constructor is trying to construct.

Lines 14 and 16 are vain attempts to make it work, but 14 has the same bug and 16 will not even
compile. Line18 does work, but only at the price of constructing a separate, anonymous object, and copy-
ing it into the object*this that the DI constructor is constructing. The DI constructor has therefore con-
structed a total of two objects. That’s too expensive for us.

1 c lass myobj {
2 i nt i;
3 double d;
4 public:
5 myobj(int initial_i, double initial_d) {i = initial_i; d = initial_d;}
6
7 myobj(double initial_d, int initial_i) {
8
9 / /Call another member function of the same object:

10 f(initial_i, initial_d);
11
12 //2 unsuccessful attempts to call another mem func of same object:
13 myobj(initial_i, initial_d);
14 myobj::myobj(initial_i, initial_d);
15
16 this->myobj(initial_i, initial_d); //won’t compile
17
18 *this = myobj(initial_i, initial_d);
19 }
20
21 void f(int i, double d) const {}
22 };
23
24 int main()
25 {
26 myobj m1(10, 3.14159); //ID: int and double
27 myobj m2(3.14159, 10); //DI: double and int
28

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.5 Constructors 139

140 ObjectsWi thout Inheritance Chapter 2

29 return EXIT_SUCCESS;
30 }

How to do it

If two constructors have the same work to do, they should call a common private member function.
Do not attempt to have one constructor call another constructor for the same object.Every object should
have exactlyone constructor called for it.

31 class myobj {
32 int i;
33 double d;
34 void init(int initial_i, double initial_d) {i = initial_i; d = initial_d;}
35 public:
36 myobj(int initial_i, double initial_d) {init(initial_i, initial_d);}
37 myobj(double initial_d, int initial_i) {init(initial_i, initial_d);}
38 };

Get the date and time in C

We will define another constructor for classdate , one that initializes the newborn object to today’s
date. Hereis the code in C and C++ to get the current date from the operating system.

1 /* E xcerpt from <time.h>, showing some of the fields of struct tm. */
2
3 t ypedef long time_t; /* may not be long on all platforms */
4
5 s truct tm {
6 i nt tm_mday; /* 1 to 31 inclusive */
7 i nt tm_mon; /* 0 to 11 inclusive */
8 i nt tm_year; /* year minus 1900 */
9 / * e tc. */

10 };

In versions of C prior to C99, the declarations in a block must always come before the other state-
ments; see pp. 32−33. This forces line 8 to leave p uninitialized: the assignment top in line 15 must come
after the if , while the declaration ofp must comebefore the if . C also needs the keyword struct in
line 8.

What could go wrong without the cast in line 10? On my platform,time_t is another name for the
data typelong . Imagine, however, that it was another name forunsigned short , and that an
unsigned short was narrower than anint (16 and 32 bits respectively). If the call totime in line 7
failed, thet in line 10 would hold the value 216 − 1 = 65, 535,the 16-bit unsigned equivalent of −1. This
value would be promoted toint to match the other operand of the equality in line 10, the-1 . The promo-
tion would be by zero-extension (p. 61), resulting in anint value of 65,535. But 65,535 does not equal
−1, and theif would not detect the failure of thetime function. Ofcourse, atime_t would never be 16
bits. Butin some future implementation,time_t andint might be 32 and 64 bits, causing the same bug.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/constructor/time.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3 #include <time.h> /* for time_t, time, localtime */
4
5 i nt main(int argc, char **argv)
6 {
7 c onst time_t t = time(NULL);

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

8 c onst struct tm *p; /* uninitialized and not *const */
9

10 if (t == (time_t)-1) {
11 fprintf(stderr, "%s: time failed\n", argv[0]);
12 return EXIT_FAILURE;
13 }
14
15 p = l ocaltime(&t);
16
17 printf("day == %d\n", p->tm_mday);
18 printf("month == %d\n", p->tm_mon + 1);
19 printf("year == %d\n", p->tm_year + 1900);
20
21 return EXIT_SUCCESS;
22 }

day == 8
month == 4
year == 2014

Get the date and time in C++

In C++, we write zero instead ofNULL in line 8; see p. 68. Line 15 does not need the keyword
struct ; see line 33 ofversion2.C on p. 109.Even better, p can now be a*const pointer since it is
initialized in its declaration.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/constructor/time.C

1 #include <iostream> //C++ example
2 #include <cstdlib>
3 #include <ctime>
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 c onst time_t t = time(0);
9

10 if (t == static_cast<time_t>(-1)) {
11 cerr << argv[0] << ": time failed\n";
12 return EXIT_FAILURE;
13 }
14
15 const tm *const p = localtime(&t); //initialized and *const
16
17 cout << "day == " << p->tm_mday << "\n"
18 << "month == " << p->tm_mon + 1 << "\n"
19 << "year == " << p->tm_year + 1900 << "\n";
20
21 return EXIT_SUCCESS;
22 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.5 Constructors 141

142 ObjectsWi thout Inheritance Chapter 2

day == 8
month == 4
year == 2014

▼ Homework 2.5a: give a class another constructor

Classdate already has the three-argument constructor declared in line 26 ofversion3.C on p.
115. Keep it, but also provide a default constructor declared as follows.

1 public:
2 date(int initial_month, int initial_day, int initial_year); //3-arg const.
3 date(); //default constructor

The default constructor will put today’s date into the data member(s) of the newborndate object.

You can use the version of classdate with either one, two, or three data members.If your version
of classdate has amonth data member whose value is a number in the range 1−12 inclusive, store
tm_mon plus 1 into it. If your version of classdate has ayear data member whose value is the year,
storetm_year plus 1900 into it.

Do not remove thenext andjulian member functions.

In the following test program, the objects in lines 8 and 12 have names; the one in line 16 is an
anonymous temporary. The temporary is constructed by the default constructor for classdate .

There is also a default constructor for each built-in data type, which puts a zero into the newborn
variable. Line19 calls the default constructor for the data typeint and outputs the value of the resulting
anonymous temporary. These constructors are intended for use only in a ‘‘template’’ (p. 660) where it is
advantageous to having the same syntax for all data types (p. 634). An example is line 13 on p. 796.Else-
where, we should simply write0 instead ofint() .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/constructor/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d1(12, 31, 2014); //parentheses for more than one argument
9 d1.print();

10 cout << "\n";
11
12 date d2; //no parentheses for no arguments
13 d2.print();
14 cout << "\n";
15
16 date().print(); //Construct an anonymous date; call its print function.
17 cout << "\n";
18
19 cout << int() << "\n"; //Construct an anonymous int with the value 0.
20 return EXIT_SUCCESS;
21 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

12/31/2014 lines 8−10
4/8/2014 lines 12−14
4/8/2014 lines 16−17
0 line 19

▲

Review of typedef

The next Homework will require a typedef statement, so we review it now.

Despite its name, a typedef does not create a new data type. It merely creates a one-word alternative
name for an existing data type.For example, the typedef in line 4 creates the nicknamenumber_t for the
data typelong unsigmed .

A typedef makes the code easier to change.For example, instead of writing the old namelong
unsigned three times in lines 1−3, we can write it once in line 4. The variable in line 6 will have exactly
the same data type as the one in line 1.

1 l ong unsigned n1 = 10;
2 l ong unsigned n2 = 20;
3 l ong unsigned n3 = 30;

4 t ypedef long unsigned number_t; //From now on, number_t means long unsigned.
5
6 number_t n1 = 10;
7 number_t n2 = 20;
8 number_t n3 = 30;

Instead of the typedef in the above line 4,number_t could have been a macro.

9 #define number_t long unsigned

But there is no practical way to use a macro for a data type whose name consists of two separate parts, such
as thechar [4] (‘‘array of four characters’’) in lines 10−12.Instead of writing this name three times, we
should have written it only once in line 13.

10 char kennedy[4] = "JFK";
11 char laguardia[4] = "LGA";
12 char newark[4] = "EWR";

13 typedef char airport_t[4]; //An airport_t is an array of 4 char’s.
14
15 airport_t kennedy = "JFK";
16 airport_t laguardia = "LGA";
17 airport_t newark = "EWR";

The name created by a typedef conventionally ends in_t , at least in the C Standard Library. The ex-
amples we have used with classdate arediv_t andtime_t ; the most important ones aresize_t and
ptrdiff_t . The C++ Standard Library contains all the C typedefs except wchar_t , which is now a
keyword in C++. For many of its own typedefs, the C++ library has abandoned the_t suffix in favor of
_type : size_type , difference_type , andvalue_type .

One common use of typedef in C is now unnecessary in C++.A C structure was a second-class citi-
zen, needing the helping wordstruct in line 23.

18 struct mystruct { /* C example */
19 int field1;
20 int field2;
21 };
22

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.5 Constructors 143

144 ObjectsWi thout Inheritance Chapter 2

23 struct mystruct m = {10, 20}; /* name of data type is "struct mystruct" */

A typedef was often used to create a one-word name for the data type.

24 typedef struct { /* C example */
25 int field1;
26 int field2;
27 } mystruct;
28
29 mystruct m = {10, 20}; /* name of data type is now only one word */

But the C++ structure in line 35 does not need the keyword struct , just as the C++ object in 36 does not
need the keyword class . The typedef in the above line 24 is therefore no longer necessary.

30 struct { //C++ example
31 int field1;
32 int field2;
33 } mystruct;
34
35 mystruct m = {10, 20};
36 date d(4, 8, 2014);

▼ Homework 2.5b: do the work in the member functions of a class

We translated the game of life into C++ on pp. 42−44, but not the way the language should really
have been used. This Homework will be another step in the right direction.

Package the answer to the Game of Life homework as a class namedlife . One benefit of doing so
will appear on pp. 170−172.For the present, declare the class in a header file namedlife.h . Define the
three non-inline member functions in a file namedlife.C (or life.cpp , or whatever the filename ex-
tension is on your platform).

Test the class with the following main function. Lines22−25 call the four member functions of
classlife , starting with the one-argument constructor for the object namedglider in line 22.

I try to use consistent names for the member functions of all my classes.Classesdate and life
have member functions namednext and print . When we do operator overloading, we’ll give these
functions their proper C++ names:operator++ (pp. 288−289), andoperator<< (pp. 337−340).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/life/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for strcmp
4 #include "life.h" //for class life, life_xmax, and life_ymax
5 using namespace std;
6
7 i nt main()
8 {
9 c onst bool glider_matrix[life_ymax][life_xmax] = { //sorry y before x

10 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
11 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
12 {0, 0, 1, 1, 0, 0, 0, 0, 0, 0},
13 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0},
14 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
15 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
16 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
17 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
18 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

19 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
20 };
21
22 for (life glider = glider_matrix;; glider.next()) {
23 glider.print();
24
25 cout << glider.generation()
26 << ": Press c to continue, q to quit, and RETURN.\n";
27
28 char buffer[256];
29 cin >> buffer;
30 if (strcmp(buffer, "c") != 0) {
31 break;
32 }
33 }
34
35 return EXIT_SUCCESS;
36 }

The nestedfor loops that print the matrix data member will now be in theprint member function
of classlife . The code that updates the matrix data member (and the++generation) will be in the
next member function of classlife . The code that initializes the two data members will be in the con-
structor for classlife . Remember to initialize the cells along the edge of the array tofalse .

The matrix originally namedold is used continuously during the lifetime of the game. Itshould be
enshrined as a data member of classlife , private, as any data member should be. The constructor will fill
in its initial value, including thefalse ’s along the edges.

On the other hand, the matrix originally namednew is used only by the code that updates theold
matrix. It is then discarded, and created anew the next time we update theold matrix. Sinceit is used on-
ly intermittently, thenew matrix should be a local variable in thenext member function of classlife .

The life_ymax and life_xmax in lines 5−6 oflife.h are not data members of classlife .
They merely float somewhat unsatisfactorily near it as global variables. Seethe similar disposition of the
arraydate_length in version3.C on pp. 114−115.

As in C, aglobal variable is one that is declared and defined outside the body of any function. A
static global variable is one that can be mentioned in only one.C file. A global variable is often declared
in a header file, but rarely defined in one.

To see why, assume that the header were included in more than one.C file of the same program. If a
static global variable were defined in the header, we could be wasting memory: each.C file that included
the header could get its own private copy of the variable. Worse, if a non-static global variable were de-
fined in the header, the program would not even link. Theglobal variable would be ‘‘multiply defined’’,
causing an error message.

But in lines 5−6, our header defines two global variables anyway. We can get away with this because
in C++, aconst global variable is static by default. (To make it non-static, we would need the keyword
extern in front of theconst .) Our C++ program will link, wasting a bit of memory when we include
the header in more than one.C file. But this is a necessary evil. life_ymax andlife_xmax are used
as array dimensions in line 10, so they must be defined, not merely declared, earlier in this header file.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/life/life.h

1 #ifndef LIFEH
2 #define LIFEH
3 #include <cstddef> //for size_t
4
5 c onst size_t life_ymax = 10;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.5 Constructors 145

146 ObjectsWi thout Inheritance Chapter 2

6 c onst size_t life_xmax = 10;
7
8 c lass life {
9 i nt g; //generation number

10 bool matrix[life_ymax + 2][life_xmax + 2];
11 public:
12 life(const bool initial_matrix[life_ymax][life_xmax]);
13 int generation() const {return g;}
14 void next(); //Advance the matrix data member 1 generation; add 1 to g.
15 void print() const; //Print the matrix data member.
16 };
17 #endif

Also make the following changes.

(1) Instead of hardwiring the’X’ s and ’.’ s into the firstcout statement in theprint member
function, give the function two arguments:

18 void print(char filled, char empty) const;

Let the arguments have the default values’X’ and’.’ respectively. See pp. 94−97 for default values.

(2) At line 7 of life.h , write a typedef to declare thatlife_matrix_t is another name for the
data type ‘‘ life_ymax × life_xmax array ofbool ’s’’ . Then change the name of the data type of the
following two variables tolife_matrix_t .

(a) thelocal variableglider_matrix in themain function (which should also be
const);

(b) theinitial_matrix argument of the constructor (which should also be
const).

(3) At line 7½ oflife.h , write a typedef to declare that_life_matrix_t (with a leading un-
derscore) is another name for the data type ‘‘(life_ymax + 2) × (life_xmax + 2) array of bool ’s’’ .
This typedef is only for internal use by classlife . Then change the name of the data type of the follow-
ing two variables to_life_matrix_t .

(a) thematrix data member of classlife ;

(b) thelocal variablenewmatrix in thenext member function.

(4) Define a new public member function of classlife to display the game by means of theterm_
functions written in C:

19 void put(char filled, char empty) const;

life::put will put the matrix data member, or as much of it as will fit, upper-left justified onto the
screen. Seethe extra credit part of the Game of Life homework.

Let the arguments have the default values ’X’ and ’.’ respectively. Assume that
term_construct has already been called before the first call tolife::put , and that
term_destruct will be called after the last call tolife::put . Call the two-argumentmin function
(pp. 43−44) to compute the minimums in lines 23−24.

20 void life::put(char filled, char empty) const
21 {
22 //How much of the game will fit on the screen?
23 const size_t ymax = minimum of term_ymax() and life_ymax;
24 const size_t xmax = minimum of term_xmax() and life_xmax;
25
26 for (a pair of...
27 for (...classic nested "for" loops
28 const char c = either filled or empty, depending on the

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

29 contents of the matrix data member;
30
31 if (term_get() says c is not already at this place on the screen) {
32 term_put(c at this place);
33 }
34 }
35 }
36 }

Test life::put without usingcin or cout :

37 term_construct(); //before constructing any life objects
38
39 for (life glider = glider_matrix;; glider.next()) {
40 glider.put();
41
42 //Don’t bother to display the generation number.
43 term_puts(0, minimum of life_ymax and term_ymax()-1,
44 "Press c to c ontinue, q to quit.");
45
46 char c; //uninitialized variable
47 use term_key to wait until the user has pressed a key;
48
49 if (the key is not ’c’) {
50 break;
51 }
52 }
53
54 term_destruct();

▲

2.6 Destructors

A class with a constructor and a destructor

We hav eseen several classes with a constructor. We now introduce the matching member function,
the destructor. Our example will be a stack, first in C as a lot of variables and functions, and then in C++ as
a class.

A stack is what a copyright lawyer would call an ‘‘information storage and retrieval system’’. In a
stack, the order in which the values are stored dictates the order in which they will be retrieved: last in, first
out. Accountantswould call it a LIFO list; the rest of us would say ‘‘last hired, first fired.’’

The values stored and retrieved by our stack will be integers. Eachvalue is stored by the function
push and retrieved by pop . Retrieving a value removes it from the stack, so it can be retrieved only once.

The stack contains an arraya big enough to hold 100 elements.We also have a variablen to hold the
number of elements currently in the stack. Initially the stack is empty, so n is initialized to zero in line 7 of
stack.c .

In both languages, the variablesa andn will be accessible only to the functionspush andpop . To
accomplish this in C we declare the variables to be static, and define no functions other thanpush andpop
in the same file asa andn. In other words, the source code has to be sliced into separate files to express
which variables can be accessed by which functions.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackc/stack.h

1 #ifndef STACKH /* C example */

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.6 Destructors 147

148 ObjectsWi thout Inheritance Chapter 2

2 #define STACKH
3
4 v oid push(int i);
5 i nt pop(void); /* C needs the keyword void */
6 #endif

Warning: the%uin lines 14 and 27 is not portable.size_t will not always be another name for
unsigend int .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackc/stack.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3 #include "stack.h"
4 #define STACK_MAX_SIZE 100
5
6 s tatic int a[STACK_MAX_SIZE];
7 s tatic size_t n = 0; /* number of values in the stack; stack initially empty */
8
9 /* P ush a value onto the stack. */

10
11 void push(int i)
12 {
13 if (n == STACK_MAX_SIZE) { /* overflow */
14 fprintf(stderr, "Can’t push when size %u == capacity %u.\n",
15 n, STACK_MAX_SIZE);
16 exit(EXIT_FAILURE);
17 }
18
19 a[n++] = i ;
20 }
21
22 /* Pop a value off the stack. */
23
24 int pop(void)
25 {
26 if (n == 0) { /* underflow */
27 fprintf(stderr, "Can’t pop when size %u == 0.\n", n);
28 exit(EXIT_FAILURE);
29 }
30
31 return a[--n];
32 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackc/main.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "stack.h"
4
5 i nt main()
6 {
7 printf("To hire a person, type their social security number.\n"
8 " To fire the most recently hired person, type a zero.\n"
9 " To quit, type a negative number.\n");

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

10
11 for (;;) {
12 int ss; /* uninitialized variable */
13 scanf("%d", &ss);
14
15 if (ss < 0) { /* quit */
16 break;
17 }
18
19 if (ss > 0) { /* hire */
20 push(ss);
21 } else { /* fire */
22 printf("Firing number %d.\n", pop());
23 }
24 }
25
26 return EXIT_SUCCESS;
27 }

To hire a person, type their social security number.
To fire the most recently hired person, type a zero.
To quit, type a negative number.
10 You type the numbers in italics.
20
30
0
Firing number 30.
0
Firing number 20.
40
0
Firing number 40.
0
Firing number 10.
−1

Package the stack as a C++ class.

As above, the variablesa andn will be accessible only to the functionspush andpop . But in C++
we can express this in the language itself rather than by the crude device of slicing the source code into sep-
arate files.We leta andn be private data members of a class, andpush andpop be member functions.

Of course, the code is still divided into separate files. But now this is for an entirely different reason:
to reuse classstack in many C++ programs without having to copy and paste it into other files.We can
simply addstack.h andstack.C to the list of files that constitute a program.

Thestack_max_size in line 5 ofstack.h is not a data member of classstack (yet). It mere-
ly floats somewhat unsatisfactorily near it. See the similar disposition of the global arraydate_length
on pp. 114−115, and the global variableslife_ymax and life_xmax on p. 145.Eventually it will be
renamedmax_size , the conventional C++ name for the maximum size of a data structure.A C++ data
structure is called acontainer.The container classesvector , map, andstring all have amax_size .

We already know that a constructor is the member function called at the start of an object’s life, and
the name of the constructor is the same as the name of the object’s class. Incidentally, this is our first con-
structor that does not put a value into every data member of the newborn object.Sincen is zero, there is no
need for the constructor to put anything into the arraya.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.6 Destructors 149

150 ObjectsWi thout Inheritance Chapter 2

A destructor is the member function called at the end of an object’s life. Thename of the destructor
is the name of the object’s class with a tilde in front of it. Our constructor, defined in line 11, is inline; our
destructor, declared in line 12, is not.

Until now, none of our classes has needed a destructor. If a class has no destructor, then, for the time
being, nothing happens when an object of that class expires. Butif the dying object requires any kind of
cleanup or funeral, a postmortem examination, a puff of smoke, an aria, or if it needs to inform its neigh-
bors of its demise, we can place these last rites in a destructor to ensure that they are never forgotten.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack/stack.h

1 #ifndef STACKH //C++ example
2 #define STACKH
3 #include <cstddef> //for size_t
4
5 c onst size_t stack_max_size = 100;
6
7 c lass stack {
8 i nt a[stack_max_size];
9 s ize_t n; //number of values currently in the stack

10 public:
11 stack() {n = 0;} //constructor: start with the stack empty
12 ˜stack(); //destructor
13
14 void push(int i);
15 int pop(); //C++ doesn’t need the keyword void
16 };
17 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack/stack.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stack.h"
4 using namespace std;
5
6 s tack::˜stack() //destructor
7 {
8 / /cout << "destructor for stack\n";
9

10 if (n != 0) {
11 cerr << "Warning: stack still contains " << n << " value(s).\n";
12 }
13 }
14
15 //Push a value onto the stack.
16
17 void stack::push(int i)
18 {
19 if (n == stack_max_size) { //overflow
20 cerr << "Can’t push when size " << n << " == capacity "
21 << stack_max_size << ".\n";
22 exit(EXIT_FAILURE);
23 }
24

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

25 a[n++] = i ;
26 }
27
28 //Pop a value off the stack.
29
30 int stack::pop()
31 {
32 if (n == 0) { //underflow
33 cerr << "Can’t pop when size " << n << " == 0.\n";
34 exit(EXIT_FAILURE);
35 }
36
37 return a[--n];
38 }

An object’s destructor is always called when the object reaches the end of its lifespan.For example,
the objects is local to themain function, so its life extends from its declaration in line 12 ofmain.C to
the return frommain in line 28. The constructor fors is called in line 12; the destructor is called in 28.If
we delete thereturn in line 28, the destructor would be called when we return frommain at the closing
curly brace in line 29.

Our classstack belongs to no namespace.Another classstack , belonging to namespacestd , is
declared in the header file<stack> . We did not include this header directly, but it might have been in-
cluded by one of the headers that we did include.

The double colon in line 12 ensures that thestack is the one that belongs to no namespace; the dou-
ble colon is needed only if the header file<stack> was included (either directly or by another header
file). Assumingthat<stack> was included, astd::stack in line 12 would have been the class
stack belonging to namespacestd , and an unadornedstack would not have compiled.

Is there any down side to rewriting the code as a class?Well, the C functionpush took only one ar-
gument, but the member functionstack::push takes two arguments, one explicit and one implicit.As
long as there is only one stack, this is a disadvantage.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack/main.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4 #include "stack.h"
5
6 i nt main()
7 {
8 c out << "To hire a person, type their social security number.\n"
9 " To fire the most recently hired person, type a zero.\n"

10 "To quit, type a negative number.\n";
11
12 ::stack s; //Call the constructor for s with no arguments.
13
14 for (;;) {
15 int ss; //uninitialized variable
16 cin >> ss;
17 if (ss < 0) { //quit
18 break;
19 }
20
21 if (ss > 0) { //hire

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.6 Destructors 151

152 ObjectsWi thout Inheritance Chapter 2

22 s.push(ss);
23 } else { //fire
24 cout << "Firing number " << s.pop() << ".\n";
25 }
26 }
27
28 return EXIT_SUCCESS; //Call the destructor for s.
29 }

A C++ object should live no longer than it needs to. If we change the above lines 12−14 to

30 for (::stack s;;) {

the stack will be destructed as soon as we leave the loop.

▼ Homework 2.6a: add new member functions to class stack
(analogous to Homework 2.4a)

Add three new member functions to classstack . All three have return values; none of them should
produce any output. Donot add any data members to classstack in this homework.

To demonstrate that your new member functions work, hand in the output of the three programs
main12.C , main3.C , andmain4.C in the directory
http://i5.nyu.edu/ ∼mm64/book/src/stack/test .

(1) Add an inline member function declared as

bool empty() const;

that will returntrue if the stack is empty, false otherwise. Thestack is empty ifn is equal to zero.
Since the value of a comparison operator such as== is true or false , you do not need to write anif or
the operator?: in empty . empty must produce no output.

The destructor and thepop member function should now see if the stack is empty by callingempty .
It is no sin for one member function to call another.

(2) Add an inline member function declared as

bool full() const;

that will returntrue if the stack is full, false otherwise. Thestack is full ifn is equal to
stack_max_size . Since the value of a comparison operator such as== is true or false , you do not
need to write anif or the operator?: in full . full must produce no output.

Thepush member function should now see if the stack is full by callingfull .

(3) Add an inline member function declared as

size_t size() const;

that will return the current number of elements in the stack: the number of values that have been pushed but
have not yet been popped. It will always return the value ofn, even if it is greater than
stack_max_size . This should never happen.

size must produce no output.The destructor and thepush andpop member functions should dis-
play the return value ofsize as part of their error message.
▲

▼ Homework 2.6b: change a data member of class stack
(analogous to Homework 2.4b)

To demonstrate that your classstack still works after you do this homework, hand in the output of
the three programsmain12.C , main3.C , andmain4.C in the directory
http://i5.nyu.edu/ ∼mm64/book/src/stack/test .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Change then data member of classstack from asize_t to a read/write pointer to anint , and
rename itp. At any giv en moment,p will point to the ‘‘next free element’’ of a: the element with the
smallest subscript that is not currently occupied by a pushed value. For example, the constructor for class
stack will store the address ofa[0] into p because no element ofa is yet occupied by a pushed value.
push will store a value into the array element to whichp is pointing, and will then make p point to the
next array element.pop will make p point to the previous array element, and will then return the value to
whichp is now pointing.

The only data members of the new classstack will be a andp. Do not create any global variables.
Do not declare any local variable inside a function to bestatic . Do not remove theempty , full , and
size member functions from classstack . empty , full , size , the constructor, and the destructor will
continue to produce no output.push andpop will produce no output other than error messages.

Make whatever changes are necessary in the existing member functions of classstack . Sincen and
p are private, no changes will be needed in any function that is not a member of classstack .

We will also have to write our own copy constructor for classstack to accommodate the change
from n to p. The following line 2 calls the copy constructor for classstack .

1 : :stack s1; //call the default constructor
2 : :stack s2 = s1; //call the copy constructor

Since we have not written the copy constructor, the computer will behave as if we had written the follow-
ing. It blindly copies the values from the data members of the other object (s1) into the data members of
this object (s2). Line 9 is wrong: it leaves thep data member of this object pointing at a data member of
the other object. (There is also a performance bug: thefor loop usually will not need to copy the entire ar-
ray.)

3 s tack::stack(const stack& another)
4 {
5 f or (size_t i = 0; i < stack_max_size; ++i) {
6 a[i] = another.a[i];
7 }
8
9 p = another.p; //bug

10 }

You will therefore have to write your own copy constructor for the new classstack .

When we have operator overloading, we will have to write one more member function for class
stack to accommodate the change fromn to p. See p. 311.
▲

The conventional name for the data type of each element

To keep the exposition simple, we wrote classstack in terms of data typeint . But the C++ con-
vention is to create a typedef namedvalue_type for the data type of the values stored in a data structure.
The members of classstack should therefore have been declared as follows.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack/stack2.h

1 #ifndef STACKH
2 #define STACKH
3 #include <cstddef> //for size_t
4 using namespace std;
5
6 t ypedef int value_type; //data type of each value contained in the stack
7 c onst size_t stack_max_size = 100;
8
9 c lass stack {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.6 Destructors 153

154 ObjectsWi thout Inheritance Chapter 2

10 value_type a[stack_max_size];
11 size_t n; //number of values currently in the stack
12 public:
13 stack() {n = 0;}
14 ˜stack();
15
16 void push(value_type i);
17 value_type pop();
18
19 bool empty() const;
20 bool full() const;
21
22 size_t size() const;
23 };
24 #endif

A destructor is declared and defined like a constructor.

Compare the four constructor rules on pp. 133−134.

(1) A destructor’s name is the same as that of its class with a leading tilde˜ , chosen because the tilde
means ‘‘not’’ in C and C++. In the above C++ program, the class is namedstack (line 7 of stack.h)
and the class’s destructor is named̃stack (declared in line 12 ofstack.h , defined in lines 6−13 of
stack.C).

(2) Since a constructor can take arguments, a class can have more than one constructor thanks to
function name overloading. Buta destructor takes no arguments, so a class can never hav emore than one
destructor.

(3) A destructor returns no value. Butdo not declare its return type to bevoid : just write nothing at
all as in line 12 ofstack.h and line 6 ofstack.C .

(4) Do not declare a constructor or destructor to beconst (asprint was on pp. 115−116, Version
3, lines 29 and 99), even if they change the value of no data member and call no non-const member func-
tion of the same object.

(5) For the time being, a constructor and the destructor must always bepublic , not private . If
the destructor for a class wasprivate , it could be called only by the member functions of another object
of that class. The other object could be destructed only by a third object.We would have an infinite regress
(a ‘‘chicken and egg’’ situation). (Anon-public destructor will appear on p. 1045.)

(6) Additional rules will be promulgated later. A destructor should never call exit ; see p. 184.A
destructor must be ‘‘virtual’ ’ if any other member function is; see pp. 493−494.An ‘‘exception’’ should
never escape from a destructor if there is currently another exception at large; see pp. 614−616.

Don’t write an explicit call to a destructor.

[T]he aged star still continues meticulously to fulfill its part in the dance. . . .
Finally its light is extinguished and its tissues disintegrate in death. Henceforth it
continues to sweep through space, but it does so unconsciously, and in a manner
repugnant to its still conscious fellows

—Olaf Stapledon,Star Maker(1937), chapter XI, §3

After its destructor is called, an object is no more than a cadaver. By ‘‘cadaver’’, we mean the mem-
ory occupied by the destructed object.For example, the objects declared in line 8 is local to themain
function, so it occupies in memory until the return frommain in line 15. But the call to the destructor in
line 13 turns it into a cadaver.

There is no guarantee that a cadaver’s member functions will still work or that its data members will
hold their values. Properlyspeaking, a cadaver has no members.Sinces became a cadaver in line 13, the
call to the member function in line 14 might fail.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

To ensure that a cadaver is disposed of immediately, the memory occupied by an object must never
outlive the object. In other words, we must ensure that every object stays alive until the last moment before
its memory is deallocated. This means that we must never call a destructor explicitly. And there is no rea-
son we would ever want to. Just before deallocating the memory occupied by an object, the destructor is al-
ways called automatically. There is no reason to call it ourselves.

But what if you really want to destruct the object at the above line 13? In that case, the object should
have been allocated dynamically, not automatically. A dynamic object can be destructed at any point. See
new anddelete in Chapter 4.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack/cadaver.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stack.h"
4 using namespace std;
5
6 i nt main()
7 {
8 : :stack s; //Call the constructor.
9 s .push(10);

10 s.push(20);
11 cout << s.pop() << "\n"; //This pop will work correctly.
12
13 s.˜stack(); //Call the destructor explicitly. Never do this.
14 cout << s.pop() << "\n"; //This pop may not work.
15 return EXIT_SUCCESS; //Call the destructor implicitly; may not work.
16 }

Incidentally, the above program has another bug. Every C++ object should be constructed and de-
structed exactly once. But line 15 calls the destructor fors , even though it has already been called in line
13. Andthere’s a third bug. Thecall to the destructor in line 15 might fail for the same reason as the call
to pop in line 14.

On rare occasions, mostly related to the ‘‘placement’’ operatornew, we will have to make an explicit
call to a destructor. An example will be when we pass different arguments to the constructor for each ob-
ject in a dynamically allocated array of objects.We’l l see this on p. 406 when we donew anddelete .

Classstack in the C++ Standard Library

A classstack has already been written for us in the C++ Standard Library. In fact, it is getting hard
to think of simple, general classes that we would have to write for ourselves; most of them are already in
the library. Here, for example, is the prewritten classstack .

A class whose name contains<angle brackets>, such as the classstack<int> in line 8, is called a
template class.Although we do not yet know how to create a template class, we can easily use one: just
plug the name of another data type into the angle brackets. For the standard library classstack , we plug
in the name of the data type of the values to store and retrieve. Thestack in line 8 will store and retrieve
int ’s.

The top function of the standard librarystack in line 18 returns the most recently pushed element,
but without removing it from the stack.To remove it, we must call thepop in line 19.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack/stdstack.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <stack>
4 using namespace std;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.6 Destructors 155

156 ObjectsWi thout Inheritance Chapter 2

5
6 i nt main()
7 {
8 s tack<int> s; //Born empty because we gave no args to constructor.
9

10 cout << "empty == " << s.empty() << ", size == " << s.size() << "\n";
11
12 s.push(10);
13 s.push(20);
14 s.push(30);
15
16 cout << "empty == " << s.empty() << ", size == " << s.size() << "\n";
17
18 cout << s.top() << "\n";
19 s.pop(); //returns void, unlike the stack::pop we wrote
20
21 cout << s.top() << "\n";
22 s.pop();
23
24 cout << s.top() << "\n";
25 s.pop();
26
27 cout << "empty == " << s.empty() << ", size == " << s.size() << "\n";
28 return EXIT_SUCCESS;
29 }

To print thebool return values as the wordstrue or false , see p. 354.

empty == 1, size == 0 line 10;bool prints as1 or 0
empty == 0, size == 3 line 16
30 line 18
20 line 21
10 line 24
empty == 1, size == 0 line 27

Why was the functionality of ourpop function split into two separate functions in the classstack
in the standard library? The obvious reason is to allow us to peek at the top element of thestack without
removing it. But even if every call to top is followed by a call topop , there would still be a reason for the
split.

Consider the following fragment, in which a value is popped from a stack of the class that we wrote.

1 s tack s;
2 s .push(10);
3 c out << s.pop() << "\n";

Our pop function returns an integer by value. Butit could have gotten away with a return by reference,
since it returns an element of an array that does not evaporate as we return.

Now imagine a more sophisticated stack, one that stores its elements into a dynamically expanding
and contracting block of memory. Its pop function would have to return by value if it deallocated the
memory for the most recently pushed element and then returned the element. Return by reference could
not be used because the element’s memory has been deallocated.

Such may be the case with the classstack in the standard library. Its top function can return the
most recently pushed element by reference, because the element is still in memory. But its pop function
can not return the element by reference, because the element is no longer there. Rather than returning each
element by value from a call topop , the standard librarystack returns each element by reference from a

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

call to top . But don’t try to use the reference after the element to which it refers has been popped (lines
17−18, 22−23).

4 #include <stack>
5 using namespace std;
6
7 s tack<int> s; //the standard library stack
8 s .push(10);
9 s .push(20);

10 s.push(30);
11
12 cout << s.top() << "\n"; //outputs 30
13 s.pop();
14
15 int *p = &s.top();
16 cout << *p << "\n"; //outputs 20
17 s.pop();
18 cout << *p << "\n"; //may no longer output 20
19
20 int& r = s .top();
21 cout << r << "\n"; //outputs 10
22 s.pop();
23 cout << r << "\n"; //may no longer output 10

See another example at p. 802.

All the values in a stack must be of the same data type.But because the standard librarystack is a
template class, each stack can hold a different type of value.

The stack of stacks in line 33 needs a space between the two >’s. See line 17 in ¶ (2b) on p. 101.
Something we could push onto the stack of stacks is the stack in line 28.

24 #include <stack>
25 #include "date.h"
26 using namespace std;
27
28 stack<int> s1; //a stack of int’s
29 stack<double> s2; //a stack of double’s
30 stack<int *> s3; //a stack of pointers
31 stack<date> s4; //a stack of objects
32
33 stack<stack<int> > s5; //a stack of stacks
34 s5.push(s1); //Push the stack in line 28.

2.7 An Interface Class for the Terminal

▼ Homework 2.7a:

Another way to write on the screen

The major classes we have seen aredate , life , andstack . We will introduce one more, class
terminal , before talking about classes in general.

Instead of doing our special effects by calling the tenterm_ C functions in pp. 85−89, we will now
construct an object of classterminal and call its ten member functions. Compare the following test pro-
gram with themain.C back in pp. 87−88. It does exactly the same demo by calling a different set of func-
tions. For each C function, there is now a member function that does the same job.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.7 An Interface Class for the Terminal 157

158 ObjectsWi thout Inheritance Chapter 2

For convenience, we also introduce two member functions which have no counterparts among the
term_ functions. Thefunctionnext in lines 18 and 23 takes a pair of coördinates,x andy , and advances
them to the next location. It would change (0, 0) to (1, 0), one location to the right. And on a screen with
80 columns, it would change (79, 0) to (0, 1), the first location on the next line. Finally, with 24 rows it
would change (79, 23) to (0, 24), one step below the bottom row of the screen, but would refuse to advance
it any farther.

We asked you to make every reference argument read-only on pp. 72−74. The call tonext in line
18 shows the danger of violating this rule. Although there’s no way to see it by inspecting that line,next
changes the values ofx andy . We will clean this up when we introduce an ‘‘iterator’’ f or classterminal
on p. 966.

The functionin_range in line 23 returnstrue if the pair of coördinates is on the screen. It was
named after theout_of_range ‘‘ exception’’ on pp. 622−623.

We need two variables,x andy , to loop across the screen in line 23. When we have iterators we will
be able to do the loop with only one, even though the screen is two-dimensional. Inanticipation of that day,
we changed the pair of nested loops in the original test program (lines 23−24 ofmain.C on p. 87) to the
single loop in line 23. This change is premature: if there are two variables, there should be two loops. But
try to think of thex andy as a single object with two data members. In time they will be.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/terminal/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "terminal.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c onst terminal term(’.’); //The constructor for term calls term_construct.
9

10 const unsigned xmax = term.xmax();
11 const unsigned ymax = term.ymax();
12
13 unsigned x = x max / 2; //center of screen
14 unsigned y = y max / 2;
15
16 term.put(x, y, ’X’);
17 char c = t erm.get(x, y);
18 term.next(x, y);
19 term.put(x, y, c);
20
21 term.put(0, 0, "Please type printable characters ending with a q.");
22
23 for (x = 0, y = 1; term.in_range(x, y); term.next(x, y)) {
24 while ((c = term.key()) == ’\0’) {
25 }
26
27 if (c == ’q’) { //quit
28 break;
29 }
30
31 term.put(x, y, c);
32 }
33
34 term.wait(1000);

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

35 term.beep();
36 return EXIT_SUCCESS; //The destructor for term calls term_destruct.
37 }

An interface class

Let’s read the definition for classterminal , starting with the simplest member function.

The beep function in line 29 is merely a call-through (p. 95): it simply calls the corresponding C
function term_beep . Other examples are in lines 27−29. Since this class does almost no work on its
own, we call it aninterface class.It merely delivers the results of another piece of software, the tenterm_
functions.

Now let’s look at the data members. The constructor takes achar argument and stores it in the data
member_background in line 9 ofterminal.C . It has an underscore because a class can’t hav ea data
member and a member function with the same name.To keep the name of the public member short and
simple, the burden of the underscore is placed on the private member. (See p. 241 for another example.)
The constructor also initializes the screen in line 11 ofterminal.C , and then stores the dimensions of
the screen into the other two data members_xmax and_ymax in lines 13 and 14.

The member functionsbackground , xmax, and ymax in lines 18−20 ofterminal.h grant the
public read-only access to the private data members. (See p. 242 for another example.)

The two-argumentput in line 23 ofterminal.h passes the_background data member to the
three-argumentput in line 22. This has the effect of letting_background be the default value for the
third argument. Iwish we could combine the two functions into one with a default value for its third argu-
ment:

1 v oid put(unsigned x, unsigned y, char c = _background) const;

But the language just does not let us do this.A data member of an object can be mentioned inside thebody
of a member function of the same object; it cannot be mentioned inside theargument listof a member
function of the same object.

The in_range in line 31 has no need to check ifx andy are negative. They nev er can be, because
they are unsigned.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/terminal/terminal.h

1 #ifndef TERMINALH
2 #define TERMINALH
3
4 extern "C" {
5 #include "term.h"
6 }
7
8 c lass terminal {
9 c har _background; //default value for third argument of put

10 unsigned _xmax; //number of columns of characters
11 unsigned _ymax; //number of rows of characters
12
13 void check(unsigned x, unsigned y) const;
14 public:
15 terminal(char initial_background = ’ ’);
16 ˜terminal();
17
18 char background() const {return _background;}
19 unsigned xmax() const {return _xmax;}
20 unsigned ymax() const {return _ymax;}

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.7 An Interface Class for the Terminal 159

160 ObjectsWi thout Inheritance Chapter 2

21
22 void put(unsigned x, unsigned y, char c) const;
23 void put(unsigned x, unsigned y) const {put(x, y, _background);}
24 void put(unsigned x, unsigned y, const char *s) const;
25 char get(unsigned x, unsigned y) const {check(x, y); return term_get(x, y);}
26
27 char key() const {return term_key();}
28 void wait(int milliseconds) const {term_wait(milliseconds);}
29 void beep() const {term_beep();}
30
31 bool in_range(unsigned x, unsigned y) const {return x < _xmax && y < _ymax;}
32 void next(unsigned& x, unsigned& y) const;
33 };
34 #endif

Every character is ultimately put on the screen by the three-argumentput in line 36, which calls the
C Standard Library functionisprint to check that the character is printable.If it is not, we cast the char-
acter to print its ASCII code. See line 14 ofstatic_cast.C on p. 65.

The initial_background argument of the constructor is checked when line 19 fills the screen
with the background character.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/terminal/terminal.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cctype> //for isprint
4 #include "terminal.h"
5 using namespace std;
6
7 t erminal::terminal(char initial_background)
8 {
9 _background = initial_background;

10
11 term_construct();
12
13 _xmax = t erm_xmax();
14 _ymax = t erm_ymax();
15
16 if (_background != ’ ’) {
17 for (unsigned y = 0; y < _ymax; ++y) {
18 for (unsigned x = 0; x < _xmax; ++x) {
19 put(x, y);
20 }
21 }
22 }
23 }
24
25 terminal::˜terminal()
26 {
27 for (unsigned y = 0; y < _ymax; ++y) {
28 for (unsigned x = 0; x < _xmax; ++x) {
29 put(x, y, ’ ’);
30 }
31 }
32

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

33 term_destruct();
34 }
35
36 void terminal::put(unsigned x, unsigned y, char c) const
37 {
38 if (isprint(static_cast<unsigned char>(c)) == 0) {
39 cerr << "unprintable character "
40 << static_cast<unsigned>(static_cast<unsigned char>(c))
41 << ".\n";
42 exit(EXIT_FAILURE);
43 }
44
45 check(x, y);
46 term_put(x, y, c);
47 }
48
49 void terminal::put(unsigned x, unsigned y, const char *s) const
50 {
51 for (; *s != ’\0’; ++s) {
52 put(x, y, *s);
53 next(x, y);
54 }
55 }
56
57 //Move to the next (x, y) position: left to right, top to bottom.
58 //Warning: will change the values of the arguments.
59
60 void terminal::next(unsigned& x, unsigned& y) const
61 {
62 check(x, y);
63
64 if (++x >= _xmax) {
65 x = 0;
66 if (++y >= _ymax) {
67 cerr << "can’t go to or beyond row " << _ymax << "\n";
68 exit(EXIT_FAILURE);
69 }
70 }
71 }
72
73 void terminal::check(unsigned x, unsigned y) const
74 {
75 if (!in_range(x, y)) {
76 cerr << "coordinates (" << x << ", " << y
77 << ") must be >= (0, 0) and < ("
78 << _xmax << ", " << _ymax << ")\n";
79 exit(EXIT_FAILURE);
80 }
81 }

List of the five source files that constitute the test program

(1) term.h andterm.c (pp. 85−89). term.c is written in the language C;term.h is acceptable to
both languages. The remaning files are in C++.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.7 An Interface Class for the Terminal 161

162 ObjectsWi thout Inheritance Chapter 2

(2) terminal.h andterminal.C (pp. 159−161)

(3) main.C (pp. 157−159)

Compile the test under Unix

1$ gcc -I. -DUNIX= -c term.c minus uppercase I
2$ ls -l term.o minus lowercase L

3$ g++ -I. -o ˜/bin/tester main.C terminal.C term.o -lcurses
4$ ls -l ˜/bin/tester
5$ tester Run it.

It’ s just as fast to call the member functions of class terminal.

Instead of calling the C functions directly, we are now calling them through the member functions of
a terminal object. Ina moment we will see the benefits of this extra layer of software. Butfirst we
must consider if the extra layer has slowed the program down.

When we write a call to an inline function, the computer behaves as if we had written the body of the
inline function in place of the call. When we write line 2, for example, the computer behaves as if we had
written line 3. Calling the member functionbeep in line 2 is therefore just as fast as calling the C function
term_beep in line 3.

1 c onst terminal term(’.’);
2 t erm.beep(); //When we write this,
3 t erm_beep(); //the computer behaves as if we had written this.

Sometimes the member functions of classterminal are even faster. When we write line 5, the
computer behaves as if we had written line 6. But line 6 calls no function; it simply uses the value of a data
member. Calling the member functionxmax in line 5 is therefore faster than calling the C function
term_xmax in line 7.

4 c onst terminal term(’.’);
5 unsigned x = term.xmax(); //No function is called.
6 unsigned x = term._xmax;
7 unsigned x = term_xmax(); //A function is called.

Why bother with an interface class?

The B words were in all cases compound words.

—George Orwell,1984, Appendix: The Principals of Newspeak

Classterminal does not slow down the program, and in a few cases it makes it faster. But the real
reason we introduced this extra layer is for æsthetics. Here is how calling the member functions of an ob-
ject is more convenient than calling naked C functions.

(1) The C function names had to be compound words because we might have sev eral devices to ma-
nipulate. If there aren devices andm functions for each device, the number of different function names
will be n × m.

1 t erm_beep(); /* C: number of names increases geometrically */
2 modem_beep();
3 pager_beep();

But the C++ member function names can be shorter because the member functions belong to an object.If
there aren devices andm functions for each device, the number of different names will be onlyn + m.

4 t erm.beep(); //C++: number of names increases arithmetically
5 modem.beep();
6 pager.beep();

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Our first example of shortening the names was on pp. 110−111.

(2) The C++ member functions also have fewer and simpler names thanks to function name overload-
ing.

7 / * C: e very function must have a different name. */
8 t erm_put(x, y, c); /* display a character */
9 t erm_puts(x, y, s); /* display a string */

10 //C++: can use same name for similar functions
11 term.put(x, y, c); //display a character
12 term.put(x, y, s); //display a string

(3) The most frequently used value for an argument can be made the default in C++.For example,
the most frequently displayed character is the background character.

13 term_put(x, y, ’.’); /* C */
14 term.put(x, y); //C++: display term’s background character

(4) Instead of two widely separated function calls

15 term_construct();
16 //the whole game
17 term_destruct();

we now write only a single declaration:

18 terminal term(’.’); //This declaration calls the constructor.
19 //the whole game
20 return from main; //The return from main calls the destructor.

If the call to term_construct in the above line 15 was missing in C, a call toterm_put at line 16
would still compile but would execute incorrectly. But if the declaration forterm in the above line 18 was
missing in C++, a call toterm.put at line 19 would not even compile. Thisis better than executing in-
correctly.

(5) Packaging the ten C functions as a class would also make it easier to have a program with more
than one terminal. As we will see, this is one of the main reasons for making a class.
▲

2.8 Whatare Objects For?
I wish I could give you a single, overarching statement about what an object is, or what an object is

for, or how to recognize when an object should be used. The best I could do was to come up with four gen-
eral ways of thinking about objects.

(1) An object is astruct with better security:

(a) Thanksto its constructor, we can’t put garbage into a newborn object.

(b) If garbage appears later in the private data members, it’s easy to round up all the possible sus-
pects. Onlythe member functions of the object’s class could have put the garbage there.

(2) An object can trigger a pair of events; multiple objects can trigger nested pairs. More radically, an
objectis the pair of events, or the interval between the events.

(3) An object is something that we might want to make more than one of.

(4) An object is a group of one or more variables whose values are used and changed by a series of func-
tion calls, and which persist until the last call of the series.

Let’s take them one at a time. Later, there will be two more (p. 473 and pp. 734−735).

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.8.1 A Structur e with Better Security 163

164 ObjectsWi thout Inheritance Chapter 2

2.8.1 AStructur e with Better Security
In C we wrote a structure with fields, and an array and function floating somewhat unsatisfactorily

nearby. There is no connection between the structure and the floaters, except for thedate_ prefix on their
names.

1 s truct date {
2 i nt year;
3 i nt month;
4 i nt day;
5 } ;
6
7 c onst int date_length[] = /* etc. */
8 v oid date_print(const date *p);

In C++ we write a class with data members and member functions. The floating function in the
above line 8 is now an integral part of the class in the following line 16.To ensure that the data members
are initialized to legal values, there is also a constructor in line 15.No other functions in any program can
read or write the private data members of adate object.

The floating array in the above line 7 will also become a member of the class in line 10.We will do
this on pp. 238−239 when we have ‘‘static’’ data members.Now that the floaters are members, their names
have been shortened.

9 c lass date {
10 static const int length[];
11 int year;
12 int month;
13 int day;
14 public:
15 date(int initial_year, int initial_month, int initial_day);
16 void print() const;
17 };

2.8.2 Atrigger for a Pair of Events.
The mere existence of an object triggers a pair of events: a call to one of its constructors and a call to

its destructor. Here are examples of what a constructor/destructor pair can do.

(1) Error checking. The constructor installs a legal initial value into a newborn object; the destructor
certifies that the value at death is still legal. A destructor can print a warning if the object is unhealthy at
the end of its life or has not been properly drained (classstack , pp. 149−154; also pp. 923, 295−299.)

(2) Make something unforgettable. To ensure that an event will happen at some future time, we can
construct an object whose destructor performs the event. For example, we might have to print a message
whenever we are about to return from a function.If the function has many return statements, we simply
construct an (automatically allocated) object upon entry to the function. When any return is executed,
the object’s destructor will be called and the message will be printed.

(3) Bookkeeping. Imaginea program that constructs and destructs many objects of the same class.
To keep count of how many objects exist at any giv en moment, we can define the following variable (a
global, not a data member):

1 i nt count = 0;

Every constructor for the class will say

2 ++count;

and the destructor will say

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

3 - -count;

The count will then be maintained automatically.

To keep all the objects of a class on a linked list, every constructor can insert the object into the list
and the destructor can remove it. To keep all objects visible on the screen while they exist, every construc-
tor can draw the object and the destructor can erase it. Et cetera.

(4) Resource management.Many resources may have to be allocated at an object’s birth and deallo-
cated at the object’s death: memory, files, locks, windows, network connections, etc.Every constructor for
the object’s class can allocate the resources, and the destructor can deallocate them.

Events come in pairs

In the world of computer programming, events happen in pairs. Not all of them, of course; but when
they must be paired, failure to do so usually results in disaster.

Each event often centers around a call to a function. In C, we might call the two functions in the
wrong order, or forget to call one of them, or call one of them more than once.In C++, the first function
can be called by an object’s constructor and the second by the object’s destructor. We can trigger the cor-
rect pair of calls simply by creating an object and letting it live out its life.

Generally the first event creates one or more variables that must be saved for later use. Often they
lapse into irrelevance after the second event. If so, there is now a natural place to store these values: in the
object’s data members. It is therefore common to have a C++ class with only one data member, while it
would be quite unusual to have a C structure with only one field.(A C++ class can even hav eno members
at all; see pp. 590 and 842.)

The first two examples of pairs of events are taken from the C Standard Library. In C++, they could
be packaged as objects.

(1) The functionsmalloc and free allocate and free dynamic memory. (C++ will replace them
with new anddelete .)

The first event is the allocation in lines 6−10, which creates the variablep. (Theperror in line 8 is
the error-printing function from the C Standard Library.) Thesecond event is the deallocation in 15, after
which the value ofp is useless.(The free in line 15 returnsvoid , so we can’t test it for failure.) Be-
tween them,p is used by the series of function calls in lines 12−13.

1 /* C e xample */
2 #include <stdio.h> /* for perror and printf */
3 #include <stdlib.h> /* for malloc, free, exit, EXIT_FAILURE, and NULL */
4 #include <string.h> /* for strcpy */
5
6 c har *const p = malloc(6);
7 i f (p == N ULL) {
8 perror(argv[0]);
9 exit(EXIT_FAILURE);

10 }
11
12 strcpy(p, "hello");
13 printf("%s\n", p);
14
15 free(p);

(2) fopen andfclose open and close a file. C++ will use the constructor and destructor for class-
esofstream or ifstream .

The first event is the opening in lines 20−24, which creates the variablefp . The second event is the
closing in 29−32, after which the value offp is useless. Between them,fp is used by the series of func-
tion calls in lines 26−27.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.8.2 A trigger for a Pair of Events. 165

166 ObjectsWi thout Inheritance Chapter 2

16 /* C example */
17 #include <stdio.h> /* for fopen, NULL, fprintf, fflush, fclose, perror */
18 #include <stdlib.h> /* for exit and EXIT_FAILURE */
19
20 FILE *const fp = fopen("outfile", "w");
21 if (fp == NULL) {
22 perror(argv[0]);
23 exit(EXIT_FAILURE);
24 }
25
26 fprintf(fp, "hello\n");
27 fprintf(fp, "goodbye\n");
28
29 if (fclose(fp) != 0) {
30 perror(argv[0]);
31 exit(EXIT_FAILURE);
32 }

In each case, the entire scenario could be packaged as a C++ class. The first event could be the con-
structor; the second event, the destructor. The data that exists from the first event to the second could reside
in the data members. The intervening functions that use the data could be member functions.

Here are other pairs of events suitable for this treatment.

(3) Create and destroy a file or directory.

(4) Compress and decompress a file.

(5) Encrypt and decrypt a string.

(6) Copy a group of files into or out of an archive file such as atar archive.

(7) Lock and unlock a record in a file or database.

(8) Pop up a menu and make it disappear.

(9) Open and close a network connection.

(10) An obscure example for the C Standard Library:va_start andva_end .

When should we end one function and start another?

The local objects declared in a function will be destructed when we return from the function.For ex-
ample, the local variableost constructed in line 6 will be destructed when we reach the the closing curly
brace at the end of the function in line 10.(As in C, however, variables that are static follow a different
rule.)

The amount of code in a C++ function is often determined by how long we want its local objects to
stay alive. When it is time for them to be destructed, it is time to cap off the function with a} . In fact, we
often think of a function as primarily a framework over which we stretch the lifespan of the local objects.

For example, here is a function that writes to a file.We will see that the two-event scenario in the
above lines 20−32 can be performed by constructing an object of classofstream and letting it live out its
life. Theconstructor for this object opens an output file, the destructor closes it, and in between, this object
can write to the file with the same<< syntax used bycout andcerr . The output file stays open for the
lifespan of this object. The functionwrite_to_file keeps the object alive for as long as we want to
keep the file open.

1 #include <fstream> //for ofstream
2 using namespace std;
3
4 v oid write_to_file()
5 {
6 ofstream ost("outfile"); //The constructor opens an output file.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

7
8 ost << "hello\n"; //Write to the file.
9 ost << "goodbye\n";

10 } //The destructor closes the file.

There is a way to destruct an object in the middle of a function, without returning from the function.
It would require the C++ equivalents ofmalloc andfree . Let’s not think about this yet.

An example of program reorganization

Here is the outline of a video game in C.We initialize the screen and keyboard before the game be-
gins, and restore them to their prior state when the game ends.Initializing the screen consists of creating a
graphics window or putting the screen into graphics mode. Initializing the keyboard will give the program
access to each keystroke as it is typed, without having to wait for the RETURN key. In other words, it
makes the keyboard live.

1 /* C e xample */
2
3 i nt main()
4 {
5 i nitialize the screen (i.e., create a graphics window);
6 i nitialize the keyboard (i.e., so you don’t have to press RETURN);
7 play_game();
8 r estore the keyboard to the way it was before;
9 r estore the screen to the way it was before;

10
11 return EXIT_SUCCESS;
12 }

When I learned structured programming (circa 1980), they taught us to reorganize a program by putting all
the initialization code into one big subroutine, and all the restoration code into another.

13 int main()
14 {
15 initialize();
16 play_game();
17 restore();
18
19 return EXIT_SUCCESS;
20 }
21
22 void initialize(void)
23 {
24 initialize the screen;
25 initialize the keyboard;
26 }
27
28 void restore(void)
29 {
30 restore the keyboard to the way it was before;
31 restore the screen to the way it was before;
32 }

But the chunks of code for initialization in the above lines 24 and 25 probably have nothing in com-
mon: no shared variables, constants, typedef’s, etc. Theonly way they could communicate with each other
would be through global variables. Dittofor the restoration chunks in lines 30 and 31.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.8.2 A trigger for a Pair of Events. 167

168 ObjectsWi thout Inheritance Chapter 2

Is there a better pairing for these bedfellows? Theones that belong together are the functions in 24
and 31: they probably share more variables than 24 and 25. In fact, line 24 probably stores the values that
are used to restore the screen in line 31. Similarly, the keyboard functions in 25 and 30 belong together.

We will pair them by making them constructors and destructors.They will communicate via the data
members of the object to which they belong. Incidentally, this will halve the number of function names we
have to inv ent: a constructor and destructor share the same name, with a tilde. See pp. 133, 154.Themain
function will now contain declarations for two variables (lines 49−50) instead of two pairs of widely sepa-
rated function calls (in the above lines 5 and 9, 6 and 8).

33 class screen { //C++ example
34 declare variables shared by constructor and destructor here
35 public:
36 screen(); //constructor: initialize the screen
37 ˜screen(); //destructor: restore the screen
38 };
39
40 class keyboard {
41 declare variables shared by constructor and destructor here
42 public:
43 keyboard(); //constructor: initialize the keyboard
44 ˜keyboard(); //destructor: restore the keyboard
45 };
46
47 int main()
48 {
49 screen s; //construct (i.e., initialize) the screen
50 keyboard k; //construct (i.e., initialize) the keyboard
51
52 play_game(s, k);
53
54 return EXIT_SUCCESS; //destruct (i.e., restore) keyboard & screen,
55 //in that order
56 }

To add extra screens and keyboards, we can simply declare extra objects. Local objects are destruct-
ed in the opposite order from that in which they were constructed: last hired, first fired.

57 int main()
58 {
59 screen s1;
60 keyboard k1;
61
62 screen s2;
63 keyboard k2;
64
65 play_game(s1, k1, s2, k2);
66
67 return EXIT_SUCCESS; //destruct k2, s2, k1, and s1, in that order
68 }

Many operations must be undone in rev erse order

Many operations have to be done in pairs.Furthermore, the pairs must often be nested. Our first ex-
ample creates a window and puts icons into it, does some work, and then destroys (or hides) the icons and
window. We must destroy the iconsbefore we destroy the window. If we destroyed the window first, the
icons would (momentarily) land on the desktop. The nested indentation shows how the pairs of events nest.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Create a window.
Create icons in the window.

Do the work.
Destroy the icons.

Destroy the window.

A second example creates a directory and puts files into it, does some work, and then destroys the
files and directory.

Create a directory (or ‘‘folder’’).
Create files (or ‘‘documents’’) in the directory.

Do the work.
Remove the files.

Remove the directory.

A third example copies many individual files into a.tar archive, compresses it, does some work,
and then decompresses the archive and extracts the original files from it.

Create a.tar file, and copy many individual files into it.
Compress the.tar file into a.tar.gz file.

Do the work.
Decompress the.tar.gz file back into a.tar file.

Extract the individual files from the.tar file, and remove the.tar file.

To nest these events, we can simply declare objects whose lifespans are nested.For example, imag-
ine atempdir object whose constructor and destructor create and destroy a temporary directory, and a
tempfile object whose constructor and destructor create and destroy a temporary file.The constructor
for tempfile takes an argument giving the directory in which to create the file.To create and destroy the
directory and files in the correct order, we need only declare thetempdir before thetempfile ’s and
then let them live out their lives. Seepp. 180−181.

1 v oid f()
2 {
3 t empdir td; //Create a directory.
4
5 t empfile f1(td); //Create files in the directory.
6 t empfile f2(td);
7 t empfile f3(td);
8
9 do t he work;

10 } //Destroy the files f3, f2, f1; then destroy the directory td.

The above pairings were temporal; the following pairings are spatial.In a table in HTML (‘‘Hyper-
text Markup Language’’ on the web), each box is surrounded by a pair ofTD tags (‘‘table data’’). The
opening and closing tags of each pair have the same name, but closing tag also has a diagonal slash.Simi-
larly, each row of boxes is surrounded by a pair ofTR tags (‘‘table row’’), and the entire table is surrounded
by a pair ofTABLEtags.

A web browser converts the pairings from spatial to temporal by reading the table from top to bot-
tom. Whenever it encounters the opening tag of each pair, it can construct an object for that pair. When it
encounters a closing tag, it can destruct the object for that pair. If there is no such object, we must have en-
countered a closing tag with no prior matching opening tag.If we pass the end of the table and there are
leftover objects, we must have encountered an opening tag with no subsequent matching closing tag.

row 1, col 1 row 1, col 2

row 2, col 1 row 2, col 2

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.8.2 A trigger for a Pair of Events. 169

170 ObjectsWi thout Inheritance Chapter 2

1 <TABLE BORDER>
2 <TR>
3 <TD>
4 r ow 1, col 1
5 </TD>
6 <TD>
7 r ow 1, col 2
8 </TD>
9 </TR>

10 <TR>
11 <TD>
12 row 2, col 1
13 </TD>
14 <TD>
15 row 2, col 2
16 </TD>
17 </TR>
18 </TABLE>

2.8.3 Somethingto Make More Than One Of.
It would be hard to modify the answer to Homework 1.5a (pp. 42−44) to run more than one game si-

multaneously. But the answer to Homework 2.5b (pp. 144−147) would require no modification:

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/life/main2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring>
4 #include "life.h"
5 using namespace std;
6
7 i nt main()
8 {
9 c onst life_matrix_t glider_matrix = {

10 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
11 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
12 {0, 0, 1, 1, 0, 0, 0, 0, 0, 0},
13 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0},
14 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
15 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
16 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
17 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
18 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
19 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
20 };
21 life glider = glider_matrix;
22
23 const life_matrix_t blinker_matrix = {
24 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
25 {0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
26 {0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
27 {0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
28 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

29 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
30 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
31 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
32 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
33 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
34 };
35 life blinker = blinker_matrix;
36
37 for (;;) {
38 glider.print();
39 cout << "\n";
40 blinker.print();
41
42 cout << glider.generation()
43 << ": Press c RETURN to continue, q RETURN to quit.\n";
44 char buffer[256];
45 cin >> buffer;
46 if (strcmp(buffer, "c") != 0) {
47 break;
48 }
49
50 glider.next();
51 blinker.next();
52 }
53
54 return EXIT_SUCCESS;
55 }

I printed the pictures side-by-side to save paper. They actually appear one above another.

..........

.X........ ..X.......

..XX...... ..X.......

.XX....... ..X.......

..........

..........

..........

..........

..........

..........
0: Press c RETURN to continue, q RETURN to quit: c

..........

..X.......

...X...... .XXX......

.XXX......

..........

..........

..........

..........

..........

..........
1: Press c RETURN to continue, q RETURN to quit: c

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.8.3 Something to Make More Than One Of. 171

172 ObjectsWi thout Inheritance Chapter 2

..........

.......... ..X.......

.X.X...... ..X.......

..XX...... ..X.......

..X.......

..........

..........

..........

..........

..........
2: Press c RETURN to continue, q RETURN to quit: c

..........

..........

...X...... .XXX......

.X.X......

..XX......

..........

..........

..........

..........

..........
3: Press c RETURN to continue, q RETURN to quit: c

..........

.......... ..X.......

..X....... ..X.......

...XX..... ..X.......

..XX......

..........

..........

..........

..........

..........
4: Press c RETURN to continue, q RETURN to quit: c

There’s no good way to do it without objects.

Our C stack used a crude method to make the variablesa andn accessible only topush andpop :
we sliced the C program into.c files and barricaded the variables and functions together in a separate file.
In C++, we can protecta andn by using the language instead of a pair of scissors.We simply let them be
private members of classstack .

Suppose we needed three stacks, each with itsa andn accessible to no one else. There is no good
way to do this in C. One bad way is to make three.c files (and three.h files, not shown). Errorchecking
omitted for brevity.

1 /* T his file is stack0.c (C example). */
2 #include <stddef.h> //for size_t
3
4 s tatic int a[STACK_MAX_SIZE];
5 s tatic size_t n = 0;
6
7 v oid push0(int i) {a[n++] = i;}
8 i nt pop0(void) {return a[--n];}

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

9 /* T his file is stack1.c (C example). */
10 #include <stddef.h>
11
12 static int a[STACK_MAX_SIZE];
13 static size_t n = 0;
14
15 void push1(int i) {a[n++] = i;}
16 int pop1(void) {return a[--n];}

17 /* This file is stack2.c (C example). */
18 #include <stddef.h>
19
20 static int a[STACK_MAX_SIZE];
21 static size_t n = 0;
22
23 void push2(int i) {a[n++] = i;}
24 int pop2(void) {return a[--n];}

A more sophisticated bad way to have three stacks would be to add an argument topush andpop
specifying which stack we want to use.For example,

25 /* C example */
26 int i;
27
28 push(1, 10); /* Push 10 onto stack number 1. */
29 push(2, 20); /* Push 20 onto stack number 2. */
30 i = pop(1); /* Pop stack number 1. */

But implementing this will make the code more than twice as complicated. (Error checking omitted for
brevity.)

31 /* This file is stack.c (C example). */
32 static int a[3][STACK_MAX_SIZE];
33 static size_t n[3] = {0, 0, 0};
34
35 void push(size_t which_stack, int i)
36 {
37 /* More than twice as complicated as line 25 of stack.C on p. 151. */
38 a[which_stack][n[which_stack]++] = i ;
39 }
40
41 int pop(size_t which_stack)
42 {
43 /* More than twice as complicated as line 37 of stack.C on p. 151. */
44 return a[which_stack][--n[which_stack]];
45 }

Even with all this work, we can’t create and destroy stacks as the program runs, or make a stack accessible
to only one function.

In C++ we can simply declare three objects of our class::stack . They will last as long as the call
to functionf , and will be accessible to only that one function.

46 void f()
47 {
48 ::stack s0; //local to the function f
49 ::stack s1;
50 ::stack s2;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.8.3 Something to Make More Than One Of. 173

174 ObjectsWi thout Inheritance Chapter 2

51
52 s1.push(10);
53 s2.push(20);
54 int i = s 1.pop();
55 } //Destruct the stacks in the order s2, s1, s0.

Eventually we will make an array of objects.

56 ::stack a[3]; //Call the constructor for class stack 3 times.
57
58 a[1].push(10); //Push 10 onto stack a[1].
59 a[2].push(20);
60 int i = a [1].pop();

Another example of something we might want to make more than one of

Here’s an example from K&R, pp. 46−47.Let’s assume that anunsigned long is four bytes, with
the bits numbered from right to left starting at bit 0. The most significant bit is number 31.

Line 6 scrambles the value ofnext . The first time it is executed, it will change the value ofnext to
1,103,527,590. Mathematicianshave determined that the most random part of the resulting value consists
of bits 30 through 16 inclusive. Here is 1,103,527,590 in binary with these bits underlined:

0100000111000110 0111111010100110

In line 7, the/ 6 5536 chops off the bottom 16 bits ofnext and the(unsigned) and the
% 32768 chop off the top bit. What remains is bits 16 through 30.The first time it is executed, line 7 will
returns 16,838, which is the number we underlined:

100000111000110

(Where did the mysterious number 1,103,515,245 = 35 × 5 × 7 × 129,749 come from? Look up
‘‘ Linear Congruential Sequences’’ in Donald Knuth’s The Art of Computer Programming, Volume 2:
Seminumerical Algorithms.)

1 /* r eturn pseudo-random integer in 0..32767 (C example) */
2
3 i nt rand(void)
4 {
5 s tatic unsigned long next = 1;
6 next = next * 1103515245 + 12345;
7 r eturn (unsigned)(next / 65536) % 32768;
8 }

Unfortunately, every program that calls the above function always receives exactly the same series of
random numbers, starting with 16838, 5758, 10113, etc. The example in K&R therefore lets us give an ini-
tial value of our own choosing (theseed) to the variablenext . For example, the initial value 2014 gives
us a different series of random numbers starting with 30237, 3862, 1078, etc. The variablenext had to be
made global in line 11 to be visible to both functions:

9 /* C e xample */
10
11 static unsigned long next = 1;
12
13 void srand(unsigned seed) /* set seed for rand() */
14 {
15 next = seed;
16 }
17

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

18 int rand(void) /* return pseudo-random integer in 0..32767 */
19 {
20 next = next * 1103515245 + 12345;
21 return (unsigned)(next / 65536) % 32768;
22 }

To get two series of random numbers, with the seeds 1 and 2014, we can easily generate them one af-
ter the other:

23 /* C example */
24 int i;
25
26 /* Start with the default seed. */
27 for (i = 0; i < 3; ++i) {
28 printf("%d\n", rand());
29 }
30
31 /* Start with the seed 2014. */
32 srand(2014);
33 for (i = 0; i < 3; ++i) {
34 printf("%d\n", rand());
35 }

The output is

16838 series that started with the seed 1
5758
10113
30237 series that started with the seed 2014
3862
1078

But to interlace the two series, we would first have to precompute them and store them in two arrays:

36 /* C example */
37 int i;
38 int r1[3];
39 int r2[3];
40
41 for (i = 0; i < 3; ++i) {
42 r1[i] = r and();
43 }
44
45 srand(2014);
46 for (i = 0; i < 3; ++i) {
47 r2[i] = r and();
48 }
49
50 for (i = 0; i < 3; ++i) {
51 printf("%d\t%d\n", r1[i], r2[i]);
52 }

To right-justify the columns of numbers, see p. 353.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.8.3 Something to Make More Than One Of. 175

176 ObjectsWi thout Inheritance Chapter 2

16838 30237 first number in each series
5758 3862 second number in each series
10113 1078 third number in each series

The inline constructor in line 9 has a default value for its argument.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/myrandom/myrandom.h

1 #ifndef MYRANDOMH
2 #define MYRANDOMH
3
4 / /An object of this class generates a series of random numbers.
5
6 c lass myrandom {
7 unsigned long next;
8 public:
9 myrandom(unsigned initial_next = 1) {next = initial_next;}

10 int rand();
11 };
12 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/myrandom/myrandom.C

1 #include "myrandom.h"
2
3 i nt myrandom::rand()
4 {
5 / /As in C, but next is now a data member instead of a static variable.
6 next = next * 1103515245 + 12345;
7 r eturn static_cast<unsigned>(next / 65536) % 32768;
8 }

Instead of the above lines 36−52, we can now output the two interlaced series without the arrays:

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/myrandom/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "myrandom.h"
4 using namespace std;
5
6 i nt main()
7 {
8 myrandom r1;
9 myrandom r2(2014);

10
11 for (int i = 0; i < 3; ++i) {
12 cout << r1.rand() << "\t"
13 << r2.rand() << "\n";
14 }
15
16 return EXIT_SUCCESS;
17 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

16838 30237 first number in each series
5758 3862 second number in each series
10113 1078 third number in each series

2.8.4 ASet of Variables Used by a Series of Function Calls
Often we notice that the same variable, or the same group of variables, is used by a series of function

calls. Perhapswe are calling different functions; or perhaps the same function over and over. The func-
tions might change the values of the variables, but the variables survive from one call to the next.

Here are three of the ways this can happen.

(1) The variable is passed as an argument to two or more function calls.For example, on p. 165, ¶
(1), the variablep was passed tostrcpy andprintf . And on pp. 165−166, ¶ (2), the variablefp was
passed to a series of calls tofprintf .

(2) The variable is a static local variable in a function that is called two or more times.For example,
on p. 174, line 5, the variablenext will be used by each call to the functionrand . Since it is static, the
variable retains its value from one call to the next.

(3) The variable is a global variable that can be used by several functions. For example, on p. 174,
line 11, the variablenext can be used by the functionssrand in lines 13−16 andrand in 18−22. As in
the previous paragraph, the variable retains its value from one call to the next.

When a group of variables is used by a series of function calls, the variables and functions should be-
come the data members and member functions of an object.A good candidate for objecthood was the pair
of variablesx andy , and the functionsterm_put andterm_get to which they were passed, in the
term_ function test programmain.C on pp. 87−88.A another candidate was the pairx andy , and the
functionsput , get , next , and in_range to which they were passed, in the terminal test program
main.C on pp. 157−159. These functions are currently members of classterminal ; later, they will be-
come members of an object whose data members are thex andy . Such an object, which keeps track of our
location in a data structure, will be called aniterator.

A third candidate for objecthood will be the trio of pointsA, B, andC, and the functionsarea and
contains to which they will be passed, inmain.C on pp. 208−209.We will pull them together into an
object of a class namedtriangle . A fourth candidate will be on p. 727.

2.8.5 OtherUses of Objects
Certain kinds of classes occur so frequently that it is worthwhile to have names for them.

Container classes

An object of acontainer classcontains other objects, pointers thereto, or at least values of a built-in
data type. Our first example, the classstack on pp. 149−154, was hardwired to store and retrieve only in-
tegers. Themore sophisticated container classes in the C++ Standard Library—vector , list , map,
queue —are ‘‘templates’’ that let us plug in our choice of the data type to be held.For a preview, see the
standard librarystack on pp. 155−157.

To qualify as a container, the class must do much more than just hold values. Itmust let us access the
values through ‘‘iterators’’ (Chapters 4 and 8) and manipulate the iterators through ‘‘algorithms’’ (Chapters
7 and 8). Classterminal will eventally acquire with all of these features (Chapter 9).

Series and streams

Some objects are the source or destination (or both) of a stream of data. Our first example, the class
myrandom on p. 176, generated a series of random integers.

Often the stream of data provided by an object comes from the outside world. Examplesare class
istream , which can read from the standard input, and classifstream , which reads from a file. Or the

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.8.5 Other Uses of Objects 177

178 ObjectsWi thout Inheritance Chapter 2

stream can goto the outside world: classostream , which can write to the standard output, and class
ofstream , which writes to a file. (The most famous objects of classesistream andostream arecin
andcout respectively.)

A stream object can be dressed up to look like acontainer (pp. 850−855), allowing it to be manipulat-
ed by an algorithm.

Miscellaneous

Any visible component of a GUI should be an object.If the component has a color, a symbol, or a
location on the screen, the natural place to store this information is in the data members of an object.Our
examples will be classesrabbit andwolf (pp. 194−197 and 197−199), and the classterminal itself.

Classterminal is our example of aninterface class. Althoughit caches a little bit of data for us,
its member functions do almost no work. They simply call other functions to get the job done. An inter-
face class shields us from dealing directly with these other, presumably distasteful, functions.

Divide a program into objects

A word of caution: beginners often find it hard to ‘‘find the classes,’’ but that prob-
lem is usually soon overcome without long-term ill effects. Next, however, often
follows a phase in which classes . . . seem to multiply uncontrollably. . . . Not ev-
ery minute detail needs to be represented by a distinct class . . .

—Bjarne Stroustrup,The C++ Programming Language, Special Edition, p. 734

An architect’s first work is apt to be spare and clean.He knows he doesn’t know
what he’s doing, so he does it carefully and with great restraint.

As he designs the first work, frill after frill and embellishment after embellishment
occur to him. These get stored away to be used ‘‘next time.’’ Sooner or later the
first system is finished, and the architect, with firm confidence and a demonstrated
mastery of that class of systems, is ready to build the second system.

This second is the most dangerous system a man ever designs. . . .

—Frederick P. Brooks, Jr.,The Mythical Man-Month, Anniversary Edition, p. 55.

•
• •

• •

•
•
•

There are always many ways to divide a program into objects.Let’s glance at some of the possibili-
ties for the Game of Life.

(1) In Homework 2.5b, the whole game of life was one big object with a 10× 10 array ofbool ’s.

(2) We could let each cell be a separate object. In this case there would be a 10× 10 array of ‘‘cell’’
objects, each having abool data member.

The most interesting possibilities lie between these two extremes.

(3) As the game runs, individual cells turn on and turn off. Shouldthis pair of events be packaged as
a constructor and destructor? In this case, only theoccupiedcells would be objects.The other cells would
be nothing at all. The above diagram would have eight ‘‘occupied cell’’ objects, and their number would
change as the game runs. The game would have one linked list containing all the occupied cell objects,
each having x andy data members. The objects would no longer need thebool data member in the previ-
ous paragraph, since the mere fact of an object’s existence indicates that its cell is occupied.

I find the occupied cell objects attractive because they make the pairing of events explicit. This ap-
proach might also save memory. Most cells will be empty most of the time because of the Law of Death.
Having a permanent object for every cell would be wasteful. Finally, we would no longer have to worry

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

about falling off the edge of the playing board—there would be no more board.Thex andy data members
of each object could range through all possibleint values.

(4) To move to the next generation, we have to accumulate information about the occupied cells and
the cells adjacent to the occupied cells.Perhaps all of these should be the objects, each with two int data
members,x andy , and anotherint data member to count how many neighbors are occupied.The above
diagram would have 37 objects.

(5) The above diagram has two ‘‘blobs’’ or ‘ ‘islands’’. Shouldthey be the objects?The blobs are the
active, org anic entities, while the individual cells are merely machines.The above diagram would have two
‘‘ blob’’ objects, each containing a linked list of ‘‘occupied cell’’ objects.

Letting each blob be a separate object would make it easier to let the user pick up a blob and move it.
In addition, this approach might make the game run faster. Instead of considering the interaction between
every pair of occupied cells, we have partitioned them into ‘‘island universes’’. We might also want to en-
ter the shape of each blob into a hash table.

What should happen to a blob object when its blob splits into two or more blobs?How do we tell
when two or more blobs come close enough to interact or merge? Andwhen this happens, which blob ob-
ject should absorb the other(s)? Or to be fair, should the merging blobs die and be replaced by one new ob-
ject?

(6) The above objects are visible to the user. Now let’s consider objects that are part of the imple-
mentation. Agame has several 10× 10 arrays.Should each of them be an object?Let’s call the hypotheti-
cal object amatrix . The nested loops that print an array could then be a member function named
print ; the ones that copy an array could be a member function namedmatrix::copy (eventually to be
renamedmatrix::operator=). matrix::copy would be called by the the constructor for class
life and at the end oflife::next .

(7) Suppose we wanted to save each picture so we could run through them again, either forwards or
backwards. Shouldeach generation be an object? If so, should it be type of object in ¶ (5)?

(8) Are the above possibilities mutually exclusive?

2.9 Objectsas Function Arguments and Return Values

A class of objects that announce their own birth and death

You . . . will be told that we musicians of the eighteenth century were no better
than servants. . . . But we were learned servants! .. . We took unremarkable
men . . . and sacramentalized their mediocrity. Trumpets sounded when they
entered the world, and trombones groaned when they left it!

—Peter Shaffer,Amadeus, Act I, Scene 3

An object of the following classobj will announce its own birth and death.These objects will show
us exactly when and in what order they are created, copied, and destroyed. They will also show us how
they are created: each constructor in lines 9−11 prints a different message.

The member functions are short enough to be inline, so there is noobj.C file. The operator
functions in lines 16−19 and 22 will be covered in Chapter 3.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/obj.h

1 #ifndef OBJH
2 #define OBJH
3 #include <iostream> //for <<, >>, ostream, istream
4 using namespace std;
5
6 c lass obj {
7 i nt i;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.9 Objects as Function Arguments and Return Values 179

180 ObjectsWi thout Inheritance Chapter 2

8 public:
9 obj(int initial_i) {i = initial_i; cout << "construct " << i << "\n";}

10 obj(const obj& another) {i = another.i; cout << "copy construct " << i << "\n";}
11 obj() {i = 0; cout << "default construct " << i << "\n";}
12
13 ˜obj() {cout << "destruct " << i << "\n";}
14 void print() const {cout << i;}
15
16 obj& operator++() {++i; return *this;} //prefix
17 operator int() const {return i;}
18 friend ostream& operator<<(ostream& ostr, const obj& ob) {return ostr << ob.i;}
19 friend istream& operator>>(istream& istr, obj& ob) {return istr >> ob.i;}
20 };
21
22 inline const obj operator++(obj& ob, int) { //postfix
23 const obj old = ob;
24 ++ob; //ob.operator();
25 return old;
26 }
27 #endif

The lifespan of an object

To talk about the lifespan of an object or any other variable in C or C++, we need four definitions.

A declaration announces the name and data type of a variable. Adeclaration may also be adefini-
tion, a statement that actually creates the variable.

1 extern int i; //This declaration is not a definition.
2 i nt i = 10; //This declaration is also a definition.
3 i nt j; //This declaration is also a definition.

A group of statements in{ curly braces} is a block; see p. 32.A variable defined outside of any
block is aglobal. A global can be mentioned in all the functions of its source file, and possibly also in other
source files of the same program.

A variable has one of three possible lifespans.We say that it belongs to one of threestorage classes:
static, automatic, or dynamic.

(1) A global variable, or one defined with the keyword static inside a block, is said to bestatic or
statically allocated.A static variable is constructed exactly once, and then lives without interruption until
it is destructed exactly once when the program ends.‘‘ Exactly once’’ means no more and no less than
once.

The statics fall into two groups.

(1a) Global variables are constructed before the start ofmain and destructed after the end ofmain .
As usual, they are constructed in the order in which they are declared.cin , cout , andcerr are globals.

(1b) Variables defined with the keyword static inside the body of a function are constructed the
first time their definition is executed.

(2) A variable defined in a block, without the keyword static , is said to beautomaticor automati-
cally allocated. It is constructed when we execute its definition, and destructed when we leave the block.
If the block has more than one automatic variable, they are destructed in order of increasing age.We took
advantage of this on p. 169.

There are several ways of leaving a block.We can always leave it by reaching the closing curly brace
at the end of the block, or by executing areturn statement. Ifthe block is the body of a loop, we can al-
so leave it with abreak or continue . If the block is aswitch statement, we can leave it with a
break . See below for leaving a block by callingexit .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

An automatic variable will be reincarnated each time we re-enter its block and re-execute its defini-
tion. For example, a variable defined in the body of a function will be re-constructed and re-destructed
each time the function is called.A variable defined in the body of a loop will be re-constructed and re-de-
structed each time the loop is repeated.

(3) A variable that is created and destroyed withmalloc andfree , or with their C++ counterparts
new anddelete , is said to bedynamic or dynamically allocatedor on the heap.Static and automatic
variables always have names (unless they are anonymous temporaries), but dynamically allocated variables
never do. Seepp. 386−389 for why we would want to allocate a variable dynamically.

▼ Homework 2.9a: statically allocated objects

If a C++ program consists of more than one.C file, there is no way to predict which one will con-
struct its globals first. What order do you get on your platform?

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/global/global.h

1 #ifndef GLOBALH
2 #define GLOBALH
3 #include "obj.h"
4
5 extern obj obj4;
6 extern obj obj5;
7
8 v oid f();
9 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/global/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 #include "global.h"
5 using namespace std;
6
7 obj obj1 = 10;
8 obj obj2 = 20;
9

10 int main()
11 {
12 static obj obj3 = 30;
13 f();
14 return EXIT_SUCCESS;
15 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/global/other.C

1 #include "global.h"
2
3 obj obj4 = 40;
4 obj obj5 = 50;
5
6 v oid f()
7 {
8 obj obj6 = 60;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.9 Objects as Function Arguments and Return Values 181

182 ObjectsWi thout Inheritance Chapter 2

9 }

My platform gav eme different output depending on the command line that ran the compiler.

g++ main.C other.C

construct 40 Global objects inother.C constructed first.
construct 50
construct 10 Global objects inmain.C constructed last.
construct 20
construct 30 local static inmain function
construct 60 local static inf function
destruct 60
destruct 30
destruct 20 Global objects inmain.C destructed first.
destruct 10
destruct 50 Global objects inother.C destructed last.
destruct 40

g++ other.C main.C

construct 10 Global objects inmain.C constructed first.
construct 20
construct 40 Global objects inother.C constructed last.
construct 50
construct 30 local static inmain function
construct 60 local static inf function
destruct 60
destruct 30
destruct 50 Global objects inother.C destructed first.
destruct 40
destruct 20 Global objects inmain.C destructed last.
destruct 10

▲

▼ Homework 2.9b: automatically allocated objects

Each time we call the functionf in the following line 15, the automatic variableob is created.The
variable stays alive for as long as we stay within the curly braces in lines 16 and 19.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/infinite.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 v oid f(int i);
7
8 i nt main()
9 {

10 f(1);
11 f(2);
12 return EXIT_SUCCESS;
13 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

14
15 void f(int i)
16 {
17 obj ob = i;
18 //f(i + 1);
19 }

construct 1
destruct 1
construct 2
destruct 2

Uncomment line 18, and comment out line 11.f will call itself repeatedly, creating a new variable
each time. How many variables can it create before you run out of memory?
▲

▼ Homework 2.9c: automatically allocated objects

The body of this loop has curly braces, which make it a block. Theobject i is defined outside the
block and will be constructed and destructed exactly once. The objectj is define inside the block and will
be constructed and destructed duing each iteration.

In newer versions of C++,i will be destructed beforek is destructed. Does this happen on your plat-
form? We detected this indirectly on pp. 34−35, but now we can see it in the output.

Define the following public member function at line 15 ofobj.h on p. 180. Its name is only provi-
sional. Whenwe do operator overloading, it will be replaced by theoperator++ in line 17. See pp.
288−289.

20 void next() {++i;}

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/automatic.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 i nt main()
7 {
8 f or (obj i = 1; i <= 3; i.next()) {
9 obj j = i + 10;

10 j.print();
11 cout << "\n";
12 }
13
14 obj k = 2 0;
15 return EXIT_SUCCESS;
16 }

I must have a newer version of C++: myi was destructed beforek was constructed.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.9 Objects as Function Arguments and Return Values 183

184 ObjectsWi thout Inheritance Chapter 2

construct 1 Line 8 constructsi .
construct 11 Line 9 constructs the firstj .
11
destruct 11 Line 12 destructs the firstj .
construct 12 Line 9 constructs the secondj .
12
destruct 12 Line 12 destructs the secondj .
construct 13 Line 12 constructs the thirdj .
13
destruct 13 Line 12 destructs the thirdj .
destruct 4 Line 12 destructsi after the loop is over.
construct 20 Line 14 constructsk .
destruct 20 Line 15 destructsk .

▲

Don’t depri ve an object of its last rites

We hav eclaimed that the C++ language guarantees that every constructed object will eventually be
destructed. Butthere are three functions in the standard library that may prevent this:exit , terminate ,
andabort .

main

f

g

In the following program,main calls f , f callsg, and on the way down we construct static and automatic
variables. Themore elaborate programunwind.C on pp. 608−611 will have dynamic variables as well.

If we call exit , the program will call the destructors for the static objects* but not for the automatic
and dynamic ones.For example, the output shows that theexit in line 25 triggered the destruction of on-
ly the three static objects. But the three other objects still in existence—auto3 , auto4 , and
auto5 —vanished without being destructed.If we want all of our objects to be destructed, we must never
call exit when automatic or dynamic objects still exist.

If we call terminate or abort , the situation is even worse: the program will end without calling
the destructors for any objects at all.We must never call these functions when objects still exist.

But what if we really do want to end the program without destructing the objects that stil exist? For
the present, we will callexit anyway and just pray that nothing goes wrong.Eventually, howev er, we will
‘‘ throw exceptions’’ to ensure that all the objects are properly destructed (pp. 608−611).

Line 17 isinaccessible:it will never be executed because of theexit in line 25. Some compilers
require it, however, because line 12 declares thatmain returns anint .

* We might therefore go into an infinite loop if the destructor for a static object callsexit .
And since there is no portable way for an object to tell if it is static, a destructor should never call
exit .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/exit.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 v oid f();
7 v oid g();
8
9 obj static1 = 10;

10 obj static2 = 20;
11
12 int main()
13 {
14 obj auto3 = 30;
15 obj auto4 = 40;
16 f();
17 return EXIT_SUCCESS;
18 }
19
20 void f()
21 {
22 obj auto5 = 50;
23 static obj static6 = 60;
24 g();
25 exit(EXIT_SUCCESS);
26 }
27
28 void g()
29 {
30 obj auto7 = 70;
31 obj auto8 = 80;
32 }

construct 10 Line 9−10 construct two global static objects.
construct 20
construct 30 Lines 14−15 construct two automatic objects local tomain .
construct 40
construct 50 Line 22 constructs an automatic object local tof .
construct 60 Line 23 constructs a static object local tof .
construct 70 Lines 30−31 construct two automatic objects local tog.
construct 80
destruct 80 Line 32 starts our journey back up.
destruct 70
destruct 60 Line 25 callsexit , destructing the three static objects.
destruct 20
destruct 10

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.9 Objects as Function Arguments and Return Values 185

186 ObjectsWi thout Inheritance Chapter 2

Pass an object as an explicit argument to a function

When beggars die there are no comets seen;
The heavens themselves blaze forth the death of princes.

—Julius Cæsar, II ii 30−31

There’s an easy way to pass an object to a function in C++.Let the function be a member function of
the object’s class, and then the object can be passed implicitly (invisibly):

1 date d;
2 d.print(); //d passed implicitly to print

But only one object can be passed implicitly. Additional objects must be passed explicitly (visibly).
Here’s how we would have to call a version ofprint that takes three objects.

3 date d1, d2, d3;
4 d1.print(d2, d3); //d1 passed implicitly, d2 and d3 explicitly

An object will also have to be passed explicitly to a function that is not a member of the object’s
class. Sometimes,in fact, the function can’t be amember of the object’s class. For example, a function can
be a member of only at most one class.If it already is a member of another class, it can’t also be a member
of the first one.

5 t ime t; //Imagine that there was a class time.
6 date d;
7
8 t .print(d); //d must be passed explicitly,
9 / /because this print is already a member function of class time

Even if the function could be a member function of the object’s class, we might not want it to be.To
minimize the number of functions that have to be debugged when a bad value shows up in a private data
member, a class should have no unnecessary member functions. If the function uses no private members of
the class, it does not need to be, and therefore should not be, a member function of the class.

For these reasons, an object passed to a function may have to be passed explicitly. Fortunately, the
rules for passing objects explicitly are the same as those for passing arguments of the built-in types in C and
C++. Firstwe’ll do it with anint , and then we’ll do it with an object.

It looks like line 10 is passing the variablei to the functionf . But when we pass an argument by
value, we actually make a copy of the argument and give the copy to the function. Normally, no one is
aw are that a copy is created—there are no observable side effects when anint is copied—but it explains
why f cannot change the value ofi . f never receives i . It receives only a copy, and can change only the
copy.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/pass_int.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f(int copy);
6
7 i nt main()
8 {
9 i nt i = 10;

10 f(i);
11 return EXIT_SUCCESS;
12 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

13
14 void f(int copy)
15 {
16 cout << copy << "\n";
17 }

When we pass an object by value, we make a copy of the object and give the copy to the function.Of
course, the copy is constructed by a copy constructor, and destructed by a destructor; the evidence is under-
lined in the output.This time, however, we are very much aware that a copy is created. Thecopy construc-
tor and the destructor have the side effect of producing output.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/pass_obj.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 v oid f(obj copy);
7
8 i nt main()
9 {

10 obj ob = 10;
11
12 cout << "about to call f\n";
13 f(ob);
14 cout << "just returned from f\n";
15
16 return EXIT_SUCCESS;
17 }
18
19 void f(obj copy)
20 {
21 cout << "start of f\n";
22 copy.print(); //just to make sure that f received the obj
23 cout << "\n";
24 cout << "end of f\n";
25 }

construct 10 line 10 constructsob
about to call f line 12
copy construct 10 lines 13 and 19 constructcopy
start of f line 21
10 line 22
end of f line 24
destruct 10 line 25 destructscopy
just returned from f line 14
destruct 10 line 16 destructsob

Pass the address of the object to avoid constructing and destructing a copy

To pass an argument without copying it, we pass it by reference. The argument is now a pointer to an
obj in lines 6 and 19.To accommodate this change, we must introduce a& in line 13 and a-> in line 22.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.9 Objects as Function Arguments and Return Values 187

188 ObjectsWi thout Inheritance Chapter 2

Since the argument is merely a pointer, no copy is constructed of the objectob . And since the argu-
ment is a read-only pointer, the functionf cannot change the value ofob .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/pointer.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 v oid f(const obj *p);
7
8 i nt main()
9 {

10 obj ob = 10;
11
12 cout << "about to call f\n";
13 f(&ob);
14 cout << "just returned from f\n";
15
16 return EXIT_SUCCESS;
17 }
18
19 void f(const obj *p)
20 {
21 cout << "start of f\n";
22 p->print(); //just to make sure that f received the obj
23 cout << "\n";
24 cout << "end of f\n";
25 }

construct 10 line 10 constructsob
about to call f line 12
start of f line 21
10 line 22
end of f line 24
just returned from f line 14
destruct 10 line 16 destructsob

Here’s a simpler notation for passing the address of an object to a function. Lines 13 and 22 revert to
their original operators.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/reference.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 v oid f(const obj& a);
7
8 i nt main()
9 {

10 obj ob = 10;
11

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

12 cout << "about to call f\n";
13 f(ob);
14 cout << "just returned from f\n";
15
16 return EXIT_SUCCESS;
17 }
18
19 void f(const obj& a)
20 {
21 cout << "start of f\n";
22 a.print(); //just to make sure that f received the obj
23 cout << "\n";
24 cout << "end of f\n";
25 }

construct 10 line 10 constructsob
about to call f line 12
start of f line 21
10 line 22
end of f line 24
just returned from f line 14
destruct 10 line 16 destructsob

A function that returns an object

It looks like line 16 has a bug. Thevariable i in line 15 is local to the functionf , so i dies when we
return fromf in line 16. Aren’t we therefore returning a value that evaporates as we return it?

There is no bug, becausei is returned via pass-by-value. Line16 actually creates a copy of i , and
the copy is what is returned as the original evaporates. Normally, no one is aware that a copy is created—
there are no noticeable side effects when anint is copied—but it explains why there is no bug.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/return_int.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt f();
6
7 i nt main()
8 {
9 c out << f() << "\n";

10 return EXIT_SUCCESS;
11 }
12
13 int f()
14 {
15 int i = 1 0;
16 return i;
17 }

10

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.9 Objects as Function Arguments and Return Values 189

190 ObjectsWi thout Inheritance Chapter 2

When returning an object via pass-by-value, a function is within its rights if it constructs and returns
a copy of the object. Of course, the copy is constructed by a copy constructor and destructed by a destruc-
tor; the evidence is underlined in the output.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/return_obj.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 obj f();
7
8 i nt main()
9 {

10 cout << "start of main\n";
11 f().print();
12 cout << "\n";
13 cout << "end of main\n";
14
15 return EXIT_SUCCESS;
16 }
17
18 obj f()
19 {
20 cout << "start of f\n";
21 obj ob = 10;
22 cout << "about to return from f\n";
23 return ob;
24 }

The above line 11 calls theprint member function of the anonymous object returned byf . We
have already seen an example of a call to a member function of an anonymous object returned by a func-
tion, in line 2 on pp. 137−138.

f () . print ()

start of main line 10
start of f line 20
construct 10 line 21 constructs an anonymous temporaryobj
copy construct 10 line 21 copies the temporary intoob
destruct 10 line 21 destructs the anonymous temporary
about to return from f line 22
copy construct 10 line 23 constructs the anonymous temporaryobj printed in line 11
destruct 10 line 23 destructsob
10destruct 10 line 11 prints & destructs anonymous temporary constructed in 23

line 12 outputs a newline
end of main line 13

With a newer compiler, the above line 21 creates only one object; we saw an example of this on p.
137. Inaddition, this single objectob in line 21 is now merely another name for the (anonymous) object
whoseprint function is called in line 11. The copying we just did in line 23 is gone. The two temporary

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

objects that we no longer create—the ones that were in the above lines 21 and 23—show the two ways that
temporaries can beelided.

start of main line 10
start of f line 20
construct 10 line 21 constructsob
about to return from f line 22
10destruct 10 line 11 prints and destructsob

line 12 outputs a newline
end of main line 13

(Both of the above outputs were actually produced by the same compiler [g++]; I merely gav eit the option
-fno-elide-constructors when creating the executable that produced the first output.)

It is disquieting that we can legitimately get two different outputs from the same program.A pro-
gram should produce thesameoutput no matter what compiler was used. An object should therefore be re-
turned via pass-by-value only if its copy constructor and destructor cause no output or other observable side
effects.

In the above line 11, the anonymous temporary object in the expressionf().print() will always
be destructed after theentire expression has been evaluated. Thisis good news. If the temporary had been
destructed after thef() but before the.print() , we would be printing a corpse.It is a minor annoy-
ance that the destructor for the anonymous object emits a line of output ("destruct 10\n") that ap-
pears awkwardly between the.print() in line 11 and the newline in line 12.We will fix this on p. 338
when the member functionprint becomes a ‘‘friend’’ f unction namedoperator<< , allowing us to
print and destruct the object, and print the newline, all in the same expression.

If the anonymous temporary makes you uncomfortable, you can save the return value off in a vari-
able with a name. The above line 11 could be changed to

25 obj ob = f();
26 ob.print();

Making an unnecessary copy of a return value can sometimes be avoided by returning the variable’s
address (pass-by-reference). But we can’t do this in the above line 21. The variableob is automatically al-
located, so we would be returning the address of a value that turns to garbage as we return.

Call a constructor explicitly in a return statement

If the returned object is mentioned only in the return statement (the above line 23), it’s easier to con-
struct it in thereturn statement itself.We saw earlier that a declaration is not the only place where we
can construct an object. See p. 138, ¶ (4).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/objarg/return.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 obj f();
7
8 i nt main()
9 {

10 cout << "start of main\n";
11 f().print();
12 cout << "\n";
13 cout << "end of main\n";
14

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.9 Objects as Function Arguments and Return Values 191

192 ObjectsWi thout Inheritance Chapter 2

15 return EXIT_SUCCESS;
16 }
17
18 obj f()
19 {
20 cout << "start of f\n";
21 cout << "about to return from f\n";
22 return obj(10); //Don’t bother to give the object a name.
23 }

Since the constructor in the above line 22 takes only one argument, and since it was declared in
obj.h without the keyword explicit , we may change it to

24 return 10;

See p. 138.

On my platform, the object construced in the above line 22 (or 24) is the same object as the one pint-
ed in line 11.

start of main line 10
start of f line 20
about to return from f line 21
construct 10 line 22 constructs an anonymous object
10destruct 10 line 11 prints and destructs the anonymous object

line 12 outputs a newline
end of main line 13

But there is no guarantee that they will be the same object.With an older compiler, or with the
-fno-elide-constructors option ofg++, they are two separate objects.

start of main line 10
start of f line 20
about to return from f line 21
construct 10 line 22 constructs an anonymous object
copy construct 10 line 22 copies the anonymous object
destruct 10 line 22 destructs the original anonymous object
10destruct 10 line 11 outputs and destructs the copy

line 12 outputs a newline
end of main line 13

2.10 TheRabbit Game

▼ Homework 2.10a:
Version 1.0 of the Rabbit Game: initial version of the game

................................

................................

................................

..........W..........r..........

................................

................................

................................

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

C++ has many powerful features with subtle interactions, such as dynamic memory allocation, inher-
itance (single and multiple, public and private), virtual functions, templates, and the Standard Template Li-
brary (STL). The syntax of each feature could be presented in an example of only one or two pages. Butit
would take a fairly substantial program before there would be any benefit from using these constructs.In-
stead of burdening the student many large programs, we will deploy all of these features in one evolving
program. Itwill become simpler, less repetitious, more orthogonal, and easier to maintain and expand.
Later incarnations will deliver more functionality. And the kludges for special cases will disappear.

The program is a video game with moving animals.Carnivores will be uppercase, herbivores lower-
case. Ther , for example, is a rabbit. It hops randomly around the terminal, one step at a time. It knows
that it can’t move off the screen or occupy the same place at the same time as another animal.

TheWis the wolf. It is under manual control: you have to press keys to move it. To avoid the com-
plexity of making the arrow keys work on all platforms, we use four letters:

h left
j down
k up
l right (lowercase L)

These four letters are in a row on a QWERTY keyboard. (They are also the motion keys in the Unix editor
vi .) I readily concede that it is counterintuitive for L to mean ‘‘right’’.

You win the game by making the wolf stomp on the rabbit.You can also win merely by launching
the game and going out to lunch. The rabbit, moving randomly around the screen, will eventually blunder
into the wolf and be eaten.

The game has three objects: theterminal , wolf , and rabbit . The calls to their constructors
will be visible: theterminal will fill the screen with its background character, and the two animals will
draw themselves. Eventually, the calls to their destructors will also be visible: the rabbit and wolf will
erase themselves, and theterminal will blank itself out.

Each animal will have x andy data members giving its current location.We will see the data mem-
bers changing: whenever this happens, the animal will move.

The main function

Line 12 of main.C ‘‘ seeds’’ the random number generator (p. 174), ensuring that the subsequent
calls torand in lines 42−43 ofrabbit.C on p. 196 will return a different series of random numbers dur-
ing each run of the game. We will use the current time as our seed number. The zero used to beNULL in
C; see p. 68. The cast suppresses the warning we would get on machines where the return type oftime
(time_t) is wider than the argument type ofsrand (unsigned).

Lines 18−19 construct the wolf and rabbit one-third of the screen apart, at middle height. The main
loop in line 21 will then call themove member function of each animal four times per second. These func-
tions returntrue if the rabbit is still alive, false if it has been eaten. In the latter case, we break out of
the main loop and the game is over.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/game1/main.C

1 #include <cstdlib> //for the srand function and EXIT_SUCCESS
2 #include <ctime> //for the time function
3
4 #include "terminal.h"
5 #include "wolf.h"
6 #include "rabbit.h"
7
8 using namespace std;
9

10 int main()
11 {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.10 The Rabbit Game 193

194 ObjectsWi thout Inheritance Chapter 2

12 srand(static_cast<unsigned>(time(0)));
13 const terminal term(’.’);
14
15 const unsigned xmax = term.xmax();
16 const unsigned ymax = term.ymax();
17
18 wolf w(term, xmax * 1 / 3, ymax / 2);
19 rabbit r(term, xmax * 2 / 3, ymax / 2);
20
21 for (;; term.wait(250)) { //250 milliseconds equals .25 seconds
22 if (!w.move()) {
23 break;
24 }
25 if (!r.move()) {
26 break;
27 }
28 }
29
30 term.put(0, 0, "You killed the rabbit!");
31 term.wait(3000); //Give user three seconds to read the message.
32 return EXIT_SUCCESS; //Destruct rabbit, wolf, & terminal, in that order.
33 }

The above lines 21−28 may be combined to

34 for (; w.move() && r.move(); term.wait(250)) {
35 }

But don’t do it. We would just have to change it back in a later version of the game.

Class rabbit

The game is played on aterminal object shared by the animals.The animals call the member
functions of the terminal. One way to make the terminal accessible to the animals would be to make it a
global variable.

1 c onst terminal term(’.’);
2
3 i nt main()
4 {

But if we did this, we would be locking ourselves into having exactly one terminal and exactly one game.
It would be impossible to turn our program into a server that runs many games simultaneously.

To keep our options open, we made the terminal accessible to the animals by giving each animal a
pointer to the terminal it inhabits. This pointert in line 6 is read-only to make it impossible for an animal
to change the size or background character of its terminal.To ensure thatrabbit.h can mention the
name of classterminal , it must includeterminal.h .

The data members in lines 6−8 ofrabbit.h are of the built-in data types: integers, characters,
pointers. They are not objects, they hav eno constructors, and nothing happens when they are constructed.
As long as they are constructed before being used in lines 13 and 29 ofrabbit.C , it doesn’t matter what
order they are constructed in.

This being the case, there is no reason at present to declaret before the other three data members.
But perhaps there will be a reason in the future.The four data members might become objects, each initial-
ized by its own constructor. When that happens, the error checking now performed in lines 13 and 29 of
rabbit.C will be done in the constructors forx , y , and c . The data membert is used by this error
checking code, sot will have to be constructed first.To prepare for this eventuality, t is constructed first

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

by being declared first in lines 6−8 ofrabbit.h , although we do not need this right now. It will be one
less thing to change should the data members ever become objects.

We consistently use an unsigned number to represent a position in a space whose coördinates start at
zero. Earlierexamples were the unsigned data typesize_t for an array subscript (p. 66); the unsigned ar-
guments and return value of the C functionsterm_put and term_xmax on p. 86; the unsigned argu-
ments and return value of theput andxmax member functions of classterminal on pp. 159−160.In
keeping with this practice, the coördinates of an animal are unsigned to keep them from becoming negative.
These include the data membersx andy in line 7 ofrabbit.h and the local variablesnewx andnewy in
lines 50−51 ofrabbit.C .

On the other hand, we use a signed number to represent a direction and distance of motion.Earlier
examples were the signed argument of the functiondate::next and the local variablesdx anddy in
life::next . In keeping with this practice, horizontal or vertical motions are signed to let them be posi-
tive or neg ative. These include the offsetsdx anddy in lines 43−44 ofrabbit.C . The unsigned/signed
distinction appeared in the C Standard Library assize_t vs. ptrdiff_t , and will reappear in the con-
tainers in the C++ Standard Library assize_type vs.difference_type .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rabbit1/rabbit.h

1 #ifndef RABBITH
2 #define RABBITH
3 #include "terminal.h"
4
5 c lass rabbit {
6 c onst terminal *t;
7 unsigned x, y;
8 c har c;
9 public:

10 rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y);
11 bool move();
12 };
13 #endif

We saw back on pp. 184−185 what will go wrong when callingexit in line 17: the objects that are
not statically allocated will never be destructed. We will fix this bug when we cover ‘‘exceptions’’. For
now, let’s hope it never happens. Line23 disallows two animals in the same location at the same time.
Line 29 disallows an invisible rabbit: one whose ‘‘color’’ (character) is the same as the terminal’s back-
ground.

The value of the expressionrand() % 3 in line 43 is either 0, 1, or 2.The value of the larger ex-
pressionrand() % 3 - 1 is therefore −1, 0, or 1, to indicate left, no motion, or right.

Will line 53 really be able to detect an out-of-range location?Let’s say that in line 50,x is zero and
dx is −1. Sincex is unsigned anddx is int , the sum will beunsigned . An unsigned sum, and
the unsigned variable newx, cannot possibly hold the out-of-range value −1. But the −1 will be stored
in newx as the maximum possibleunsigned value, which line 53 will recognize as out-of-range.

Line 35 ‘‘registers’’ the newbornrabbit with its terminal : it informs theterminal that the
rabbit exists. Thisis a clear demonstration that an object’s constructor must sometimes do more than
just put values into the object’s data members. It also notifies other objects about the birth of the new one.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rabbit1/rabbit.C

1 #include <iostream>
2 #include <cstdlib> //for rand and exit functions
3 #include "rabbit.h"
4 using namespace std;
5

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.10 The Rabbit Game 195

196 ObjectsWi thout Inheritance Chapter 2

6 r abbit::rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
7 {
8 t = &initial_t;
9 x = i nitial_x;

10 y = i nitial_y;
11 c = ’ r’;
12
13 if (!t->in_range(x, y)) {
14 cerr << "Initial rabbit position (" << x << ", " << y
15 << ") off " << t->xmax() << " by " << t->ymax()
16 << " t erminal.\n";
17 exit(EXIT_FAILURE);
18 }
19
20 const char other = t->get(x, y);
21 const char background = t->background();
22
23 if (other != background) {
24 cerr << "Initial rabbit position (" << x << ", " << y
25 << ") already occupied by ’" << other << "’.\n";
26 exit(EXIT_FAILURE);
27 }
28
29 if (c == background) {
30 cerr << "Rabbit character ’" << c << "’ can’t be the same as "
31 "the terminal’s background character.\n";
32 exit(EXIT_FAILURE);
33 }
34
35 t->put(x, y, c);
36 }
37
38 //Return false if this rabbit was eaten, true otherwise.
39
40 bool rabbit::move()
41 {
42 //The values of dx and dy are either -1, 0, or 1.
43 const int dx = rand() % 3 - 1;
44 const int dy = rand() % 3 - 1;
45
46 if (dx == 0 && dy == 0) {
47 return true; //This rabbit had no desire to move.
48 }
49
50 const unsigned newx = x + dx;
51 const unsigned newy = y + dy;
52
53 if (!t->in_range(newx, newy)) {
54 return true; //Can’t move off the screen.
55 }
56
57 const char other = t->get(newx, newy);
58
59 if (other != t->background()) {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

60 if (other == c) {
61 //This rabbit collided with another rabbit.
62 return true;
63 } else {
64 //This rabbit blundered into the wolf and was eaten.
65 return false;
66 }
67 }
68
69 t->put(x, y); //Erase this rabbit from its old location.
70 x = newx;
71 y = newy;
72 t->put(x, y, c); //Redraw this rabbit at its new location.
73
74 return true;
75 }

The above lines 60−66 may be combined to the single statement

76 return other == c;

But don’t do it. It’s clearer the way it is now.

The above lines 70−72 may be combined to

77 t->put(x = newx, y = newy, c);

But don’t do it. C++does not share C’s rage to cram as much code as possible into a single expression.

The above lines 69 and 72 seem to form a pair. Should they be rewritten as calls to a constructor and
destructor for some new kind of object? Closer inspection reveals that the constructor would be called at
line 72 and the destructor at 69. Then should 69 be paired with 35, and 72 with a line you will write in the
destructor for classrabbit in Homework 2.10b?

I decided to leave lines 69 and 72 as they stand because the new object would be too trivial to be of
much use. What would we call this kind of object: anapparition ? A quantum ? See pp. 178−179.

In conclusion, we make two criticisms of classrabbit . A rabbit interacts with aterminal in
a very sophisticated way: it can call member functions of theterminal by means of the umbilical cordt .
But arabbit interacts with other animals in a very crude way: it sees only thechar of the other animal.
This is sufficient to identify the species of the other animal, but is not enough for any meaningful communi-
cation with it. When we have sev eral otherrabbit ’s, all with the same character’r’ , we will not be able
to tell whichrabbit we have collided with. We will remedy this on p. 467.

The second problem is more pervasive. Every line of classrabbit betrays the fact that our terminal
is Cartesian and two-dimensional, from the data membersx andy to the double-barreled arithmetic in the
above lines 43−44 and 50−51.We will remedy this when we have ‘‘iterators’’, allowing us to rewrite the
game without any mention ofx andy , dx anddy (p. 966). We will then be able to port the game to a ter-
minal with a different topology: polar coördinates, three dimensions, etc.

Class wolf

The data members, and the declarations for the member functions, are the same in classeswolf and
rabbit .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/wolf1/wolf.h

1 #ifndef WOLFH
2 #define WOLFH
3 #include "terminal.h"
4

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.10 The Rabbit Game 197

198 ObjectsWi thout Inheritance Chapter 2

5 c lass wolf {
6 c onst terminal *t;
7 unsigned x, y;
8 c har c;
9 public:

10 wolf(const terminal& initial_t, unsigned initial_x, unsigned initial_y);
11 bool move();
12 };
13 #endif

An array of structures is the easiest way for a C or C++ program to store information in rows and col-
umns (lines 27−32). In both languages, we use the data typesize_t for the number of elements in an ar-
ray (line 33).

The declaration forp is tucked in the left parentheses of thefor loop in line 36; see pp. 33−34.
Similarly, the declaration fork is tucked in the left parentheses of theif in line 35. The if will be true if
the initial value ofk is non-zero, which will happen if the user pressed a key. k will be destructed when we
reach the end of theif , marked by the} in line 59.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/wolf1/wolf.C

1 #include <iostream>
2 #include <cstdlib> //for exit function
3 #include "wolf.h"
4 using namespace std;
5
6 wolf::wolf(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
7 {
8 t = &initial_t;
9 x = i nitial_x;

10 y = i nitial_y;
11 c = ’ W’;
12
13 //Copy lines 13-35 of the above rabbit.C here,
14 //changing the word "rabbit" to "wolf".
15 }
16
17 //Return false if this wolf ate another animal, true otherwise.
18
19 bool wolf::move()
20 {
21 struct keystroke {
22 char c;
23 int dx; //horizontal difference
24 int dy; //vertical difference
25 };
26
27 static const keystroke a[] = {
28 {’h’, -1, 0}, //left
29 {’j’, 0, 1}, //down
30 {’k’, 0, -1}, //up
31 {’l’, 1, 0} //right
32 };
33 static const size_t n = sizeof a / sizeof a[0];
34
35 if (const char k = t->key()) {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

36 for (const keystroke *p = a; p < a + n; ++p) {
37 if (k == p->c) {
38 const unsigned newx = x + p->dx;
39 const unsigned newy = y + p->dy;
40
41 if (!t->in_range(newx, newy)) {
42 break; //Go to line 57.
43 }
44
45 const bool I_ate_him =
46 t->get(newx, newy) != t->background();
47
48 t->put(x, y); //Erase this wolf from its old location.
49 x = newx;
50 y = newy;
51 t->put(x, y, c); //Redraw this wolf at its new location.
52
53 return !I_ate_him;
54 }
55 }
56
57 //Punish user who pressed an illegal key or tried to move off screen.
58 t->beep();
59 }
60
61 return true;
62 }

Up to one quarter of a second may elapse between a keystroke and the next call to the wolf ’s move
function, causing the wolf to respond sluggishly. This could be fixed by making the input ‘‘interrupt driv-
en’’, but we will not pursue it for now.

For the present, there is an asymmetry in the behavior of colliding animals. When a wolf stomps on a
rabbit, the rabbit disappears. But when a rabbit blunders into a wolf, the rabbit merely freezes because its
move is nev er carried out. We’l l fix this on p. 469 when we introduce ‘‘dynamic memory allocation’’,
which will give us greater control over the exact moments of an object’s birth and death.

Classeswolf andrabbit are identical in their data members, almost identical in their constructors,
and similar in their remaining member functions.We will eventually consolidate this duplication by means
of inheritancefrom a common base class.

List of the nine source files that constitute the game

(1) term.h andterm.c (pp. 85−89). These are the only two written in C; the rest are C++.

(2) terminal.h andterminal.C (pp. 157−163)

(3) main.C (pp. 193−194)

(4) rabbit.h andrabbit.C (pp. 194−197)

(5) wolf.h andwolf.C (pp. 197−199)

Compile the game on Unix

1$ gcc -I. -DUNIX= -c term.c
2$ ls -l term.o

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.10 The Rabbit Game 199

200 ObjectsWi thout Inheritance Chapter 2

3$ g++ -I. -o ˜/bin/game main.C wolf.C rabbit.C terminal.C term.o -lcurses
4$ ls -l ˜/bin/game

5$ game Run the game.
6$ echo $? See the game’s exit status.

▲

▼ Homework 2.10b:
Version 1.1 of the Rabbit Game: destructors for classeswolf and rabbit

Write a destructor for classwolf , even though there currently is no animal that could eat awolf ,
and a destructor for classrabbit . Each destructor should do three things in the following order.

(1) Beepthe terminal on which the dying animal is displayed.

(2) Pause for one second, so the dying animal stands ‘‘frozen in the headlights’’.

(3) Call theget member function of the animal’s terminal to see if the animal’s location on the screen is
occupied by the animal’s character. If so, call theput member function of the animal’s terminal to
wipe the animal’s character off the screen by displaying the terminal’s background character there, as
in line 48 of the above wolf.C . Otherwise, do not callput and do not change the character at that
location on the screen, because the location is already occupied by another animal.Remember, there
is one occasion when two animals are momentarily at the same place at the same time: right after the
wolf stomps on the rabbit. This anomalous situation will be removed on p. 470 when we have ‘‘dy-
namic memory allocation’’, but for now we hav eto handle it.

The destructor should not change the value of any of the dying animal’s data members. There would
be no point in doing so, since the animal is about to evaporate. Changingits data members would be like
rearranging the deck chairs on theTitanic.
▲

▼ Homework 2.10c:
Version 1.2 of the Rabbit Game: make the animals impossible to copy

Make the wolves and rabbits impossible to copy by depriving them of their copy constructors. A
C++ object can be copied only by its copy constructor.

Even though we defined no copy constructor for classeswolf andrabbit , the computer behaves
as if we had (p. 135).To prevent the computer from doing this, declare a private copy constructor for each
class but do not define it. In other words, do not write a function body. If a member function of one of
these classes tries to call the copy constructor for that class, the copy constructor will be undefined and the
program will not link. And if any other function tries to call the copy constructor, the copy constructor will
be private and the program will not even compile. Ineither case, it will be impossible to copy the animal.

1 c lass rabbit {
2 c onst terminal *t;
3 unsigned x, y;
4 c har c;
5 r abbit(const rabbit& another); //deliberately undefined
6 public:
7 / /etc.

▲

2.11 FriendFunctions

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

The unit of protection is a class, not an object.

We hav esaid that the private members of an object can be mentioned only by the member functions
of that object. But under certain circumstances they can also be mentioned by the member functions of oth-
er objectsof the same class.We hav eev en seen two examples: the copy constructor for classmono, in
line 57 ofduo.C on pp. 136−137, and the copy constructor for classstack , on p. 153. Eachcopy con-
stuctor was able to mention the private members of two different objects: the object of which it was a mem-
ber, andanother object which it received as an explicit argument.

More examples are in the following classpoint , which represents a point in a two-dimensional
space with Cartesian coördinatesx, y.

Four examples in this class show that it is quite natural for the member functions of one object to use
the private members of other objects of the same class. In fact, apoint whose member functions couldn’t
do this would be useless. It would be stuck in its own solipsistic universe, with no way to interact with oth-
erpoint ’s.

(1) Themember functiondist in lines 17−25 ofpoint.C mentions the private members of two ob-
jects of classpoint : the object of which it is a member, and another object which it receives as
an explicit argument.

(2) Themember functiondist in lines 7−15 ofpoint.C mentions the private members of two objects
of classpoint : the object of which it is a member, and the global objectpoint_origin in line 5
of point.C .

(3) Themember functionmidpoint in lines 19−21 ofpoint.h mentions the private members of two
objects of classpoint : the object of which it is a member, and another object which it receives as
an explicit argument.

(4) Themember functionarea in lines 27−33 ofpoint.C mentions the private members of three ob-
jects of classpoint : the object of which it is a member, and two more which it receives as explicit
arguments.

The members are nameddist to avoid conflict or confusion with thedistance function in the
C++ Standard Library.

Line 24 of point.C constructs and returns an anonymous double . Similarly, line 20 of
point.h constructs and returns an anonymous object. See p. 138, ¶ (4). It can construct the object even
before the entire declaration for the class (lines 6−24) has been seen, sincemidpoint is inline.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point1/point.h

1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>
4 using namespace std;
5
6 c lass point {
7 double x, y;
8 public:
9 point(double initial_x = 0.0, double initial_y = 0.0) {

10 x = i nitial_x;
11 y = i nitial_y;
12 }
13
14 void print() const {cout << "(" << x << ", " << y << ")";}
15
16 double dist() const;
17 double dist(const point& another) const;
18
19 point midpoint(const point& another) const {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.11 Friend Functions 201

202 ObjectsWi thout Inheritance Chapter 2

20 return point((x + another.x) / 2, (y + another.y) / 2);
21 }
22
23 double area(const point& A, const point& B) const;
24 };
25 #endif

Thepoint_origin in line 5 ofpoint.C is not a data member of classpoint . It merely floats
somewhat unsatisfactorily near it. See the similar disposition of the arraydate_length on pp. 114−115.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point1/point.C

1 #include <cmath> //for sqrt
2 #include "point.h"
3 using namespace std;
4
5 c onst point point_origin; //give arguments 0.0, 0.0 to constructor
6
7 / /Return the distance between this point and the origin.
8
9 double point::dist() const

10 {
11 const double dx = point_origin.x - x;
12 const double dy = point_origin.y - y;
13
14 return sqrt(dx * dx + dy * dy); //Pythagorean theorem
15 }
16
17 //Return the distance between this point and another.
18
19 double point::dist(const point& another) const
20 {
21 const double dx = another.x - x;
22 const double dy = another.y - y;
23
24 return sqrt(dx * dx + dy * dy);
25 }
26
27 //Return the area of the triangle whose vertices are points *this, B, and C.
28
29 double point::area(const point& B, const point& C) const
30 {
31 return abs(x * B.y + B.x * C.y + C.x * y
32 - y * B .x - B.y * C.x - C.y * x) / 2;
33 }

Themain function constructs these three points:

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

x

y

A(3, 0)

B(0, 4)

C(0, 0)

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point1/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "point.h"
4 using namespace std;
5
6 i nt main()
7 {
8 / /A 3-4-5 right triangle with its right angle at the origin.
9 c onst point A(3, 0);

10 const point B(0, 4);
11 const point C;
12
13 cout << "A’s distance from origin is " << A.dist() << ".\n"
14 << "The distance between A and B is " << A.dist(B) << ".\n"
15 << "The area of triangle ABC is " << C.area(A, B) << ".\n";
16
17 cout << "The midpoint of A and B is ";
18 const point M = A.midpoint(B);
19 M.print();
20 cout << ".\n";
21
22 return EXIT_SUCCESS;
23 }

A C or C++ variable that is used only once can be replaced with an anonymous temporary. The ob-
ject M in the above line 18, for example, is used only in line 19. These two lines may therefore be com-
bined to the following statement, calling theprint member function of the anonymous object returned by
themidpoint member function ofA.

24 A.midpoint(B).print();

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.11 Friend Functions 203

204 ObjectsWi thout Inheritance Chapter 2

A . midpoint (B) . print ()

Our first example of a call to a member function of an anonymous object returned by a function was in line
2 on pp. 137−138.

The above line 14 output adouble with the<< operator. In the same way, we will eventually be
able to output adate with the<< operator instead of the.print() function, Lines 17−20 will be com-
bined to

25 cout << "The midpoint of A and B is " << A.midpoint(B) << ".\n";

which will then be adjoined to thecout statement that begins in line 13.

A’s distance from origin is 3.
The distance between A and B is 5.
The area of triangle ABC is 6.
The midpoint of A and B is (1.5, 2).

Symmetry as a motivation for friend functions

The member functiondist in line 19 of the above point.C on p. 202 deals evenhandedly with its
two point ’s. In fact, it would return the same value even if the twopoint ’s were interchanged.

But the function is written in a lopsided notation that arbitrarily favors one of the objects. It seems
unfair that onepoint is anonymous, while the other has a name (‘‘another ’’). In line 21, for example,
the two x ’s are called plain oldx andanother.x . A more balanced notation would provide names for
both objects. In line 29, the formula in thearea function would be easier to read if all threepoint ’s had
names.

The calls to these functions are also unfair. Why should line 14 of the above main.C say
A.dist(B) ? What entitlesA to a place in the sun whileB is cowers in the parentheses?

Our criticisms are purely aesthetic—so far. But aesthetic deficiency causes bugs. Considerthe
Pythagorean theorem in lines 21−24 of the above point.C . This formula is so well known that we were
able to write the preliminary subtractions correctly even with a lopsided notation. But the formula for the
area of a triangle in lines 31−32 is more arcane.We will soon see that it is a perfectly balanced ‘‘determi-
nant’’ f rom Linear Algebra.But its symmetry is obscured by the lopsided notation: only two of the three
objects have names. Ittook me several tries before I was able to transcribe the formula correctly.

Now why don’t all three objects in thearea function have names? Well, a member function re-
ceives an implicit argument pointing to an object.To access the members of that object, the member func-
tion offers us the simplest possible notation: no notation at all.Think back to the body of the first member
function of our first class,date::print . We wrote nothing there to identify the object to which the
three members belong. They belong to the object targeted by the implicit pointer:

1 c out << month << "/" << day << "/" << year;

This minimal notation has always been the glory of a member function: when concentrating on one
object, the object needs no name.But now that we’re writing functions dealing with the private members
of two or more objects passed as arguments, it’s awkward that we have names for all of them except one.It
would be simpler if every argument had a name.

Friend functions

This is wherefriend functionscome in. A f riend of a class is the same as a member function of the
class, except that it does not receive an implicit argument pointing to an object of that class. All of the
friend’s arguments must be explicit: declared within the parentheses of the argument list. Like a member

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

function, a friend of a class can mention the private members of that class.

The member functiondist in lines 17−25 of the above point.C shambles along with one implicit
argument and one explicit argument. Thefriend functiondist in lines 17−25 of the following point.C
has both arguments explicit. Thedifference between the member function and the friend is only a matter of
notation: the source code of the friend is more balanced.Deep in the machine, both functions take the same
two arguments passed the same way (by reference). The functions do the same work and are equally fast.

Since it has no implicit argument, a friend must always say which object it is accessing the members
of. For example, within the bodies of the following friends we must always sayA.x or B.x ; we can never
say plain oldx .

Write the keyword friend only inside the definition of the class that the friend is a friend of.See
the declaration in line 24 ofpoint.h and the definition in line 19 ofpoint.C . A friend of a class can-
not be a member function of the same class, so the customarypoint:: is not written in front of the func-
tion names in lines 19 and 29 ofpoint.C . But even though they are not members, we still define the
functions in thepoint.C file.

A f riend is a free function (p. 113): it takes no implicit pointer argument. Itis called with the same
syntax as any free function; see line 14 ofmain.C .

The categoriesconst vs. non-const apply only to member functions, not to friends.A const
member function cannot modify the object to which it receives an implicit pointer (lines 20 and 23 of
point.h). But a friend receives no implicit pointer, so aconst friend would be meaningless.Instead,
each argument passed by reference to a friend can be declaredconst or non-const ; see the two in line
24 ofpoint.h .

When do we have no choice between a member function and a friend?

A function that does not mention the private members of a class should be neither a member function
nor a friend of that class. This will keep the number of suspects as small as possible in case an incorrect
value appears in a private data member.

A function that needs to mention the private members of a class will have to be either a member
function or a friend of the class. In three cases, we have no choice.

(1) If there are a constructor and destructor, they must be member functions.

(2) If the function must be private, it must be a member function. There is no such thing as a private
friend. In fact, the terms ‘‘public’’ and ‘‘private’’ do not apply to friends at all, only to members. In lines
24, 26, and 30 of the following point.h , we just happened to declare the friends in the public section of
the class, but it would have made no difference had we declared them in the private section. It makes more
sense to declare them in the public section, though.

(3) If a function needs to mention the private members of two or more classes, it can be a friend of all
of them. The function can even be a member of one class and a friend of one or more other classes.But a
function cannot be a member function of more than once class: a function cannot receieve more than one
implicit pointer.

This means that if a function needs to mention the private members of two or more classes, it can be
a member function of at most one of them and must be a friend of all the rest. Do we ever need to mention
the private members of two or more classes? The textbook example would be a function that multiplies a
matrix and a vector, returning the product. Our three examples are theoperator>> that takes ascale
on p. 373 (a friend of classesscale andpoint); theoperator/ on p. 296 (a member of class
timebomb and a friend of classdate); and theget on p. 467 (a member of classgame and a friend of
classrabbit).

What should we do when we have a choice?

Other than the above cases, a function that needs to mention the private members of a class can be ei-
the a member function or a friend. Here are our recommendations.

(1) A function that mentions the private members of exactly one object should be a member function
of the class of that object. See theprint anddist member functions in lines 20 and 23 ofpoint.h .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.11 Friend Functions 205

206 ObjectsWi thout Inheritance Chapter 2

(2) A function that mentions the private members of two or more objects should still be a member
function of one of them if that object plays the starring rôle. In theassign member function in line 21 of
point.h , for example, one of the objects acquires a new value while the other remains completely un-
touched. (Whenwe do ‘‘operator overloading’’, we’ll give this member function its conventional name:
operator= .)

(3) A function that uses the private members of two or more objects playing equal rôles should be a
friend of the class of those objects. See thedist , midpoint , and area friends in lines 24, 26, and 30 of
point.h . The area formula in lines 31−32 ofpoint.C now has names for all threepoint ’s. Its
derivation remains a mystery, but at least its symmetry is now apparent.

The functionscollinear and contains are neither member functions nor friends of class
point . But they can be declared inpoint.h anyway, since they will be called by most of the.C files
that use the class. One function is inline, the other not.

I considered makingcontains a member function, since one of its four objects plays a special rôle.
But I decided it was more important to have no unnecessary member functions or friends.We might have
to introduce a fudge factor intocollinear .

Instead of repeating the trio of argumentsABCin lines 15 and 31, we’ll eventually collect them into
one bigger object of classtriangle (pp. 264−265). As we shall see, a big object can contain smaller ob-
jects as its data members.

The point_error in line 7 ofpoint.h is not a data member of classpoint . It merely floats
somewhat unsatisfactorily near it.See the similar disposition of the arraydate_length on pp. 114−115.

A smothered friend

A friend must always be declared in the class definition.For example,dist andmidpoint are
declared at lines 24 and 26 in the following definition for classpoint .

dist was too big to be inline, so we defined it inpoint.C . But midpoint is inline, and defined
in the class definition. Do we also need a declaration formidpoint outside of the class definition?

Surprisingly, the answer depends on the arguments of the friend.Given the argumentsA andB of
classpoint in line 18 of the following main.C , the computer will look for a friend namedmidpoint in
the definition for classpoint . The same would be true for arguments of any type compounded from class
point : ‘‘pointer topoint ’’ , ‘‘array ofpoint ’’ , etc. Thedeclaration ofmidpoint in line 26 of
point.h therefore suffices for the call tomidpoint in line 18 ofmain.C .

Line 23 ofmain.C prints the address ofmidpoint . (For the double cast, see line 24 of
reinterpret_cast.C on p. 67.) But line 23 passes no arguments of typepoint to midpoint . The
computer will therefore not look for a friend namedmidpoint in the class definition forpoint , even
though it did this as recently as line 18.To get line 23 to compile, we must also declaremidpoint out-
side of the class definition, at line 33 or line 10 ofpoint.h . In the latter case, line 10 would require the
sneak preview of the namepoint in line 9. See p. 363 for another example.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point2/point.h

1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>
4 #include <cmath> //for abs
5 using namespace std;
6
7 c onst double point_error = .0001; //floating point roundoff error
8
9 / /class point;

10 //point midpoint(const point& A, const point& B);
11
12 class point {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

13 double x, y;
14 public:
15 point(double initial_x = 0.0, double initial_y = 0.0) {
16 x = i nitial_x;
17 y = i nitial_y;
18 }
19
20 void print() const {cout << "(" << x << ", " << y << ")";}
21 void assign(const point& another) {x = another.x; y = another.y;}
22
23 double dist() const;
24 friend double dist(const point& A, const point& B);
25
26 friend point midpoint(const point& A, const point& B) {
27 return point((A.x + B.x) / 2, (A.y + B.y) / 2);
28 }
29
30 friend double area(const point& A, const point& B, const point& C);
31 };
32
33 point midpoint(const point& A, const point& B);
34
35 //Return true if all three points lie along the same line.
36
37 inline bool collinear(const point& A, const point& B, const point& C) {
38 return abs(area(A, B, C)) < point_error;
39 }
40
41 bool contains(const point& A, const point& B, const point& C, const point& D);
42 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point2/point.C

1 #include <cmath> //for sqrt, abs
2 #include "point.h"
3 using namespace std;
4
5 c onst point point_origin;
6
7 / /Return the distance between this point and the origin.
8
9 double point::dist() const

10 {
11 const double dx = point_origin.x - x;
12 const double dy = point_origin.y - y;
13
14 return sqrt(dx * dx + dy * dy); //Pythagorean theorem
15 }
16
17 //Return the distance between points A and B.
18
19 double dist(const point& A, const point& B)
20 {
21 const double dx = A.x - B.x;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.11 Friend Functions 207

208 ObjectsWi thout Inheritance Chapter 2

22 const double dy = A.y - B.y;
23
24 return sqrt(dx * dx + dy * dy);
25 }
26
27 //Return the area of triangle ABC.
28
29 double area(const point& A, const point& B, const point& C)
30 {
31 return abs(A.x * B.y + B.x * C.y + C.x * A.y
32 - A.y * B.x - B.y * C.x - C.y * A.x) / 2;
33 }
34
35 /*
36 Return true if the triangle ABC contains the point D, or if D is on the
37 perimeter. Ideally area(A, B, C) would equal sum exactly, but floating point
38 arithmetic is never exact. We return true if area(A, B, C) is within
39 point_error of sum.
40 */
41
42 bool contains(const point& A, const point& B, const point& C, const point& D)
43 {
44 const double sum = area(A, B, D) + area(B, C, D) + area(C, A, D);
45 return abs(area(A, B, C) - sum) < point_error;
46 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point2/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "point.h"
4 using namespace std;
5
6 i nt main()
7 {
8 / /A 3-4-5 right triangle with right angle at the origin.
9 c onst point A(3, 0);

10 const point B(0, 4);
11 const point C;
12
13 cout << "A’s distance from origin is " << A.dist() << ".\n"
14 << "The distance between A and B is " << dist(A, B) << ".\n"
15 << "The area of triangle ABC is " << area(A, B, C) << ".\n";
16
17 cout << "The midpoint of A and B is ";
18 const point M = midpoint(A, B);
19 M.print();
20 cout << ".\n";
21
22 cout << "The address of midpoint is "
23 << reinterpret_cast<void *>(reinterpret_cast<size_t>(midpoint))
24 << ".\n";
25
26 cout << "A, B, and M are " << (collinear(A, B, M) ? "" : "not ")

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

27 << "collinear.\n";
28
29 //Borderline case: M is on on the perimeter.
30
31 cout << "Triangle ABC "
32 << (contains(A, B, C, M) ? "contains" : "does not contain")
33 << " M.\n";
34
35 return EXIT_SUCCESS;
36 }

A C or C++ variable that is used only once can be replaced with an anonymous temporary. Had M
been used only in line 19, for example, we could have combined 18−19 to the following line. It calls the
print member function of the anonymous object constructed and returned by themidpoint friend. See
pp. 203−204.

37 midpoint(A, B).print();

A’s distance from origin is 3.
The distance between A and B is 5.
The area of triangle ABC is 6.
The midpoint of A and B is (1.5, 2).
The address of midpoint is 0x1154c.
A, B, and M are collinear.
Triangle ABC contains M.

▼ Homework 2.11a: consolidate duplicate code

The member functiondist in lines 7−15 of the above point.C can be reduced to a single state-
ment:

1 / /Return the distance between this point and the origin.
2
3 double point::dist() const
4 {
5 r eturn ::dist(*this, point_origin);
6 }

The double colon makes the above line 5 call thedist that is a free function, i.e., the one in lines
17−25 of the above point.C . This function happens to be a friend, but the scoping rules give no special
treatment to friends. The only distinction they care about is member function vs. free function.

Without the double colon in line 5, the computer would try three possibilities when it sees the word
dist in that line. See p. 123.

(1) Is dist the name of a locally declared item (the name of a variable, function, typedef, enumeration,
etc., declared within the{ curly braces} of the block)? In our case, no.This function has no local
declarations at all.

(2) Isdist the name of a member of classpoint ? In our case, yes, and the computer would stop here.

(3) Isdist the name of a global item? In our case, the computer would never get this far.

So without the double colon, line 5 would try to call the member functiondist . We would then get
an error message because the number of explicit arguments is wrong.

The arguments of thedist friend must bepoint ’s, not pointers topoint ’s. That’s why the this
has a star.this is merely a pointer to apoint ; the actualpoint is *this .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.11 Friend Functions 209

210 ObjectsWi thout Inheritance Chapter 2

The above function is now short enough to be made inline by moving its definition topoint.h .
But for the time being it has to stay inpoint.C , becausepoint_origin is in scope only there.We’l l
fix this on p. 239 when we have ‘‘static’’ data members.
▲

Class point in the C++ Standard Library

The standard library has no class namedpoint . But it has a similar one, classcomplex , with the
same two data members. In fact, we can choose the type of the data members because classcomplex is a
template class, like the standard library classstack on pp. 155−157. The reasonable choices arefloat ,
double , and long double .

We can perform arithmetic on complex numbers, such as the subtraction in line 17. There are also
functions whose argument is a complex and whose return type is the data type of the data members of the
complex number. For example, theabs andnorm functions in lines 15 and 16 returndouble becauseb
is acomplex<double> . Other functions (sin , sinh) take and return a complex.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point2/complex.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <complex>
4 #include <cmath> //for sqrt
5 using namespace std;
6
7 i nt main()
8 {
9 c omplex<double> a(3); //last argument defaults to 0.0

10 complex<double> b(0, 4);
11 complex<double> c; //arguments default to 0.0, 0.0
12
13 cout << b << "\n"
14 << "x, y coordinates: " << b.real() << ", " << b.imag() << "\n"
15 << "r, theta coordinates: " << abs(b) << ", " << arg(b) << "\n"
16 << "distance from origin: " << sqrt(norm(b)) << "\n"
17 << "distance from a: " << sqrt(norm(b - a)) << "\n";
18
19 return EXIT_SUCCESS;
20 }

(0,4)
x, y coordinates: 0, 4
r, theta coordinates: 4, 1.5708 1.5708 =π/2 radians is 180°
distance from origin: 4
distance from a: 5

▼ Homework 2.11b: define four free functions

A free function is one that receives no invisible arguments. Declarethe following free functions in
date.h . Define the small ones to be inline indate.h ; define the big ones indate.C .

If a function needs to mention a private member of class date, make the function a friend. If it does
not need to mention any private member, do not make the function a friend or a member function.

A friend must be declared inside the class definition.To make the friend mentionable in the absence
of arguments of classdate , the friend must also be declared outside the class definition. An example was
themidpoint friend of the above classpoint .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

1 bool equals(const date& d1, const date& d2);
2 i nt dist(const date& d1, const date& d2);
3 c onst date& min(const date& d1, const date& d2);
4 date midpoint(const date& d1, const date& d2);

You can use the version of classdate with either one, two, or three data members. But do not re-
move any of the member functions you added to classdate in previous homeworks. Your four new func-
tions must produce no output. Demonstrate that they are correct by handing in the output of
http://i5.nyu.edu/ ∼mm64/book/src/date/test2/main.C . And make sure that the test
programhttp://i5.nyu.edu/ ∼mm64/book/src/date/test1/main.C . still works.

(1) equals will return true if d1 andd2 are the same date. When we do ‘‘operator overloading’’,
we’ll give this function its conventional name on p. 278:operator== . For now, the nameequals was
chosen to avoid conflict with theequal_to andequal functions in the C++ Standard Library.

(2) dist will return the distance in days between the two dates. Thedistance between two point ’s
is always non-negative, but the distance between two date ’s may be positive, neg ative, or zero. Thereturn
value should be positive if d1 is later thand2 , neg ative if d1 is earlier thand2 , and zero ifd1 andd2 are
the same date.For example, ifd1 is January 3, 2014 andd2 is January 1, 2014, the return value would be
2. Andif d1 is January 1, 2014 andd2 is January 3, 2014 the return value would be −2.

When we do operator overloading, we’ll give this function its conventional name:operator- . For
now, the namedist was chosen to avoid conflict with thedistance function in the C++ Standard Li-
brary.

(3) min will return a read-only reference to the earlier of the two dates. For compatibility with the
min in the standard library, min should return a reference to thedate on the left if the two arguments are
equal. min does not have to construct a newdate ; it should return a reference to one of the existing
date ’s passed in as arguments. Sincethesedate ’s will not be destructed as we return frommin , we can
get away with return by reference.

Your min function will belong to no namespace.Another min function, belonging to namespace
std , is declared in the header file<algorithm> . We did not include this header directly, but it might
have been included by one of the headers that we did include.

When you call yourmin function (but not when you declare or define it) please write its name as
::min . This will ensure that you call themin that belongs to no namespace; the double colon is needed
only if the header<algorithm> was included. Assumingthat<algorithm> was included, a call to
std::min would have been themin function belonging to namespacestd , and a call to an unadorned
min would not have compiled.

We will remove thismin function on p. 634.

(4) midpoint will construct and return thedate that is halfway betweend1 andd2 . For example,
if d1 is January 3, 2014 andd2 is January 1, 2014 (or vice versa),midpoint will construct and return a
date whose value is January 2, 2014.You can measure the distance betweend1 andd2 by calling your
dist function. Thendivide the distance by 2, and add the quotient tod2 .

If the distance between the two date ’s is an odd number of days, construct and return the date that is
immediatelybefore the midpoint.For example, ifd1 is January 4, 2014 andd2 is January 1, 2014 (or vice
versa), construct and return adate whose value is January 2, 2014.

When dividing an odd distance by 2, we must therefore make sure that the division truncatesdown-
wards (towards negative infinity). For example, a quotient of 1½ should be rounded to 1, and a quotient of
−1½ should be rounded to −2.Thediv function in the C Standard Library always gives us a quotient trun-
cated towards zero (−1½ becomes −1), but a follow-up if can easily change the quotient to one truncated
downwards:

5 #include <cstdlib> //for div and div_t
6 using namespace std;
7
8 div_t d = div(dividend, 2);

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.11 Friend Functions 211

212 ObjectsWi thout Inheritance Chapter 2

9
10 if (d.rem < 0) { //if truncation was in wrong direction
11 --d.quot; //truncate downwards
12 }
13
14 cout << "The quotient truncated downwards is == " << d.quot << "\n";

Unlike min , midpoint will construct and return a new date . This date will be a local variable
inside ofmidpoint . Like all local variables, it will be destructed as we return frommidpoint .
midpoint must therefore return by value, not by reference.We can never return the address of a variable
that is destructed as we return. See pp. 76−77.
▲

An array vs. a linked list

Here’s another example in which (a member function of) one object needs to access the private mem-
bers of other objects of the same class. Our examples are then->prev andn->next in lines 45 and 54
of node.C on pp. 215−216. The data memberprev is currently public, but it will become private when
we have ‘‘iterators’’.

The elements in an array (and later, in avector) are stored shoulder to shoulder in memory. There
is no wasted space:

But this virtue becomes a liability if we want to insert a new element in the middle of the array. All
subsequent elements will have to be moved one space to the right to make room for the new one. Andthere
might be millions of them.

The same problem will happen if we delete an element from the middle of the array. All subsequent ele-
ments will have to be moved one space to the left to close the gap.

If we anticipate many insertions and deletions, it would be faster to store the information in alinked
list. We drop the requirement that the elements be stored consecutively. They can be spaced far apart in
memory, leaving plenty of room for insertions:

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

But now we hav ea new problem. How can a loop navigate from one list element to the next? This
wasn’t a problem in an array, where each element is located immediately after its predecessor. But the ele-
ments of a linked list may be far apart, at irregular intervals.

Each element of a linked list is therefore provided with a pointer giving the address of the next ele-
ment. Inother words, each element is now an object with two data members. These objects are called
nodes.The payload data member will be namedvalue (to agree with thevalue_type typedef below);
the pointer data member will be namednext . To loop from left to right along the linked list, we follow the
next pointers. Thelast node has anext whose value is is zero.

value

next0

If we also want to loop from right to left, each node can have another pointer namedprev , pointing
to the previous node. The first node has aprev whose value is is zero. The list is now said to bedoubly-
linked. (The code looks neater when the two names,next andprev , hav ethe same number of charac-
ters.)

I’ ve named the two center nodesb andd. Imagine that they are linked together in the middle of a
list, holding the values20 and40 :

value

next

prev

a b d e

10 20 40 50

0

0

We can insert a new nodec betweenb andd without moving any existing node.

value

next

prev

a b c d e

10 20 30 40 40

0

0

The insert_this_before function in line 21 ofnode.h deals with two nodes. Butone of
them gets inserted while the other is merely a bystander, so we madeinsert_this_before a member
function of the object that is inserted.Similarly, the link function in line 18 mentions the private mem-
bers of two nodes. Butthey play equal rôles, so we madelink a friend. Finally, thedetach function in
line 19 ofnode.h does not mention the private members of any node. Ittherefore does not need to be a
member function or a friend. But we made it a member function anyway, so we could call it in line 27 of
main.C with the same syntax as theinsert_this_before in line 19 ofmain.C .

Copying a node might be useful for splicing genes into trees and networks, but it would corrupt our
simple lists.To make sure that no node can be copied, we let the copy constructor in line 10 ofnode.h be
private and undefined as we did with classeswolf andrabbit . This made it impossible to pass the argu-

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.11 Friend Functions 213

214 ObjectsWi thout Inheritance Chapter 2

ments oflink andinsert_this_before by value.

It is impossible for a node to contain a node—it would blow up to infinite size—but it is okay for a
node to contain a pointer to a node such as the data membersprev andnext . We assign values to these
data members in lines 10, 25, 27, 34, and 36 ofnode.C , which is why they had to be pointers, not refer-
ences. Areference always refers to the same object.

Code that constructs anode , or that otherwise requires us to know the size of anode , will have to
wait until after the end of the class definition in line 26 ofnode.h . But code that merely mentions class
node , without constructing an actualnode object, can appear any time after line 8. Simple examples are
the pointers in lines 12 and 18.A more complicated one is on p. 716.

prev andnext are public to make it possible for themain function to loop through the list.(This
is what is meant by ‘‘fast and dirty’’ programming.) We will make them private when we do iterators.

The C++ convention is to make a typedef namedvalue_type for the type of data stored in a con-
tainer (lines 6, 9, and 25 ofnode.h). An example was back on pp. 153−154.

A final curiosity. An inline member function or friend, defined within the{ curly braces} of a class
declaration, can mention a member or friend that has not yet been declared. This allows the destructor in
line 16 ofnode.h to mention thedetach function in line 19.It is the only place where anything in C or
C++ can be mentioned before it is declared. See p. 119.

The operator value_type member function in line 25 will be explained on pp. 315−316 and
used in line 52 oflinked.C on p. 399.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/node/node.h

1 #ifndef NODEH
2 #define NODEH
3 #include <iostream>
4 using namespace std;
5
6 t ypedef int value_type;
7
8 c lass node { //A node on a doubly-linked list.
9 v alue_type value;

10 node(const node& another); //deliberately undefined
11 public:
12 node *prev;
13 node *next;
14
15 node(const value_type& initial_value);
16 ˜node() {detach();}
17
18 friend void link(node *n1, node *n2);
19 void detach() {link(prev, next);}
20
21 void insert_this_before(node *n);
22 void insert_this_after(node *n);
23
24 void print() const {cout << value;}
25 operator value_type() const {return value;} //explained in Chapter 3
26 };
27 #endif

The keyword this is used in lines 45, 48, 54, and 57.We saw it back in lines 101−105 of Version 3
on p. 117.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/node/node.C

1 #include <iostream>
2 #include <cstdlib> //for exit
3 #include <cassert> //for assert
4 #include "node.h"
5 using namespace std;
6
7 node::node(const value_type& initial_value)
8 {
9 v alue = initial_value;

10 next = prev = 0;
11 }
12
13 //Link the two nodes together.
14 //Sever n1 from its successor, if any. Let n2 be the successor of n1.
15 //Sever n2 from its predecessor, if any. Let n1 be the predecessor of n2.
16
17 void link(node *n1, node *n2)
18 {
19 assert(n1 != n2 || n1 == 0);
20
21 if (n1) {
22 if (n1->next) {
23 //Make sure n1->next->prev is correct before blowing it away.
24 assert(n1->next->prev == n1);
25 n1->next->prev = 0;
26 }
27 n1->next = n2;
28 }
29
30 if (n2) {
31 if (n2->prev) {
32 //Make sure n2->prev->next is correct before blowing it away.
33 assert(n2->prev->next == n2);
34 n2->prev->next = 0;
35 }
36 n2->prev = n1;
37 }
38 }
39
40 //Insert this node into the list that contains n, immediately before or after n.
41
42 void node::insert_this_before(node *n)
43 {
44 if (n) {
45 link(n->prev, this);
46 }
47
48 link(this, n);
49 }
50
51 void node::insert_this_after(node *n)
52 {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.11 Friend Functions 215

216 ObjectsWi thout Inheritance Chapter 2

53 if (n) {
54 link(this, n->next);
55 }
56
57 link(n, this);
58 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/node/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "node.h"
4 using namespace std;
5
6 i nt main()
7 {
8 node a(10);
9 node b(20);

10 node d(40);
11 node e(50);
12
13 link(&a, &b);
14 link(&b, &d);
15 link(&d, &e);
16
17 //Insert c b etween b and d.
18 node c(30);
19 c.insert_this_before(&d);
20
21 for (const node *p = &a; p; p = p->next) {
22 p->print();
23 cout << "\n";
24 }
25
26 cout << "\n";
27 c.detach();
28
29 for (const node *p = &a; p; p = p->next) {
30 p->print();
31 cout << "\n";
32 }
33
34 return EXIT_SUCCESS;
35 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

10 lines 21−24
20
30
40
50

10 lines 29−32
20
40
50

A l inked list is faster than an array for making insertions and deletions.Instead of moving many ele-
ments, an insertion merely had to make the two links in lines 45 and 48 of the above node.C . The price
we pay for this speed is the two-pointer overhead attached to each list element. But nowadays we have
memory to burn, don’t we?

Now that we’ve made a linked list, we can reveal that a doubly-linked list class has already been writ-
ten for us in the C++ Standard Library, just as astack class has been provided. Seeit on pp. 443−450.

2.12 Enumerationsas Members of a Class

Macros

Does line 8 construct ‘‘A pril 7’’ or ‘ ‘July 4’’?

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/macro/nomacro.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d1(7, 4, 1776);
9 date d2(10, 29, 1929);

10 date d3(12, 7, 1941);
11 date d4(7, 20, 1969);
12 date d5(9, 11, 2001);
13
14 d1.print();
15 cout << "\n";
16
17 d2.print();
18 cout << "\n";
19
20 d3.print();
21 cout << "\n";
22
23 d4.print();
24 cout << "\n";
25
26 d5.print();
27 cout << "\n";
28

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class 217

218 ObjectsWi thout Inheritance Chapter 2

29 return EXIT_SUCCESS;
30 }

7/4/1776
10/29/1929
12/7/1941
7/20/1969
9/11/2001

We can make it clearer with the 12 macros in lines 6−17.We use them not only as constructor argu-
ments, but also in the comments and wherever we mention a month number.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/macro/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5
6 #define JANUARY 1
7 #define FEBRUARY 2
8 #define MARCH 3
9 #define APRIL 4

10 #define MAY 5
11 #define JUNE 6
12 #define JULY 7
13 #define AUGUST 8
14 #define SEPTEMBER 9
15 #define OCTOBER 10
16 #define NOVEMBER 11
17 #define DECEMBER 12
18
19 class date {
20 int year;
21 int month; //JANUARY to DECEMBER inclusive
22 int day; //1 to date_length[month] inclusive
23 public:
24 date(int initial_month, int initial_day, int initial_year);
25 void next(int count = 1); //Go count days forward.
26 void print() const {cout << month << "/" << day << "/" << year;}
27 };
28 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/macro/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 c onst int date_length[] = {
7 0, / /dummy element so that JANUARY will have subscript 1
8 31, //JANUARY
9 28, //FEBRUARY

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

10 31, //MARCH
11 30, //APRIL
12 31, //MAY
13 30, //JUNE
14 31, //JULY
15 31, //AUGUST
16 30, //SEPTEMBER
17 31, //OCTOBER
18 30, //NOVEMBER
19 31 //DECEMBER
20 };
21
22 date::date(int initial_month, int initial_day, int initial_year)
23 {
24 if (initial_month < JANUARY || initial_month > DECEMBER) {
25 cerr << "bad month " << initial_month << "/" << initial_day
26 << "/" << initial_year << "\n";
27 exit(EXIT_FAILURE);
28 }
29
30 if (initial_day < 1 || initial_day > date_length[initial_month]) {
31 cerr << "bad day " << initial_month << "/" << initial_day
32 << "/" << initial_year << "\n";
33 exit(EXIT_FAILURE);
34 }
35
36 year = i nitial_year;
37 month = i nitial_month;
38 day = i nitial_day;
39 }
40
41 void date::next(int count)
42 {
43 div_t divide = div(count, 365);
44 if (divide.rem < 0) {
45 divide.rem += 365;
46 --divide.quot;
47 }
48
49 year += divide.quot;
50 day += divide.rem;
51
52 while (day > date_length[month]) {
53 day -= date_length[month];
54 if (++month > DECEMBER) {
55 month = JANUARY;
56 ++year;
57 }
58 }
59 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/macro/main.C

1 #include <iostream>

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class 219

220 ObjectsWi thout Inheritance Chapter 2

2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d1(JULY, 4, 1776);
9 date d2(OCTOBER, 29, 1929);

10 date d3(DECEMBER, 7, 1941);
11 date d4(JULY, 20, 1969);
12 date d5(SEPTEMBER, 11, 2001);
13
14 d1.print();
15 cout << "\n";
16
17 d2.print();
18 cout << "\n";
19
20 d3.print();
21 cout << "\n";
22
23 d4.print();
24 cout << "\n";
25
26 d5.print();
27 cout << "\n";
28
29 return EXIT_SUCCESS;
30 }

7/4/1776
10/29/1929
12/7/1941
7/20/1969
9/11/2001

Enumerations

Consecutively numbered macros are practical only if there are a small number of them. If we had
many more, or if they often had to be inserted, deleted, or reordered, we would not want to renumber them
by hand.

Theenumeration valuesin lines 7−18 ofdate.h are like mass-produced, consecutively numbered
macros. Ifwe insert, delete, or reorder, they will automatically renumber themselves the next time we com-
pile.

By default, the enumerations are numbered starting at zero; the= 1 in line 7 starts the numbering at
1.

Themonth_type in line 6 is the name for a data type which can hold any of these enumeration val-
ues.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/enum/date.h

1 #ifndef DATEH
2 #define DATEH

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

3 #include <iostream>
4 using namespace std;
5
6 enum month_type {
7 j anuary = 1,
8 f ebruary,
9 march,

10 april,
11 may,
12 june,
13 july,
14 august,
15 september,
16 october,
17 november,
18 december
19 };
20
21 class date {
22 int year;
23 int month; //january to december inclusive
24 int day; //1 to date_length[month] inclusive
25 public:
26 date(int initial_month, int initial_day, int initial_year);
27 void next(int count = 1); //Go count days forward.
28 void print() const {cout << month << "/" << day << "/" << year;}
29 };
30 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/enum/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 c onst int date_length[] = {
7 0, / /dummy element so that january will have subscript 1
8 31, //january
9 28, //february

10 31, //march
11 30, //april
12 31, //may
13 30, //june
14 31, //july
15 31, //august
16 30, //september
17 31, //october
18 30, //november
19 31 //december
20 };
21
22 date::date(int initial_month, int initial_day, int initial_year)
23 {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class 221

222 ObjectsWi thout Inheritance Chapter 2

24 if (initial_month < january || initial_month > december) {
25 cerr << "bad month " << initial_month << "/" << initial_day
26 << "/" << initial_year << "\n";
27 exit(EXIT_FAILURE);
28 }
29
30 if (initial_day < 1 || initial_day > date_length[initial_month]) {
31 cerr << "bad day " << initial_month << "/" << initial_day
32 << "/" << initial_year << "\n";
33 exit(EXIT_FAILURE);
34 }
35
36 year = i nitial_year;
37 month = i nitial_month;
38 day = i nitial_day;
39 }
40
41 void date::next(int count)
42 {
43 div_t divide = div(count, 365);
44 if (divide.rem < 0) {
45 divide.rem += 365;
46 --divide.quot;
47 }
48
49 year += divide.quot;
50 day += divide.rem;
51
52 while (day > date_length[month]) {
53 day -= date_length[month];
54 if (++month > december) {
55 month = j anuary;
56 ++year;
57 }
58 }
59 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/enum/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d1(july, 4, 1776);
9 date d2(october, 29, 1929);

10 date d3(december, 7, 1941);
11 date d4(july, 20, 1969);
12 date d5(september, 11, 2001);
13
14 d1.print();
15 cout << "\n";

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

16
17 d2.print();
18 cout << "\n";
19
20 d3.print();
21 cout << "\n";
22
23 d4.print();
24 cout << "\n";
25
26 d5.print();
27 cout << "\n";
28
29 return EXIT_SUCCESS;
30 }

Enumeration arithmetic

We can convert an enumeration to anint implicitly, but in the opposite direction we must write a
cast.

1 i nt i = 10;
2 month_type m = january;
3
4 i = m; / /convert enum to int
5 m = static_cast<month_type>(i); //convert int to enum

The cast makes the conversion easy to find if anything goes wrong.And something could potentially go
wrong: theint could easily be too big to fit in the enumeration. On the other hand, an enumeration will
(almost always) fit in anint .

Incidentally, there’s a simpler way to write the above line 5. Although an enumeration is not an ob-
ject, we can pretend it has a constructor taking one argument. Insteadof creating the enumeration with a
cast, we can create it with a constructor.

6 m = month_type(i); //convert int to enum

To avoid the enumeration cast or constructor, we kept the data typeint for the first argument of the
constructor for the above classdate . This permits both of the following.

7 date d1(7, 4, 1776); //first argument is an int
8 date d2(july, 4, 1776); //first argument is an enumeration

The data membermonth also remained anint so that line 54 of the abovedate.C could still say
++month . We won’t be able to increment an enumeration until we do operator overloading.

Enumeration members of a class

If the namejuly were already taken by the enumeration in line 13 of the above date.h , we could
not have the global variablejuly in line 7 of the following main.C . This would be an example ofname
space pollution.

To avoid pollution, our enumerations will now be members of classdate . This will let us have a
global variable or a global function namedjuly . In the same way, we also have two print functions: the
member functionprint and the global functionprint in line 6 ofmain.C .

Inside the body of a member function of classdate , we don’t write anything in front of a member of
classdate . We can therefore keep thedate.C file from the previous example. Init, for example, the
month andjanuary in line 55 will now be members of classdate .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class 223

224 ObjectsWi thout Inheritance Chapter 2

But outside the body of a member function of classdate , a member of classdate must always be
preceded by something to tell the computer which object it belongs to.For example,july andprint are
members of the objectd1 in lines 17 and 23 ofmain.C .

If the member has the same value for every object of the class, we can write the name of the class
with a double colon in front of the member, rather than the name of an object with a dot.For example, the
enumeration memberjuly in lines 17 and 18 ofmain.C will always have the value 7 in every object of
classdate , so we write line 19 to avoid accusations of favoritism. Anotheradvantage of 19 is that it can
be executed even when nodate objects exist. (A static data member will also have the same value for ev-
ery object of the class. See p. 241.)On the other hand, the data membermonth can have a different value
in different objects of classdate , and the data members used in the member functionprint can have dif-
ferent values in different objects of classdate .

If there is no object name or class name in front of an identifier outside the body of a member func-
tion, the compiler assumes that it is the name of something that is not a member of any class. Examplesare
in lines 20 and 22 ofmain.C .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/enummember/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5
6 c lass date {
7 i nt year;
8 i nt month; //date::january to date::december inclusive
9 i nt day; //1 to date_length[month] inclusive

10 public:
11 enum month_type {
12 january = 1,
13 february,
14 march,
15 april,
16 may,
17 june,
18 july,
19 august,
20 september,
21 october,
22 november,
23 december
24 };
25
26 date(int initial_month, int initial_day, int initial_year);
27 void next(int count = 1); //Go count days forward.
28 void print() const {cout << month << "/" << day << "/" << year;}
29 };
30 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/enummember/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

5
6 c onst int date_length[] = {
7 0, / /dummy element so that january will have subscript 1
8 31, //january
9 28, //february

10 31, //march
11 30, //april
12 31, //may
13 30, //june
14 31, //july
15 31, //august
16 30, //september
17 31, //october
18 30, //november
19 31 //december
20 };
21
22 date::date(int initial_month, int initial_day, int initial_year)
23 {
24 if (initial_month < january || initial_month > december) {
25 cerr << "bad month " << initial_month << "/" << initial_day
26 << "/" << initial_year << "\n";
27 exit(EXIT_FAILURE);
28 }
29
30 if (initial_day < 1 || initial_day > date_length[initial_month]) {
31 cerr << "bad day " << initial_month << "/" << initial_day
32 << "/" << initial_year << "\n";
33 exit(EXIT_FAILURE);
34 }
35
36 year = i nitial_year;
37 month = i nitial_month;
38 day = i nitial_day;
39 }
40
41 void date::next(int count)
42 {
43 div_t divide = div(count, 365);
44 if (divide.rem < 0) {
45 divide.rem += 365;
46 --divide.quot;
47 }
48
49 year += divide.quot;
50 day += divide.rem;
51
52 while (day > date_length[month]) {
53 day -= date_length[month];
54 if (++month > december) {
55 month = j anuary;
56 ++year;
57 }
58 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class 225

226 ObjectsWi thout Inheritance Chapter 2

59 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/enummember/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nline void print() {cout << "the global print\n";}
7 c onst double july = 80.5; //Fahrenheit
8
9 i nt main()

10 {
11 date d1(date::july, 4, 1776);
12 date d2(date::october, 29, 1929);
13 date d3(date::december, 7, 1941);
14 date d4(date::july, 20, 1969);
15 date d5(date::september, 11, 2001);
16
17 cout << d1.july << "\n" //the member july
18 << d2.july << "\n" //the member july
19 << date::july << "\n" //better way to say the member july
20 << july << "\n"; //the non-member july in line 7
21
22 print(); //the non-member print in line 6
23 d1.print(); //the member print
24 cout << "\n";
25
26 d2.print();
27 cout << "\n";
28
29 d3.print();
30 cout << "\n";
31
32 d4.print();
33 cout << "\n";
34
35 d5.print();
36 cout << "\n";
37
38 return EXIT_SUCCESS;
39 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

7 line 17
7 line 18
7 line 19
80.5 line 20
the global print
7/4/1776
10/29/1929
12/7/1941
7/20/1969
9/11/2001 line 38

Now that march , may, and august are members of classdate , we can create members named
march , may, and august of other classes. (See pp. 1024−1025 for a better way to give them last names.)

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/enummember/main2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 c lass music {
7 public:
8 enum {
9 waltz,

10 march,
11 tango
12 };
13 };
14
15 class verb {
16 public:
17 enum {
18 will,
19 shall,
20 can,
21 may
22 };
23 };
24
25 class cape {
26 public:
27 enum {
28 canaveral, //Florida
29 cod, //Massachusetts
30 may //New Jersey
31 };
32 };
33
34 class adjective {
35 public:
36 enum {
37 majestic,
38 sublime,
39 august

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.12 Enumerations as Members of a Class 227

228 ObjectsWi thout Inheritance Chapter 2

40 };
41 };
42
43 int main()
44 {
45 cout << date::march << "\n"
46 << music::march << "\n\n"
47
48 << date::may << "\n"
49 << verb::may << "\n"
50 << cape::may << "\n\n"
51
52 << date::august << "\n"
53 << adjective::august << "\n";
54
55 return EXIT_SUCCESS;
56 }

3
1

5
3
2

8
2

2.13 Arraysof Objects

An array of integers

An array is a group of variables at equally spaced addresses. The variables are called theelements
of the array. An array element must therefore be a variable that has a memory address. This includes ob-
jects and pointers, but not references: a reference has no address of its own. Seep. 80.

It is only fair to warn you that arrays will shortly be superseded by vectors. Avector will have the
look and feel of an array (e.g., the[square brackets]) but without its drawbacks. Vectors will have to wait,
however, until we do ‘‘operator overloading’’.

Before constructing an array of objects, we will make an array of integers and an array of structures.
The definition in lines 7−20 creates an array of 12 integers. Itis meaningless to ask what order they are
created in: nothing happens when an integer is born, so there is no experiment we could perform to produce
an observable effect showing us the order. The question belongs to the realm of metaphysics.

Use the data typesize_t for a variable that holds an array subscript (line 23) or the number of ele-
ments in an array (line 21).See p. 66.Thesizeof / sizeof idiom in line 21 was last seen in line 33 of
wolf.C on p. 198.

But don’t use thesize_t i loop in lines 23−25.On some platforms, the pointerp loop in lines
29−31 will run faster. It is also safer. If theconst were removed from line 7, the array could be damaged
by an expression such as++a[i] but could not be damaged by++*p . The latter expression would not
compile becausep is a read-only pointer.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/array/int.C

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

1 #include <iostream> //includes cstddef, where size_t is defined
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 c onst int a[] = {
8 31, //January
9 28, //February, ignoring for now the possibility of leap year

10 31, //March
11 30, //April
12 31, //May
13 30, //June
14 31, //July
15 31, //August
16 30, //September
17 31, //October
18 30, //November
19 31 //December
20 };
21 const size_t n = sizeof a / sizeof a[0];
22
23 for (size_t i = 0; i < n; ++i) {
24 cout << a[i] << "\n";
25 }
26
27 cout << "\n";
28
29 for (const int *p = a; p < a + n; ++p) {
30 cout << *p << "\n";
31 }
32
33 return EXIT_SUCCESS;
34 }

31
28
31 etc.

An array of structures

The definition in lines 12−25 creates an array of 12 structures, each containing an integer and a point-
er. Again, it is meaningless to ask what order the structures are created in.Nothing happens when a struc-
ture containing an integer and pointer is born.

In the expressiona[i].length in line 29, the two operators have equal precedence and left-to-
right associativity. The[] executes before the dot:

a [i] . length

This is exactly the order we need for an array of structures.

(1) Sincea is an array, we apply a[] operator to it to delve into it and get the element we want.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.13 Arrays of Objects 229

230 ObjectsWi thout Inheritance Chapter 2

(2) Sincethe element is a structure, we apply a dot operator to it to delve into it and get the field we
want.

But don’t write thesize_t i loop in lines 28−30.The pointerp loop in lines 34−36 executes faster
on some platforms, and is safer because the pointer is read-only. Most importantly, the p->length in
line 35 is simpler than thea[i].length in 29.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/array/structure.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 s truct month {
6 i nt length;
7 c onst char *name;
8 } ;
9

10 int main()
11 {
12 const month a[] = { //C++ doesn’t need the keyword struct here.
13 {31, "January"},
14 {28, "February"},
15 {31, "March"},
16 {30, "April"},
17 {31, "May"},
18 {30, "June"},
19 {31, "July"},
20 {31, "August"},
21 {30, "September"},
22 {31, "October"},
23 {30, "November"},
24 {31, "December"}
25 };
26 const size_t n = sizeof a / sizeof a[0];
27
28 for (size_t i = 0; i < n; ++i) {
29 cout << a[i].length << "\t" << a[i].name << "\n";
30 }
31
32 cout << "\n";
33
34 for (const month *p = a; p < a + n; ++p) {
35 cout << p->length << "\t" << p->name << "\n";
36 }
37
38 return EXIT_SUCCESS;
39 }

31 January
28 February
31 March etc.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

An array of objects

The definition in lines 8−16 creates an array of seven objects. Whenan object is born a constructor is
called, possibly with an observable effect such as the production of output. When we have an array of ob-
jects, it therefore becomes meaningful to ask what order the elements are created in. The array definition
calls the constructors for the seven objectsa[0] througha[6] , in that order. Line 31 calls their destruc-
tors in the reverse order, or at least it would have if classdate had a destructor.

It’s too bad that we have to write the constructor’s name (date), and the parentheses around its argu-
ment list, in lines 9−15. From now on, we will assume that classdate has the 12 public enumerations, so
will feel free to use them as arguments of the constructors. Lines 14−15 demonstrate that we don’t hav eto
call the same constructor for each element of the array.

In the expressiona[i].print() in line 20, the three operators have equal precedence and left-to-
right associativity:

a [i] . print ()

This is exactly the order we need for an array of objects.

(1) Sincea is an array, we apply a[] operator to it to delve into it and get the element we want.

(2) Sincethe element is an object, we apply a dot operator to it to delve into it and get the member we
want.

(3) Sincethe member is a function, we apply the() operator to it to call it.

But don’t write thesize_t i loop in lines 19−22.The pointerp loop in lines 26−29 executes faster
on some machines, and is safer because the pointer is read-only. Most importantly, the p->print() in
line 27 is simpler than thea[i].print() in 20.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/array/object.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c onst date a[] = {
9 date(date::july, 4, 1776), //Call the 3-argument constructor.

10 date(date::october, 29, 1929),
11 date(date::december, 7, 1941),
12 date(date::july, 20, 1969),
13 date(date::september, 11, 2001),
14 date(), //Call the default constructor.
15 date(a[5]) //Call the copy constructor.
16 };
17 const size_t n = sizeof a / sizeof a[0];
18
19 for (size_t i = 0; i < n; ++i) {
20 a[i].print();
21 cout << "\n";
22 }
23
24 cout << "\n";

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.13 Arrays of Objects 231

232 ObjectsWi thout Inheritance Chapter 2

25
26 for (const date *p = a; p < a + n; ++p) {
27 p->print();
28 cout << "\n";
29 }
30
31 return EXIT_SUCCESS;
32 }

7/4/1776 lines 19−22
10/29/1929
12/7/1941
7/20/1969
9/11/2001
4/8/2014
4/8/2014

7/4/1776 lines 26−29
10/29/1929
12/7/1941
7/20/1969
9/11/2001
4/8/2014
4/8/2014

Call a one-argument constructor for an array element

When calling a one-argument constructor for an array element, we don’t hav eto write the name of
the constructor and the parentheses around the object. Classobj was on pp. 179−180.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/array/one_arg.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 i nt main()
7 {
8 obj a[] = {
9 obj(10), //Can write name of constructor and parentheses...

10 obj(20),
11 obj(30)
12 };
13 const size_t na = sizeof a / sizeof a[0];
14
15 obj b[] = {
16 40, //...but don’t have to when constructor has 1 arg.
17 50,
18 60
19 };
20 const size_t nb = sizeof b / sizeof b[0];
21
22 for (size_t i = 0; i < nb; ++i) {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

23 b[i].print();
24 cout << "\n";
25 }
26
27 return EXIT_SUCCESS;
28 }

construct 10
construct 20
construct 30
construct 40
construct 50
construct 60
40
50
60
destruct 60
destruct 50
destruct 40
destruct 30
destruct 20
destruct 10

Line 15 of the aboveobject.C may therefore be written as

29 a[5]

Call the default constructor for every array element

A default constructoris one that can be called with no arguments, either because it has no arguments
at all or because it has a default value for every argument. Seepp. 134−135.

Here are constructors with no arguments at all:

(1) theconstructor for classzero on pp. 134−135

(2) theconstructor for classdate on pp. 142−143

(3) theconstructor for classstack on pp. 149−154

Here are constructors with a default value for every argument:

(4) theconstructor for classterminal on pp. 157−163

(5) theconstructor for classpoint on pp. 201−204

All of the above are default constructors.

The definition in line 9 calls the default constructor for each array element.It will compile only if
there is a default constructor. When providing no explicit initial values, we must write the number of ele-
ments in the[square brackets] in line 9.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/array/no_arg.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.13 Arrays of Objects 233

234 ObjectsWi thout Inheritance Chapter 2

8 c onst size_t n = 3;
9 c onst date a[n]; //Call the default constructor n times.

10
11 for (const date *p = a; p < a + n; ++p) {
12 p->print();
13 cout << "\n";
14 }
15
16 return EXIT_SUCCESS;
17 }

4/8/2014 three copies of today’s date
4/8/2014
4/8/2014

C does not allow us to use the value of any variable in an expression declaring the number of ele-
ments in an array.

18 /* C example */
19 const size_t n = 10;
20 int a[n]; /* won’t compile, even though n was const */

In C, then in the above line 20 would have to be changed to a literal10 , or to an expression whose value
does not depend on the value of any variable or on the return value of any function. Amacro for a legal ex-
pression could also be used.

C++ lets us write an array dimension as an expression whose value can depend on the value of a vari-
able, provided that the expression can be evaluated when the program is compiled. This is called acon-
stant expression.If the value of a constant expression depends on the value of a variable, the variable must
beconst and its initial value must in turn be a constant expression.

21 //C++ example
22 size_t n1 = 10;
23 const size_t n2 = n1;
24 const size_t n3 = 10 + 20;
25 inline size_t f() {return 10;}
26
27 int a1[n1]; //won’t compile: n1 was not const
28 int a2[n2]; //won’t compile: initial val of n2 was not a const expr
29 int a3[n3]; //will compile
30 int a4[f()]; //won’t compile: can’t use return value of function

The above line 30 just happens to compile with the GNU compilerg++, but it shouldn’t.

Explicit initial values are copied into an array

We hav ealready seen an array of objects with explicit initial values.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/array/copy.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 i nt main()
7 {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

8 obj a[] = {10, 20, 30};
9 r eturn EXIT_SUCCESS;

10 }

construct 10 Did not call copy constructor.
construct 20
construct 30
destruct 30 Line 9 destructsa.
destruct 20
destruct 10

But the computer is within its rights if it creates objects outside of the array, and then copies them in-
to the array by calling the copy constructor for each element.With an older compiler, or with the
-fno-elide-constructors option of theg++ compiler, the output is the following. Seep. 137 for a
non-array example of the compiler exercising this right.

construct 10 Construct an object outside the array.
copy construct 10 Copy it into the first array element.
destruct 10 Destruct the object outside the array.
construct 20
copy construct 20
destruct 20
construct 30
copy construct 30
destruct 30
destruct 30 Line 9 destructsa.
destruct 20
destruct 10

We must therefore be allowed to call the copy constructor for the objects in an array with explicit ini-
tial values. Thisis true even if the compiler is smart enough to avoid the actual calls to the copy construc-
tor.

▼ Homework 2.13a:
Version 1.3 of the Rabbit Game: array of rabbits

Remove the rabbitr in line 19 ofmain.C on p. 194. In its place, define an explicitly initialized ar-
ray of at least three non-const rabbits like the explicitly initialized array ofdate ’s in lines 8−16 of
object.C on p. 231. Name the arraya. Initialize each rabbit to a different position, making sure that the
x , y arguments of the constructor of eachrabbit are on the screen. After defining the array, use the
sizeof / sizeof idiom to count the array elements. Store this number in a constant namedn.

Remove the declaration for the undefined copy constructor for classrabbit you wrote on p. 200.
The computer will now provide us with a copy constructor, allowing the array definition to compile.But
let’s hope that the compiler is smart enough to avoid calling this copy constructor. We don’t want to dupli-
cate therabbit ’s.

Change the main loop in lines 21−28 ofmain.C on p. 194 to the following. Thegame will now end
as soon as thewolf kills any rabbit .

1 f or (;; term.wait(250)) {
2 i f (!w.move()) {
3 goto done;
4 }
5
6 f or (let p be a read/write pointer to each rabbit in the array) {
7 i f (!p->move()) {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.13 Arrays of Objects 235

236 ObjectsWi thout Inheritance Chapter 2

8 goto done;
9 }

10 }
11 }
12
13 done:;
14 continue with lines 30ff. on p. 194

Change the message to ‘‘You killeda rabbit!’’, since there is now more than one of them.

It’s too bad that the above lines 2−4 duplicate lines 7−9.But for the time being, the duplication has
to remain: the wolf can’t be an element in an array of rabbits, so it has to be moved separately. When we
do inheritance, awolf and arabbit will become, in some sense, the same species of animal (a
‘‘ wabbit ’’), and will then be able to share the same array.
▲

▼ Homework 2.13b: platform dependent output

In how many ways can a C++ program legally produce different output on different platforms?Con-
sider expressions whose operators can be executed in different orders; global objects in separate source
files; temporaries that can be elided when initializing an object or an array of objects; and objects returned
from a function via pass-by-value.

Is the data typechar signed or unsigned on your machine? Can you write a program where this af-
fects the output? What happens if you try to store a value into a signed integral variable that is too small to
hold it? Does a pointer print in hex or octal on your machine?

1 i nt i = 10;
2 c out << &i << "\n";

▲

2.14 StaticMembers

2.14.1 StaticData Members
Here is a picture of three rabbits in an array. Each rabbit has different values in itsx and y data

members: we do not allow two rabbits in the same place at the same time.An ampersand represents a
pointer value. Althoughthe rabbits have pointers to the same terminal now, they will have different point-
ers when we have multiple terminals.

But every rabbit has thesamevalue (’r’) in its c data member. This was a non-issue when there
was only one rabbit. But now that we have an array of them, we are wasting memory:

&

10

3

’r’

a[0]

&

20

6

’r’

a[1]

&

30

9

’r’

a[2]

t

x

y

c

We can save memory by making all the rabbits share just one copy of c . It will not be physically in-
side of any rabbit, but will still be a private data member of the class, entitled to all the privileges and pro-
tection pertaining thereto. This kind of member is called astatic data member.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

&

10

3

a[0]

&

20

6

a[1]

&

30

9

a[2]

t

x

y

’r’ c

No matter how many rabbits exist at a given moment, there will always be exactly one copy of the
static data memberc . Even after all of the rabbits have been destructed,c will persist until the end of the
program. c will also be there before the first rabbit is constructed, and, even weirder, will exist even if no
rabbit isever constructed. Astatic data member is as immortal as a global variable.

This means that the constructor for class rabbit is relieved of its normal responsibility for initializing
c , so we will have to remove the statementc = ’ r’; from line 11 ofrabbit.C on p. 196.

Line 7 declares a static data member. The declaration is the only place where we write the keyword
static when creating this kind of member. This keyword means ‘‘static member’’ only when written
within the{ curly braces} of a class declaration. Outside of a class declaration, it has the same meanings it
had in C.

It does not matter whether the declaration comes before or after the non-static data members. In ei-
ther case, the static data member will be created long before the others.But declare it first because it is cre-
ated first. (If there were two or more static data members, they would be created in the order they were de-
clared in.)

1 / /Excerpt from the file rabbit.h.
2 #ifndef RABBITH
3 #define RABBITH
4 #include "terminal.h"
5
6 c lass rabbit {
7 s tatic const char c; //declaration
8 c onst terminal *t;
9 unsigned x, y;

But we must do more than just declarec . We must also define it, i.e., create and initialize it. Do this
in line 16, above the function definitions in therabbit.C file. Donot repeat the keyword static here.

10 //Excerpt from the file rabbit.C.
11 #include <iostream>
12 #include <cstdlib>
13 #include "rabbit.h"
14 using namespace std;
15
16 const char rabbit::c = ’r’; //definition
17
18 rabbit::rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
19 {
20 t = &initial_t;
21 x = i nitial_x;
22 y = i nitial_y;
23 //Do not initialize c here; c has already been initialized.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.14.1 Static Data Members 237

238 ObjectsWi thout Inheritance Chapter 2

The definition in the above line 16 consists of the same three parts as a simpler definition such as
int i = 10; .

name of name of initial
data type variable value

int i = 10;

const char rabbit::c = ’r’;

Newer versions of C++ let us declare and define a static data member in a single line. But this nota-
tion can be used only if the member is also constant, and integral (p. 61) or an enumeration, and if its initial
value is a constant expression (p. 234).

Since our data memberc and its initial value meet all the requirements, we can declare and define it
in one statement in line 30, removing the above line 16.

24 //Excerpt from the file rabbit.h.
25 #ifndef RABBITH
26 #define RABBITH
27 #include "terminal.h"
28
29 class rabbit {
30 static const char c = ’r’; //declaration and definition
31 const terminal *t;
32 unsigned x, y;

▼ Homework 2.14.1a:
Version 1.4 of the Rabbit Game: static data member for classeswolf and rabbit

Let the c data member of classrabbit be static. Do the same for thec data member of class
wolf , even though there is currently only onewolf . Use the above line 30 if you can; lines 7 and 16 if
you must. Now thatc is static, declare it before the other data members.

We currently have only one terminal, so we could make the t data members static too. But don’t do
this. We would only have to undo it when we have multiple terminals.
▲

▼ Homework 2.14.1b: another way to think of a static data member

We’v e seen several variables that we haven’t known where to put. Each one was floating, somewhat
unsatisfactorily, near an associated class.

(1) date_length floating near classdate in lines 5−19 ofversion3.C on p. 115;

(2) life_ymax andlife_xmax floating near classlife in lines 5−6 oflife.h on pp. 145−146;

(3) stack_max_size floating near classstack in line 5 ofstack.h on p. 148;

(4) point_error andpoint_origin floating near classpoint , in line 7 ofpoint.h on p. 206
and line 5 ofpoint.C on p. 202.

Each variable had no official connection with its class. It was not a data member; it merely had the
name of the class and an underscore prefixed to its own name.

For security, we would like the variable to be private data member of its associated class. And now
we have a way to do this.We can let the variable be a static private data member.

Make the following changes, except for classlife .

(1) Let date_length be a private static data member of classdate and rename itlength .
You’ll have to write the number of elements in the[square brackets] of the declaration.Write this number
as12 + 1 , rather than13 , to make the magic number12 visible.

Since an array is not an integral data type, you won’t be able to define it in the class declaration in the
.h file. Defineit in thedate.C file.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Now that length is a private data member, observe that we can change it with no repercussions be-
yond the member functions of the class.For example, we could remove the dummy element from the start
of the array. But just observe this—don’t do it.

(2) We will eventually let life_xmax and life_ymax be private static data members of class
life , renaming themxmax andymax. They must be initialized before being used by the array declara-
tion in line 4. This means that they can be static data members only in versions of C++ that permit the ini-
tialization in line 30 on p. 238.

1 c lass life {
2 s tatic const size_t xmax = 10;
3 s tatic const size_t ymax = 10;
4 bool matrix[ymax][xmax];
5 / /etc.

But even if the initializations are permitted, we can’t let xmax andymax be static data members yet.The
problem is that they must also be initialized before being used by the typedefs forlife_matrix_t and
_life_matrix_t , which currently must be writtenbefore the declaration for classlife .

6 c onst size_t life_xmax = 10;
7 c onst size_t life_ymax = 10;
8
9 t ypedef bool life_matrix_t[life_ymax][life_xmax];

10 typedef bool _life_matrix_t[life_ymax + 2][life_xmax + 2]; //internal use only
11
12 class life {
13 _life_matrix_t matrix;
14 //etc.

The eventual solution will be to move the typedef into the class itself (pp. 423−424).

15 class life {
16 static const size_t xmax = 10;
17 static const size_t ymax = 10;
18 typedef bool _life_matrix_t[ymax + 2][xmax + 2]; //private typedef
19 _life_matrix_t matrix;
20 public:
21 typedef bool life_matrix_t[ymax][xmax]; //public typedef
22 life(const life_matrix_t initial_matrix);

But don’t do this yet.

(3) Let stack_max_size be a private static data member of classstack , and rename it
max_size . But stack_max_size is used as the dimension of an array, so stack_max_size must
have a valuebefore the array is declared.Thereforestack_max_size can be a static data member only
in versions of C++ that permit the initialization in line 30 on p. 238

23 class stack {
24 static const size_t max_size = 100;
25 value_type a[max_size];

(4) Let point_error andpoint_origin be private static data members of classpoint , and
rename themerror andorigin . The member functiondist with no explicit arguments can now be-
come inline; see p. 210. Note that it would be impossible for classpoint to have apoint as a non-static
data member—apoint object would blow up to infinite size—but classpoint can have apoint as a
static data member.
▲

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.14.1 Static Data Members 239

240 ObjectsWi thout Inheritance Chapter 2

▼ Homework 2.14.1c: another static data member for class date

Let the following array be a private static data member of classdate . In the initialization for a static
data member, we can mention the names of other static data members, even private ones.

1 / /Excerpt from date.C.
2
3 / /Number of days in the year before each month. For example, pre[3] is
4 / /59 == 31 + 28, because there are 59 days in the year before March 1.
5
6 c onst int date::pre[] = {
7 0, / /dummy element to give january subscript 1
8 0, / /january
9 pre[1] + length[1], //february

10 pre[2] + length[2], //march
11 pre[3] + length[3], //april
12 pre[4] + length[4], //may
13 pre[5] + length[5], //june
14 pre[6] + length[6], //july
15 pre[7] + length[7], //august
16 pre[8] + length[8], //september
17 pre[9] + length[9], //october
18 pre[10] + l ength[10], //november
19 pre[11] + l ength[11] //december
20 };

If your classdate is implemented with three data members, let thejulian member function be a
single statement.

21 return pre[month] + day;

The function can now be inline for even more speed.

If your date is implemented with one data member, get rid of the loop in the constructor for the
one-data-member classdate .

22 day = 365 * initial_year + pre[initial_month] + initial_day - 1;

▲

▼ Homework 2.14.1d: another static data member for class date

It’s expensive to get the current date and time from the operating system whenever we call the default
constructor for classdate . Remedy tis by declaring the the following private member for classdate .

1 s tatic const date today;

Initialize it as follows in thedate.C file. Thekeyword static in lines 2 and 3 is the C keyword that
means ‘‘visible only in this file’’. Thestatic data member in line 4 should not have the keyword static .

2 s tatic const time_t t = time(0);
3 s tatic const tm *const p = localtime(&t);
4 c onst date date::today(p->tm_mon + 1, p->tm_mday, p->tm_year + 1900);

Then the default constructor can simply copy the data member(s) oftoday into the newborndate . Let’s
hope the program doesn’t keep running across a midnight, though.
▲

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 2.14.1e: find the bug

Let’s say we have a program that constructs and destructs objects of the following class. At any point
in time, the static data member_count in line 7 should be the number ofcounted objects that exist.
After all, it’s initialized to zero in line 3 ofcounted.C , incremented in the constructor in line 9 of
counted.h , and decremented in the destructor in line 10 ofcounted.h .

_count has an underscore because a public member function namedcount will be introduced in
the next example, and a class cannot have a data member and a member function with the same name (p.
159). Theburden of the underscore is placed on the private member.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/counted1/counted.h

1 #ifndef COUNTEDH
2 #define COUNTEDH
3
4 c lass counted {
5 i nt i;
6 public:
7 s tatic unsigned _count; //data member temporarily public for simplicity
8
9 c ounted(int initial_i) {i = initial_i; ++_count;}

10 ˜counted() {--_count;}
11 };
12 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/counted1/counted.C

1 #include "counted.h"
2
3 unsigned counted::_count = 0;

Within the{ curly braces} of the class declaration in lines 4−11 of the above counted.h , and with-
in the body of a member function of classcounted , we’re on a first-name basis with all the members of
classcounted , including the static data member_count . But elsewhere we must write something in
front of _count to indicate which class it is a member of. Lines 21−23 are three ways to do this, since
_counted has the same value for any object of classcounted . But these lines are annoyingly arbitrary.
Why select the objecta in line 21? What’s wrong withb?

We therefore prefer line 24.Write the name of the class and a double colon instead of the name of an
arbitrarily selected object of the class and a dot. Use this notation for any member that has the same value
for every object of the class. The static membercounted::_count is one example; another is the enu-
meration memberdate::july in line 19 ofmain.C on p. 226.

Another advantage of line 24 is that it will work even if no objects of the class are ever constructed.
Lines 21−23 will work only if objectsa, b, andc exist at that point.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/counted1/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "counted.h"
4 using namespace std;
5
6 v oid f();
7
8 i nt main()
9 {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.14.1 Static Data Members 241

242 ObjectsWi thout Inheritance Chapter 2

10 f();
11 cout << "There are " << counted::_count << " objects.\n";
12 return EXIT_SUCCESS;
13 }
14
15 void f()
16 {
17 counted a = 10;
18 counted b = 20;
19 counted c = b ;
20
21 cout << "There are " << a._count << " objects.\n"
22 << "There are " << b._count << " objects.\n"
23 << "There are " << c._count << " objects.\n"
24 << "There are " << counted::_count << " objects.\n";
25 }

There are 2 objects. Lines 21−24: there are actually 3 objects at this point.
There are 2 objects.
There are 2 objects.
There are 2 objects.
There are 4294967295 objects. Line 11: there are actually 0 objects at this point.

The above line 19 calls a copy constructor for classcounted , but it’s not any copy constructor that
we wrote. The computer behaves as if we had written the following copy constructor incounted.h and
called it in line 19. See p. 135.

26 public:
27 counted(const counted& another) {i = another.i;}

But the copy constructor in the above line 27 isn’t good enough: it forgot to increment_count . We there-
fore have to write the copy constructor ourselves:

28 public:
29 counted(const counted& another) {i = another.i; ++_count;}

▲

2.14.2 StaticMember Functions
The data member_count in the previous example should never hav ebeen public. The following

line 5 now makes it private. Thepublic is granted read-only access to it via the public member function
count in line 12. (See p. 159 for another example.) Aclass can’t hav ea data member and a member
function with the same name, so we gav ean underscore to the member that is never mentioned in the out-
side world.

Until now, every member function has received an implicit argument pointing to the object to which
the member function belongs. This invisible pointer lets the member function access a member of the ob-
ject simply by mentioning its name. Our original example was theprint member function of the class
date in lines 99−107 ofversion3.C on pp. 116−117.

But there is one kind of member function, called astatic member functionthat receives no implicit
pointer argument. Themember functioncount in line 12 is static to avoid burdening it with an implicit
pointer that it does not need. Since the data member_count in line 12 is not in any object, the function
needs no pointer to access it.Although it is a member function, a static member function is a free function
(p. 113) because it receives no implicit pointer argument.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Line 12 demonstrates that a static member function can access a static member simply by mentioning
its name. But a static member function, like a friend function, would not compile if it tried to access a non-
static member simply by mentioning its name.We would have to write something in front of the member
to indicate which object it belonged to.

A const member function cannot change the data members of the object it belongs to, i.e., the ob-
ject to which it receives an invisible pointer. Once again, our original example wasdate::print . But a
static member function does not belong to any object. Itwould therefore be meaningless (and illegal) to
make it const .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/counted2/counted.h

1 #ifndef COUNTEDH
2 #define COUNTEDH
3
4 c lass counted {
5 s tatic unsigned _count;
6 i nt i;
7 public:
8 c ounted(int initial_i) {i = initial_i; ++_count;}
9 c ounted(const counted& another) {i = another.i; ++_count;} //copy constructor

10 ˜counted() {--_count;}
11
12 static unsigned count() {return _count;}
13 };
14 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/counted2/counted.C

1 #include "counted.h"
2
3 unsigned counted::_count = 0;

As in the abovemain.C , we prefer the following line 24 to the three above it.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/counted2/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "counted.h"
4 using namespace std;
5
6 v oid f();
7
8 i nt main()
9 {

10 f();
11 cout << "There are " << counted::count() << " objects.\n";
12 return EXIT_SUCCESS;
13 }
14
15 void f()
16 {
17 counted a = 10;
18 counted b = 20;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.14.2 Static Member Functions 243

244 ObjectsWi thout Inheritance Chapter 2

19 counted c = b ;
20
21 cout << "There are " << a.count() << " objects.\n"
22 << "There are " << b.count() << " objects.\n"
23 << "There are " << c.count() << " objects.\n"
24 << "There are " << counted::count() << " objects.\n";
25 }

There are 3 objects. lines 21−24
There are 3 objects.
There are 3 objects.
There are 3 objects.
There are 0 objects. line 12

▼ Homework 2.14.2a:
Version 1.5 of the Rabbit Game: static member functions for classterminal

The beep member function (line 29 ofterminal.h on p. 160) receives an implicit pointer to an
object of classterminal . But the pointer is never used:beep does not mention any non-static member
of the object.We can therefore letbeep be static, getting rid of the pointer and making the function faster.

Here is how to identify the member functions that must be non-static.

(1) A constructor and destructor must be non-static.

(2) A member function must be non-static if it uses the pointerthis , explicitly or implicitly. Two
examples are in inversion3.C on p. 117. Line 106 accesses the non-static data members of the object
to which the implicitthis points; line 105 does the same thing with an explicit this . The member func-
tion print in line 99 must therefore be non-static. In the same program, line 83 calls a non-static member
function of the object to which the implicitthis points; line 82 does the same thing with an explicit
this . The member functionnext in line 74 must therefore be non-static.

(3) All the other member functions can, and therefore should, be static.

Let every possible member function of classterminal be static. Note that a static member func-
tion cannot beconst . const would mean that the function receives an implicit pointer that is read-only.
But a static member function receives no implicit pointer at all.You must therefore let your newly static
member functions be non-const .
▲

The choice between a friend and a static member function

I gav ethe same definition for a friend and a static member function: both are just like a normal (non-
static) member function, except that they receive no invisible pointer. The next section will show that there
actually is a slight difference between them. But for now, any friend could easily be rewritten as a static
member function and vice versa. They are equal in space and speed.

The choice between them is important, however, because it shows theintent of the function.

(1) If the function operates on more than one object, write it as a friend; see p. 206, ¶ (3).An exam-
ple is the functionaverage declared in line 20 and defined in 33−36. Line 34 shows that a friend can
mention a static member, but must indicate which class the member belongs to.In a friend defined in the
class declaration (lines 15−18), this indication is not necessary.

(2) If the function does not operate on objects at all, write it as a static member function.The func-
tions count andexist in lines 22 and 25 access only members that are static, i.e., not in any object of
the class.

(3) If the function operates on exactly one object, or if one object plays the starring rôle, write it as a
non-static member function. An example is the functionprint in lines 27−30. Line 28 shows that a non-
static member function can mention a static member, but we already knew this from lines 11−13. A

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

_count needs no preliminarycounted:: inside the body of a member function (line 28) or anywhere
inside the curly braces of the class declaration in lines 7 and 31 (line 16). But outside of these places, the
counted:: is needed (line 34).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/friend_vs_static/counted.h

1 #ifndef COUNTEDH
2 #define COUNTEDH
3 #include <iostream>
4 #include <cassert>
5 using namespace std;
6
7 c lass counted {
8 s tatic unsigned _count;
9 i nt i;

10 public:
11 counted(int initial_i) {i = initial_i; ++_count;}
12 counted(const counted& another) {i = another.i; ++_count;}
13 ˜counted() {--_count;}
14
15 friend bool equal(const counted& c1, const counted& c2) {
16 assert(_count > 0);
17 return c1.i == c2.i;
18 }
19
20 friend int average(const counted& c1, const counted& c2);
21
22 static unsigned count() {return _count;}
23
24 //Return true if any counted objects currently exist.
25 static bool exist() {return _count > 0;}
26
27 void print() const {
28 assert(_count > 0);
29 cout << i;
30 }
31 };
32
33 inline int average(const counted& c1, const counted& c2) {
34 assert(counted::_count > 0);
35 return (c1.i + c2.i) / 2;
36 }
37 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/friend_vs_static/counted.C

1 #include "counted.h"
2
3 unsigned counted::_count = 0;

A static member function and a friend with the same name

There is only a trivial difference between a static member function and a friend: the former is a mem-
ber while the latter is not. But this tautology is relevant because the scoping rules on pp. 122−124 treat

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.14.2 Static Member Functions 245

246 ObjectsWi thout Inheritance Chapter 2

members and non-members differently.

The functiong in line 12 is a member of classmyclass . On the other hand, the global functionsf
andg in lines 5−6 are non-members, despite the additional declarations in lines 10−11.Even if they were
declared outside the class (lines 32−33) and defined inside (37−38), they would still be global.

Themain function is also global. In a global function, two groups of names are in scope: the locals
and the globals. Line 24 therefore calls the globalg, not the memberg. Thus, in the body of a free func-
tion, a friend eclipses a member with the same name.To call the member functiong, line 25 needs the bi-
nary scope operator:: and the name ofg’s class.

Theh in line 14 is a member function.In a member function, three groups of names are in scope: lo-
cals, members, and globals. Line 16 therefore calls the memberg, not the globalg. Thus, in the body of a
member function, a member eclipses a friend with the same name.To call the friendg, line 17 needs the
unary scope operator:: .

The :: in line 17 was necessary only because there was a member with the same name.Line 15
does not need it. Earlier examples of the:: were on p. 123, line 14; and, in classpoint , on p. 209, line 5.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/friend_vs_static/eclipse.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nline void f() {cout << "friend f\n";}
6 i nline void g() {cout << "friend g\n";}
7
8 c lass myclass {
9 public:

10 friend void f(); //the function in line 5
11 friend void g(); //the function in line 6
12 static void g() {cout << "static member function g\n";}
13
14 void h() const {
15 f(); //the friend in lines 5 and 10
16 g(); //the static member function in line 12
17 ::g(); //the friend in lines 6 and 11
18 }
19 };
20
21 int main()
22 {
23 f(); //the friend in lines 5 and 10
24 g(); //the friend in lines 6 and 11
25 myclass::g(); //the static member function in line 12
26 cout << "\n";
27
28 myclass x;
29 x.h();
30 return EXIT_SUCCESS;
31 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

friend f line 23
friend g line 24
static member function g line 25

friend f line 29 calls 14, which calls 15, 16, and 17
static member function g
friend g

We hav ealready seen a class with a member and a friend having the same name: classpoint and its
dist functions. Itis actually quite natural and convenient.

2.15 Pointers to Non-Static Members
A ‘‘pointer to a member’’ of a class is a variable whose value answers the question ‘‘which member

of the class are we talking about?’’. It is not really a pointer at all; it is more like an enumeration. For a
class with three members, all of the same data type, a pointer to a member would have one of three possible
non-zero values.

There are two types of pointers to members: pointers to data members and pointers to member func-
tions. We’ll begin with pointers to data members, since they are simpler. In each case we’ll show the syn-
tax followed by a motivating example.

Before we introduce any new type of pointer, howev er, we will review a type we already have in C: a
pointer to a free function.

2.15.1 APointer to a Free Function
A free function is one that takes no invisible pointer; see p. 113. The name of an array, without the

subscripting operator[] after it, stands for the address of the array. Similarly, the name of a free function,
without the function call operator() after it, stands for the address of the function. An example is the
name of thesqrt function in line 8; we could also have written &sqrt . Line 8 stores this address into a
very specific kind of pointer: one that can point only to a function taking adouble and returning a
double . The pointer is*const : it will always point to the same function.

The standard library has three square root functions.

1 / /Excerpt from <cmath>
2
3 f loat sqrt(float);
4 double sqrt(double);
5 l ong double sqrt(long double);

Thesqrt in line 8 is the address of thedouble function because it is stored into the pointerp. It is a rare
example of an expression whose value depends on the surrounding context.

Line 11 prints the value of this pointer. The C++ Standard Library has<< operators that can print a
pointer tovoid or a pointer to a variable, but none that can print a pointer to a function of the type of
sqrt . Neither astatic_cast nor areinterpret_cast were willing to convert a pointer-to-func-
tion directly into a pointer-to-nonfunction such as a pointer-to-void . Line 11 therefore casts the pointer to
a size_t and then to avoid * . Since asize_t can hold the number of bytes in any block of memory,
it should be able to hold all the bits in a pointer with no loss of information.

If we tried to outputp without any casting, it would be converted to abool and printed as such.
bool is the only data type for which the library has an<< operator and to which this type of pointer may
be converted without a cast.

Of course, if all we want to do is to print the address of a function, we don’t need to store it into the
pointer variablep in line 8. We can just print the address directly in lines 13−15. But this requires even
more elaborate casting. The cast in line 15 specifies which of the three square root functions we want;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.15.1 A Pointer to a Free Function 247

248 ObjectsWi thout Inheritance Chapter 2

those in 14 and 13 are the ones we saw in 11.

The expression(*p)(2.0) in line 18 calls the function to whichp points. It has two operators.
First it applies the dereferencing operator* to the expressionp, retrieving whatp points to. Since this is a
function, it then applies the function call operator() (with a 2.0 inside it) to the function. The parenthe-
ses around the*p are not an operator. They merely force the* to execute before the function call operator
() .

* p() (2.0)

Finally, line 18 stores the return value intod.

Of course, if all we want to do is to call the function and print its return value, we don’t need to store
the value into the variabled in line 18. We can just print it directly in line 20.

The use ofp in the expression(*p)(2.0) in lines 18 and 20, and the declaration forp in line 8,
have the same operators in the same relative order. I usually figure out how to write the use of the pointer
first, and then paste it into the declaration.

In the expression(*p)(2.0) in lines 18 and 20, the dereferencing operator* is optional in C and
C++. Lines22 and 24 repeat this expression without the* . And now that the* is gone, we no longer need
the parentheses that forced it to go first.

In C, making the dereferencing operator optional was merely a convenience. InC++, it will make it
possible for a ‘‘template function’’ to use the same syntax for two different types of arguments: a pointer to
a function, and a ‘‘function object’’. Seepp. 764−770.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_function/free.C

1 #include <iostream> //C++ example
2 #include <cstdlib>
3 #include <cmath> //for sqrt
4 using namespace std;
5
6 i nt main()
7 {
8 double (*const p)(double) = sqrt;
9

10 cout << "p == "
11 << reinterpret_cast<void *>(reinterpret_cast<size_t>(p)) << "\n"
12 << "sqrt == "
13 << reinterpret_cast<void *>(
14 reinterpret_cast<size_t>(
15 static_cast<double (*)(double)>(sqrt)))
16 << "\n\n";
17
18 double d = (*p)(2.0);
19 cout << "d == " << d << "\n"
20 << "sqrt(2.0) == " << (*p)(2.0) << "\n\n";
21
22 d = p(2.0);
23 cout << "d == " << d << "\n"
24 << "sqrt(2.0) == " << p(2.0) << "\n";
25
26 return EXIT_SUCCESS;
27 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

The above line 8 could be split into

28 double (*p)(double);
29 p = sqrt;

But why would we want to?To permit the assignment in line 29, we would have to remove the const
from line 12.

p == 0x2112c lines 10−11: base 16 on my platform
sqrt == 0x2112c lines 12−13

d == 1.41421 line 19
sqrt(2.0) == 1.41421 line 20

d == 1.41421 line 23
sqrt(2.0) == 1.41421 line 24

Why would we want a pointer to a function?

Here’s amain function that decides which of four other functions to call. It has fourif-else ’s.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_function/before4.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f0();
6 v oid f1();
7 v oid f2();
8 v oid f3();
9

10 int main()
11 {
12 int i; //uninitialized variable
13 cin >> i;
14
15 if (i == 0) {
16 f0();
17 } else if (i == 1) {
18 f1();
19 } else if (i == 2) {
20 f2();
21 } else if (i == 3) {
22 f3();
23 } else {
24 cerr << "input " << i
25 << " must be in the range 0 to 3 inclusive\n";
26 return EXIT_FAILURE;
27 }
28
29 return EXIT_SUCCESS;
30 }

A simpler way to do the same job is with the array of pointers to functions in line 12. The declara-
tion for the array is rather mysterious. An easier way to see the data type of the array is by looking at the

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.15.1 A Pointer to a Free Function 249

250 ObjectsWi thout Inheritance Chapter 2

initial values in lines 13−16. They show thata an array of pointers to functions.

The expression(*a[i])() in the comment in line 29 calls the function to whicha[i] points. It
has three operators. First it applies the subscripting operator[] to the array, retrieving an array element.
Since this element is a pointer, it applies the dereferencing operator* to the pointer, retrieving what the
pointer points to. Since this is a function, it applies the function call operator() to the function. The
parentheses around the*a[i] are not an operator. They merely force the* to execute before the function
call operator() .

* a [i]() ()

The use ofa in the expression(*a[i])() in the comment in line 29, and the declaration fora in
line 12, have the same operators in the same relative order. I usually figure out how to write the use of the
array first, and then paste it into the declaration.

In the expression(*a[i])() in the comment in line 29, the dereferencing operator* is optional in
C and C++. Line 29 has this expression without the* . And now that the* is gone, we no longer need the
parentheses that forced it to go first.

The expressiona[i]() in line 29 now does all the work of the above before4.C , except for the
error checking which has been neatly isolated in lines 23−27. It is also faster than the list ofif ’s and
else ’s, since it leaps directly to the correct function.

The int i in line 12 ofbefore4.C has become asize_t in line 20 ofafter4.C . This is the
data type that should be used for any array subscript in C or C++; see p. 66.It should also be used for the
number of bytes in a block of memory, as in theoffsetof macro on pp. 254−255.Sincesize_t is un-
signed, line 23 does not need to check ifi is less than zero.A neg ative number stored ini would become
a large positive number.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_function/after4.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f0();
6 v oid f1();
7 v oid f2();
8 v oid f3();
9

10 int main()
11 {
12 void (*const a[])() = {
13 f0, //or &f0, with explicit "address of" operator
14 f1,
15 f2,
16 f3
17 };
18 const size_t n = sizeof a / sizeof a[0];
19
20 size_t i; //uninitialized variable
21 cin >> i;
22
23 if (i >= n) {
24 cerr << "input " << i << " must be in the range 0 to " << n - 1

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

25 << " i nclusive\n";
26 return EXIT_FAILURE;
27 }
28
29 a[i](); //or (*a[i])() with explicit dereferencing operator
30 return EXIT_SUCCESS;
31 }

Not convinced yet?Let’s scale up the example. Herethemain function decides which of six func-
tions to call, arranged in a 2× 3 matrix. Unfortunately, the if statements are starting to nest and multiply.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_function/before2by3.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f00(); void f01(); void f02();
6 v oid f10(); void f11(); void f12();
7
8 i nt main()
9 {

10 int x; //uninitialzied variable
11 cin >> x;
12
13 int y; //uninitialzied variable
14 cin >> y;
15
16 if (y == 0) {
17 if (x == 0) {
18 f00();
19 } else if (x == 1) {
20 f01();
21 } else if (x == 2) {
22 f02();
23 } else {
24 cerr << "x value " << x
25 << " must be in the range 0 to 2 inclusive\n";
26 return EXIT_FAILURE;
27 }
28 } else if (y == 1) {
29 if (x == 0) {
30 f10();
31 } else if (x == 1) {
32 f11();
33 } else if (x == 2) {
34 f12();
35 } else {
36 cerr << "x value " << x
37 << " must be in the range 0 to 2 inclusive\n";
38 return EXIT_FAILURE;
39 }
40 } else {
41 cerr << "y value " << y
42 << " must be in the range 0 to 1 inclusive\n";

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.15.1 A Pointer to a Free Function 251

252 ObjectsWi thout Inheritance Chapter 2

43 return EXIT_FAILURE;
44 }
45
46 return EXIT_SUCCESS;
47 }

A simpler way to do the same job is with the 2× 3 array of pointers to functions in line 12.This
time, the declaration for the array is even more mysterious. But the initial values in lines 13−14 show that
it’s a 2× 3 an array of pointers to functions. Since we provided an initial value for every element, the left-
most dimension in line 12 can be left blank. But all subsequent dimensions must be specified.

The expressiona[y][x]() in line 36 now does all the work of the above before2by3.C , except
for the error checking which has been neatly isolated in lines 21−25 and 30−34.I’m sorry that they comes
before thex in thea[y][x]() , but it has to be this way. In a two-dimensional array in C or C++, the first
subscript is the row and the second is the column.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_function/after2by3.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f00(); void f01(); void f02();
6 v oid f10(); void f11(); void f12();
7
8 i nt main()
9 {

10 const size_t xmax = 3;
11
12 void (*const a[][xmax])() = {
13 {f00, f01, f02}, //or &f00 with explicit "address of" operator
14 {f10, f11, f12}
15 };
16 const size_t ymax = sizeof a / sizeof a[0];
17
18 size_t x; //uninitialized variable
19 cin >> x;
20
21 if (x >= xmax) {
22 cerr << "x value " << x << " must be in the range 0 to "
23 << xmax - 1 << " inclusive\n";
24 return EXIT_FAILURE;
25 }
26
27 size_t y; //uninitialized variable
28 cin >> y;
29
30 if (y >= ymax) {
31 cerr << "y value " << y << " must be in the range 0 to "
32 << ymax - 1 << " inclusive\n";
33 return EXIT_FAILURE;
34 }
35
36 a[y][x](); //or (*a[y][x])() with explicit dereferencing operator
37 return EXIT_SUCCESS;
38 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

2.15.2 APointer to a Static Member
A ‘‘pointer to a member’’ is always assumed to be a pointer to a non-static member. If the member is

static, we can use the normal kind of pointer.

The static data memberj is initialized in its declaration in line 8.Normally, therefore, we would not
need a separate definition for it; see p. 238. But because we take its address in line 18, it must be defined in
line 13.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_member/static.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass myclass {
6 public:
7 s tatic int i;
8 s tatic const int j = 20;
9 s tatic void f() {cout << "myclass::f\n";}

10 };
11
12 int myclass::i = 10;
13 const int myclass::j; //needed because we’re taking address of j
14
15 int main()
16 {
17 int *p1 = &myclass::i;
18 const int *p2 = &myclass::j;
19
20 cout << "myclass::i == " << *p1 << "\n"
21 << "myclass::j == " << *p2 << "\n";
22
23 void (*p3)() = myclass::f; //or &myclass::f with explicit "address of"
24 p3(); //or (*p3)() with explicit dereferencing operator
25
26 return EXIT_SUCCESS;
27 }

myclass::i == 10
myclass::j == 20
myclass::f

2.15.3 APointer to a Data Member
We’l l do pointers to data members before pointers to member functions, because pointers to data

members have fewer parentheses. In each case we’ll show the syntax followed by a motivating example.
We reviewed pointers to free functions because we will need thir syntax when we do pointers to member
functions.

Assume that classdate has the following members.For simplicity, we’ll make them public:

1 i nt year, month, day;
2 v oid print() const;

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.15.3 A Pointer to a Data Member 253

254 ObjectsWi thout Inheritance Chapter 2

A pointer to an object is a variable that tells us which object we’re interested in.For example, the
pointerp1 in line 5 points to the objectd. p1 can point only to adate object.

A pointer to a data member is a variable that tells us which data member we’re interested in.For ex-
ample, the pointerp2 in line 3 ‘‘points to’’ the data memberyear of classdate . p2 can point only to an
int data member of classdate .

A pointer to a data member really isn’t a pointer, and p2 certainly does not contain the address of the
year data member of any object. To emphasize this, we initializedp2 before we constructed any date
object at all.We’l l return to this issue of what a pointer to a data member really is.

Lines 10−11 form a little table with two rows and two columns, showing four binary operators.The
ones in the bottom row must be used when dereferencing a pointer to a member.

. - >

.* ->*

In column 1 of lines 10 and 11, our choice of the objectd is hard-coded in. In column 2, our choice of ob-
ject is indicated by the variablep1 .

Similarly, in line 10, our choice of the data memberyear is hard-coded in. In line 11, our choice of
data member is indicated by the variablep2 .

1 #include "date.h"
2
3 i nt date::*p2 = &date::year; //ampersand required
4 date d; //today’s date
5 date *p1 = &d;
6
7 / /Four ways to output the year data member of the object d:
8
9 / /the object d //the object pointed to by p1

10 cout << d.year; cout << p1->year; //the data member year
11 cout << d.*p2; cout << p1->*p2; //the data member pointed to by p2

2014 2014
2014 2014

See line 33 ofpoint.h on p. 725 for an exampe of a pointer to a data member under actual combat
conditions.

What does a pointer to a member really hold?

A pointer to a member tells us what member we’re interested in.But it does not identify the member
by holding the member’s address. Itidentifies the member by holding the member’s offset, i.e. its distance
in bytes from the start of its object.

To show how a pointer to a data member actually works, here is how a C program would make a vari-
able indicating which field of a structure we’re interested in. The C Standard Library has a macro named
offsetof that returns the offset of a field from the start of its structure.Line 13 stores the value of the
macro into the variableoffset to indicate that we are interested infield2 . Line 19 usesoffset to
accessfield2 of the structures . When an integer is added to a pointer in C and C++, the integer is im-
plicitly multiplied by the number of bytes in each pointed-to object. Line 19 casts the&s to a pointer to a
char , so that the implicit multiplication will be a multiplication by 1. The sum is cast to a pointer to an
int , so that we can retrieve an int field from the structure.Finally, the pointer to anint is dereferenced
with a leading* , the cherry on the sundae.

All of this virtuoso pointer arithmetic is hidden in the expressionsd.*p2 and p1->*p2 in the
above line 11.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Incidentally, the %u in line 16 is not portable. On my machinesize_t is another name for
unsigned , but on your machine it might be different.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_member/offsetof.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3 #include <stddef.h> /* for offsetof */
4
5 s truct mystruct {
6 i nt field1;
7 i nt field2;
8 } ;
9

10 int main()
11 {
12 /* We’re interested in field2. */
13 const size_t offset = offsetof(struct mystruct, field2);
14 struct mystruct s = {10, 20};
15
16 printf("The field starts %u bytes from the start of mystruct.\n", offset);
17
18 printf("The field of mystr that we’re interested in has the value %d.\n",
19 *(int *)((char *)&s + offset));
20
21 return EXIT_SUCCESS;
22 }

The field starts 4 bytes from the start of mystruct.
The field of mystr that we’re interested in has the value 20.

2.15.4 APointer to a Member Function
A pointer to a member function is a variable that tells us which member function we’re interested in.

For example, the pointerp2 in line 3 ‘‘points to’’ the print member function of classdate . p2 can
point only to aconst member function of classdate that takes no arguments and returns no value.

Lines 10−11 form a little table with two rows and two columns. Incolumn 1 of lines 10 and 11, our
choice of the objectd is hard-coded in. In column 2, our choice of object is indicated by the variablep1 .

Similarly, in line 10, our choice of theprint member function is hard-coded in. In line 11, our
choice of member function is indicated by the variablep2 .

The dot and arrow operators in line 10 have higher precedence than the function call operator() , so
they need no surrounding parentheses to make them execute first. But the.* and->* operators in line 11
have lower precedence than the function call operator, so they must be surrounded with parentheses to
make them execute first. See p. 873, line 11, for an example of the->* operator.

1 #include "date.h"
2
3 v oid (date::*p2)() const = &date::print; //ampersand required
4 date d; //today’s date
5 date *p1 = &d;
6
7 / /Four ways to call the print member function of the object d:
8

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.15.4 A Pointer to a Member Function 255

256 ObjectsWi thout Inheritance Chapter 2

9 / /the object d //the object pointed to by p1
10 d.print(); p1->print(); //the member function print
11 (d.*p2)(); (p1->*p2)(); //the member function pointed to by p2

4/8/2014 4/8/2014
4/8/2014 4/8/2014

The.* operator cannot be overloaded. Neither, by the way, can the. (dot) operator.

The above pointer to a member function is needed only to point to a non-static member function.

What are pointers to member functions for?

Lines 9−13 ofmain.C are a menu with many possible actions: cut, copy, paste, etc. Each action can
be selected with a key pressed down: the shift key, the control key, or no key at all.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_member/action.h

1 #ifndef ACTIONH
2 #define ACTIONH
3 #include <iostream>
4 using namespace std;
5
6 c lass action { //a term from jurisprudence
7 c onst char *p;
8 public:
9 action(const char *initial_p) {p = initial_p;}

10
11 void plain() const {cout << p << " plain\n";}
12 void shifted() const {cout << p << " shifted\n";}
13 void controlled() const {cout << p << " controlled\n";}
14 };
15 #endif

To avoid the complexity of displaying the menu and getting the mouse clicks and keystrokes, lines 27
and 28 pick the action and accompanying key at random.

Line 29 demonstrates the elegance of arrays and pointers to member functions. It would be instruc-
tive to rewrite this line without using pointers to member functions.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pointer_to_member/main.C

1 #include <iostream>
2 #include <cstdlib> //for srand, rand, exit, EXIT_SUCCESS
3 #include <ctime> //for time
4 #include "action.h"
5 using namespace std;
6
7 i nt main()
8 {
9 c onst action menu[] = { //array of objects

10 "cut",
11 "copy",
12 "paste"
13 };
14 const size_t menu_size = sizeof menu / sizeof menu[0];
15

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

16 //array of pointers to the member functions of the above objects
17 void (action::*const key[])() const = {
18 &action::plain,
19 &action::shifted,
20 &action::controlled
21 };
22 const size_t key_size = sizeof key / sizeof key[0];
23
24 srand(static_cast<unsigned>(time(0)));
25
26 for (int i = 0; i < 3; ++i) {
27 const size_t m = rand() % menu_size; //which object of class action
28 const size_t k = rand() % key_size; //which member function of class action
29 (menu[m].*key[k])(); //Call member function k of object m.
30 }
31
32 return EXIT_SUCCESS;
33 }

copy controlled
paste plain
cut plain

2.16 Aggregation

Three ways to build a bigger class out of smaller classes or other data types

Programming has always been the craft of building bigger things out of smaller ones.Before there
were objects, we had bigger functions calling smaller ones.A hierarchical structure was imposed on the
program by the diagram, real or imagined, of who called whom. This organization was proudly called
‘‘ structured programming’’, but is now disparaged as ‘‘procedural programming’’.

Nowadays most of our variables will be data members, and most of our functions will be member
functions. Thebigger things that we build out of smaller ones will therefore be classes. C++ has three
ways of building bigger classes out of smaller classes or other data types.

style of programming othernames for it what it means

Object-based programming aggregation, containment, composition The big objecthas alittle object.

Object-oriented programming inheritance, derivation Thebig objectis a little object.

Generic programming templates, instantiation The little data type is
plugged into the big class.

Aggregation is the use of little objects as the data members of big objects.Inheritance is the cre-
ation of a new class with a head start: the new class will have all the members that an old class had, plus
more. Atemplatelets us write a blank that will be filled in later, perhaps by another person, with the name
of a data type.For example, ‘‘an object of the new class contains objects of the old class ’’ , or ‘‘the
new class is derived from the old class ’’ .

Objects as data members

Our original classdate contained threeint ’s: year , month , and day . In fact, every data mem-
ber of every class has hitherto been of a built-in type (p. 27) or pointer thereto, or array thereof.

It is also possible for the data members to be objects.An object of the following classemployee
contains two date objects. DSincethe big object has two little objects inside it, we say that there is ahas-

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.16 Aggregation 257

258 ObjectsWi thout Inheritance Chapter 2

a relationship between the big object and the little objects.There is also ahas-a relationship between the
data type of the big object and the data types of its data members.

The header file for the containing class always begins by including the header files for the contained
classes (line 3 ofemployee.h). For rthe same reason, the header file for classrabbit began by includ-
ing the header file for classterminal on p. 195.

The data members are always constructed before, and destructed after, the object that contains them.
Here is a motion picture showing the order in which anemployee , and the two objects inside of it, are
constructed. Thethree objects are rectangles, the seven integers are squares.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

year

month

day

year

month

day

birth

hired

ss employee

To explain why the inner objects are constructed first, we introduce some terminology. The { curly
braces} of a function and the enclosed statements) are thebody of the function.When we return from the
body of a constructor, either by reaching the closing} or by executing areturn statement, the object be-
ing constructed is said to becompletely constructed.

Suppose that we were somehow interrupted between steps (9) and (10) in the above diagram. Then
the two objectsbirth andhired would be completely constructed, and theemployee object would not
be. Thisblack-and-white view of the world is very clean: every object is either completely constructed or it
isn’t.

Now suppose that the outer object was constructed first.If we were then interrupted before con-
structing thebirth andhired inside of it, the outer object would be a hollow shell. We would have to
classify it as a ‘‘completely constructed object with missing guts’’. No one wants this shade of gray.

There’s another reason why the data members must be constructed before the object that contains
them. Adate has no idea whether it is part of a surroundingemployee : the filesdate.h anddate.C
make no mention of classemployee . The error check in lines 9 and 23 ofemployee.C therefore can
not be performed by a constructor for classdate . It must be performed by a constructor for class
employee , which must be executed after the constructors for thedate ’s.

On my platform, anint is big enough to hold a nine-digit social security number (line 5). On other
platforms we might have to use along ; if the government adds extra digits or letters, we might have to use
an object.For the time being, we assume that ass_t is fast enough to pass by value.

When we have operator overloading, we will simplify the constructors for classemployee (p. 340)
and itsprint andretire member functions (pp. 340 and 286).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/employee/employee.h

1 #ifndef EMPLOYEEH
2 #define EMPLOYEEH

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

3 #include "date.h"
4
5 t ypedef int ss_t; //social security number; not portable
6
7 c lass employee {
8 date birth;
9 date hired;

10 ss_t ss;
11 public:
12 employee(const date& initial_birth, ss_t initial_ss);
13 employee(int initial_month, int initial_day, int initial_year,
14 ss_t initial_ss);
15 ˜employee() {cout << "Employee # " << ss << " gets a pink slip.\n";}
16
17 date retire() const {date d = birth; d.next(65 * 365); return d;}
18 void print() const;
19 };
20 #endif

I wish the error messages in the following lines 10−12 and 24−26 could be written tocerr . But the
print function in lines 11 and 25 is hardwired to write tocout . We’ll fix this on p. 340 whenprint is
replaced with anoperator<< function.

Line 35 would not compile if we changed it to

1 c out << birth.month << "/" << birth.day << "/" << birth.year << "\n";

Classemployee does contain adate , but that doesn’t giv e employee permission to mention the private
members ofdate . Anyway, we don’t even know if there is a member namedmonth in this classdate .
It might be the classdate with only one data member.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/employee/employee.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "employee.h"
4 using namespace std;
5
6 employee::employee(const date& initial_birth, ss_t initial_ss)
7 : birth(initial_birth), hired()
8 {
9 i f (dist(hired, birth) < 16 * 365) {

10 cout << "employee born on ";
11 birth.print();
12 cout << " << too young to hire\n";
13 exit(EXIT_FAILURE);
14 }
15
16 ss = i nitial_ss;
17 }
18
19 employee::employee(int initial_month, int initial_day, int initial_year,
20 ss_t initial_ss)
21 : birth(initial_month, initial_day, initial_year), hired()
22 {
23 if (dist(hired, birth) < 16 * 365) {
24 cout << "employee born on ";

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.16 Aggregation 259

260 ObjectsWi thout Inheritance Chapter 2

25 birth.print();
26 cout << " << too young to hire\n";
27 }
28
29 ss = i nitial_ss;
30 }
31
32 void employee::print() const
33 {
34 cout << "birth date: ";
35 birth.print();
36 cout << "\thired on: "; //\t is the tab character
37 hired.print();
38 cout << "\tss #: " << ss;
39 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/employee/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "employee.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c onst date birthday(date::july, 12, 1955); //the author’s birthday
9 c onst employee e1(birthday, 123456789);

10 e1.print();
11 cout << "\n";
12
13 const employee e2(date::may, 1, 1957, 987654321);
14 e2.print();
15 cout << "\n\n";
16
17 cout << "The second employee will retire on ";
18 const date r = e2.retire();
19 r.print();
20 cout << ".\n";
21
22 cout << "The second employee will retire on ";
23 e2.retire().print(); //and then destruct the anonymous date
24 cout << ".\n\n";
25 return EXIT_SUCCESS; //destruct r, e2, e1, birthday, in that order
26 }

The birthday in the above line 8 is used only once, in line 9.We may therefore reduce it to an
anonymous temporary and combine lines 8−9 to the following. Ourfirst example of an anonymous object
passed to a function was in line 6 on p. 138.

27 const employee e1(date(date::july, 12, 1955), 123456789);

Be sure to tell the computer the names of all the non-header files that constitute the program.

1$ g++ -o ˜/bin/employee main.C employee.C date.C

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

birth date: 7/12/1955 hired on: 4/8/2014 ss #: 123456789
birth date: 5/1/1957 hired on: 4/8/2014 ss #: 987654321

The second employee will retire on 5/1/2022.
The second employee will retire on 5/1/2022.

Employee # 987654321 gets a pink slip.
Employee # 123456789 gets a pink slip.

The colon notation for calling a constructor for a data member

Let us tentatively suppose .. . that ‘x + y = y + x’ does hold as a genuine identi-
ty; i.e., that the order of summands is wholly immaterial.A notation of addition
more suggestive than ‘x + y’, then, would consist in simply superimposing ‘x’ and
‘y’ in the manner of a monogram.

—W. V. Quine, inThe Philosophy of Alfred North Whitehead, p. 128

The constructors for the data members are executedbefore the body of the constructor for the object
that contains the data members.Similarly, the destructors for the data members are executedafter the body
of the destructor for the containing object.

For example, line 9 ofmain.C calls the constructor with two arguments for classemployee . Nor-
mally we would go straight from this line to line 9 ofemployee.C , which is the first line of the body of
the constructor. But we make two detours along the way. From line 9 ofmain.C we go to line 7 of
employee.C . This ‘‘colon line’’ calls the constructors for the data membersbirth and hired and
gives them their arguments. Thecopy constructor is called forbirth and the default constructor for
hired . Only after these two constructors have executed do we proceed to line 9 ofemployee.C .

The birth data member is constructed beforehired because of the order of the declarations in
lines 8−9 ofemployee.h . It has nothing to do with the order in which the data members are mentioned
in line 7 ofemployee.C . birth would still be constructed beforehired ev en if l ine 7 of
employee.C had said

1 : hired(), birth(initial_birth)

But there’s no reason to write the names in a misleading order.

Line 7 of employee.C passes no arguments to the constructor forhired . The line would there-
fore usually be written as follows. Thedefault constructor forhired would still be called after the copy
constructor forbirth .

2 : birth(initial_birth)

The, h ired() can also be removed from line 21 ofemployee.C .

Even if there is no colon line at all, a constructor for each data member will still be called. In this
case it will be the default constructor, and the program will compile only if every data member has one.
But even if it does compile, the program may be wasting time.For example, let’s remove the colon line
from our constructor.

3 employee::employee(const date& initial_birth, ss_t initial_ss)
4 {
5 birth = initial_birth;
6
7 i f (dist(hired, birth) < 16 * 365) {
8 c out << "employee born on ";
9 birth.print();

10 cout << " << too young to hire\n";
11 exit(EXIT_FAILURE);
12 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.16 Aggregation 261

262 ObjectsWi thout Inheritance Chapter 2

13
14 ss = i nitial_ss;
15 }

The default constructors forbirth andhired will still be called at the above line 3½. This will
initialize birth to today’s date, and will then wipe it out in line 5.

The best way to define the two-argument constructor for classemployee is the following. Line17
calls the copy constructor forbirth and the default constructor forhired . It also calls the ‘‘construc-
tor’’ f or the data memberss . This member is merely a built-in (p. 27), not an object. But we are allowed,
and in fact encouraged, to use a syntax that makes it look as if every member were an object. If we pro-
gram in the same style with all our variables, built-ins and objects, we will be able to convert our code into
‘‘ templates’’ more easily. See p. 634.

16 employee::employee(const date& initial_birth, ss_t initial_ss)
17 : birth(initial_birth), ss(initial_ss)
18 {
19 if (dist(hired, birth) < 16 * 365) {
20 cout << "employee born on ";
21 birth.print();
22 cout << " << too young to hire\n";
23 exit(EXIT_FAILURE);
24 }
25 }

Initialization vs. assignment

Initialization puts the first value into a new variable. Assignmentputs a new value into an existing
variable. Althoughwe have always written them with the same symbol (=), we can readily tell them apart.

1 i nt i = 10; //Initialize i.
2 i = 20; //Assign to i.

For the built-in data types (p. 27), pointers, and enumerations, initialization and assignment differ in
only one way: we can initialize aconst but cannot assign to it.

3 c onst int i = 10; //can initialize a const
4 i = 20; //can’t assign to a const: won’t compile

If the variable is not aconst , initialization and assignment are the same operation.

The originalss = initial_ss in line 16 ofemployee.C is the notation for assigning a value
to any variable. The: s s(initial_ss) in the above line 17 is the notation for initializing a variable
that is a data member. Sincess is a non-const built-in, our preference for initialization over assignment
is merely a matter of style. But ifss ev er becomes aconst , we will be forced to initialize it (p. 266).
And if ss becomes an object, we have seen that it will be initialized whether we write the colon line or not.
Therefore the above line 17 initializesss now, so we won’t hav eto change it later.

An object is always initialized by calling its constructor. For an object,initialization andconstruc-
tion are two names for the same operation. But pp. 302−303 will show that for an object, initialization and
assignment may be very different operations, initialization often being cheaper. For these reasons, always
put the initial value into any object by initialization, not assignment.In fact, do this when possible for any
variable.

Destruction

Eachemployee ’s destructor will be called automatically in line 25 of the above main.C . After
executing the body of this destructor (line 15 ofemployee.h), we automatically call the destructors for
the data membershired andbirth (in the order opposite to that of lines 8−9 ofemployee.h). To see
the order in which the three objects are destructed, read the above diagram from right to left.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 2.16a: initialize the data members

Wherever possible, go back and make the constructors initialize the data members, rather than assign
to them. It will make a difference if the data members ever become objects in their own right. This could
happen without our even knowing it, when we switch to templates.

(1) On pp. 145−146, the constructor currently begins like this:

1 l ife::life(const matrix_t& initial_matrix)
2 {
3 g = 0;

Change it to

4 l ife::life(const matrix_t& initial_matrix)
5 : g(0)
6 {

(2) In line 11 ofstack.h on p. 150, classstack has an inline constructor:

7 s tack() {n = 0;}

Change it to

8 s tack(): n(0) {}

(3) In Homework 2.6b on pp. 152−153, the new classstack has a similar constructor:

9 s tack() {p = a;}

Change it to

10 stack(): p(a) {}

The data memberp should also be initialized by the copy constructor for the new classstack . The data
membera, howev er, is an array, and there is no syntax for initializing an array with a colon. The copy con-
structor for the new classstack will have to continue to assign toa with thefor loop.

(4) In lines 9−12 ofpoint.h on p. 201, classpoint has an inline constructor with default values
for both its arguments:

11 point(double initial_x = 0.0, double initial_y = 0.0) {
12 x = i nitial_x;
13 y = i nitial_y;
14 }

Change it to

15 point(double initial_x = 0.0, double initial_y = 0.0)
16 : x(initial_x), y(initial_y) {}

(5) Make this change to classesduo andmono on pp. 135−137.

(6) Make this change to classterminal in lines 7−23 ofterminal.C on p. 160.It’s easy to ini-
tialize the data member_background . To initialize the other two data members, we must call the C
functions term_xmax and term_ymax . But before we call them, we must callterm_construct .
Where is there room to do that in the colon line?

C and C++ have a trick for writing two expressions where the syntax permits only one.We can build
a big expression out of two smaller ones with thecomma operator. The two smaller expressions are ex-
ecuted from left to right (p. 13).Its most common use is to let us change the values of two variables in a
loop.

1 / /The righmost comma is a comma operator.
2 f or (int i = 0, j = 1; i < 10; ++i, j *= 2) {
3 c out << "2 to the power " << i << " is " << j << ".\n";

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.16 Aggregation 263

264 ObjectsWi thout Inheritance Chapter 2

4 }

When a comma operator is written in an argument list, its two expressions must be surrounded by parenthe-
ses. That’s how the computer knows it’s the comma operator, rather than the comma that separates argu-
ments.

5 v oid f(int a, int b); //function declarations
6 v oid f(int a, int b, int c);
7
8 f ((++i, --j), k); //call 2-arg f; leftmost , is the comma operator
9 f (++i, --j, k); //call 3-arg f; none of these is the comma operator

Since we are writing the comma operator in the argument list of the constructor for_xmax, its two oper-
ands must be enclosed in parentheses.

10 terminal::terminal(char initial_background)
11 : _background(initial_background),
12 _xmax((term_construct(), term_xmax())),
13 _ymax(term_ymax())
14 {

A similar use of parentheses is to enclose the> operator in a template preamble; see p. 693.

I’m not happy about this bizarre syntax, but I want the data members of classterminal to be ini-
tialized. Soonthey will have to be (p. 269).

(7) Make this change to classrandom in line 9 ofmyrandom.h on p. 176.

(8) Make this change to all three constructors for classobj in lines 9−11 ofobj.h on p. 180.

(9) Make this change to the constructor for classnode in line 15 ofnode.h on p. 214.

(10) Make this change to the constructor for classaction in line 10 ofaction.h on p. 256.
▲

▼ Homework 2.16b:
Version 1.6 of the Rabbit Game: initialize the data members of classeswolf and rabbit

The constructors for classesrabbit andwolf currently assign values to their three non-static data
members. Letthem initialize the data members instead.
▲

▼ Homework 2.16c: create a class whose data members are objects

Before we had objects, we had to pass the addresses of many individual variables to a function.An
example was in line 32 ofversion1.C on p. 107.

1 date_print(&year, &month, &day);

After we had objects, all we had to pass was one invisible address. See line 41 ofversion3.C on p. 109.

2 d.print();

Now look at the calls to thearea andcontains functions in lines 15 and 32 ofmain.C on pp.
208−209. Like the originaldate_print , we hav eto pass them three separate variables.

3 c out << area(A, B, C) << "\n"
4 << contains(A, B, C, D) << "\n";

Define a new class,triangle , whose data members will be threepoint ’s namedA, B, and C. Remove
the existingarea andcontains functions and reincarnate them as member functions of class
triangle . Thecontains function will construct threetriangle objects as anonymous temporaries,
and compare the sum of their areas with the area of thetriangle of which thecontains is a member.

5 t riangle t(A, B, C);

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

6
7 c out << t.area() << "\n"
8 << t .contains(D) << "\n";

You can invent additional member functions:perimiter , center , is_right , etc. Shouldtrian-
gleABCbe equal to triangleACB?

The header filetriangle.h will have to includepoint.h . To compute the area without men-
tioning the private members of classpoint , triangle::area can use Heron’s formula. Leta, b, and
c be the lengths of the sides. Let

s =
a + b + c

2

Then the area of the triangle will be

√ s(s − a)(s − b)(s − c)

Better yet, give classpoint the following public member functions. Call them fromtriangle::area
and lettriangle::area use the original formula for the area.

9 double get_x() const {return x;}
10 double get_y() const {return y;}

▲

▼ Homework 2.16d: should this class have data members that are objects?

Let’s assume we have a classpoint whose data members are

1 double x;
2 double y;

We can easily create a classline by giving it the data members

3 point A; //must be two different points!
4 point B;

Let’s assume that our classline is to represent an infinitely long line, not a line segment. Thetwo
points would therefore contain too much information, a total of fourdouble ’s. A smaller way to repre-
sent the line would be

5 point p; //any point on the line
6 double slope;

A line now contains a total of threedouble ’s, but one of them could be infinity.*

Is there an even more compact represenation for aline ? Should a triangle contain three
line ’s instead of threepoint ’s?
▲

2.17 ConstantNon-static Data Members

* There may be a way to store∞ into adouble without attempting to divide by zero. See the
has_infinity data member and theinfinity member function of the template class
numeric_limits .

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.17 Constant Non-static Data Members 265

266 ObjectsWi thout Inheritance Chapter 2

Initialize a constant non-static data member

We hav ealready seen aconst static data member, in line 7 on p. 237.We can also have aconst
non-static data member, in the following line 8. Line 12 will therefore not compile: we cannot assign to a
const .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_data_member/badinterval.h

1 #ifndef INTERVALH
2 #define INTERVALH
3 #include <iostream>
4 #include "date.h"
5 using namespace std;
6
7 c lass interval {
8 c onst date begin;
9 date end;

10 public:
11 interval(const date& initial_begin, const date& initial_end) {
12 begin = i nitial_begin;
13 end = i nitial_end;
14 }
15
16 void change_end(const date& new_end) {end = new_end;}
17 void print() const {cout << "(" << begin << ", " << end << ")";}
18 };
19 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_data_member/badincluder.C

1 #include "badinterval.h"
2
3 i nt main()
4 {
5 }

The ‘‘discard qualifiers’’ message means you’re trying to do something with aconst object that can
only be done with a non-const object.

In file included from badincluder.C:1:0:
badinterval.h: In constructor ’interval::interval(const date&, const date&)’:
badinterval.h:12:11: error: passing ’const date’ as ’this’ argument of ’date&
date::operator=(const date&)’ discards qualifiers

Instead of the assignment in above line 12, the constructor for classinterval will have to initialize
begin in line 24:

23 interval(const date& initial_begin, const date& initial_end)
24 : begin(initial_begin) {
25 end = i nitial_end;
26 }

The constructor in the above lines 23−26 still has a bug, although it is only a performance bug. To
see it, observe that the above line 24 really does the same thing as line 28:

27 interval(const date& initial_begin, const date& initial_end)
28 : begin(initial_begin), end() {

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

29 end = i nitial_end;
30 }

Now we can see that line 24 uselessly initializesend to today’s date, and then the next line assigns
initial_end to end . To avoid this waste of time,end should be initialized to the correct value:

31 interval(const date& initial_begin, const date& initial_end)
32 : begin(initial_begin), end(initial_end) {}

We can’t assign to an object that contains a const data member.

The equal signs in lines 9 and 14 perform the initialization operation.They call copy constructors.
The equal signs in lines 10 and 15 perform the assignment operation.They assign the value of each data
member in their right operand to the corresponding data member in their left operand. Line 15 is therefore
a shorthand for

1 i 1.begin = i2.begin; //won’t compile
2 i 1.end = i2.end; //will compile

which is why line 15 will not compile.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_data_member/main.C

1 #include <cstdlib>
2 #include "date.h"
3 #include "interval.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d1; //Initialization: call the default constructor.
9 date d2 = d1; //Initialization: call the copy constructor.

10 d2 = d1; //Assignment.
11
12 d2.next(10);
13 interval i1(d1, d2);//Initialization: call the two-arg constructor.
14 interval i2 = i1; //Initialization: call the copy constructor.
15 i1 = i 2; //This assignment won’t compile.
16
17 return EXIT_SUCCESS;
18 }

In file included from main.C:3:0:
interval.h: In member function ’interval& interval::operator=(const interval&)’:
interval.h:7:16: error: non-static const member ’const date interval::begin’,
can’t use default assignment operator
main.C: In function ’int main()’:
main.C:15:7: note: synthesized method ’interval& interval::operator=(const
interval&)’ first required here

Tw o ways to make the data members constant

The classconst_members in lines 4−19 shows one way of making a data member constant.We
have chosen to make all of themconst , but we didn’t hav eto. Thedata members are constant throughout
its lifetime, so the increments and decrements in lines 9 and 14 would not compile.

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.17 Constant Non-static Data Members 267

268 ObjectsWi thout Inheritance Chapter 2

Although its data members areconst , the objecto1 in line 36 is notconst . The calls to the
non-const member functionf in line 37 will therefore compile.

Another way of making constant data members is by declaring the whole object to beconst in line
39. Thistime, every data member will always be constant.But the object does not becomeconst until it
reaches the closing curly brace at the end of the constructor in line 27.Until then the data members can
still be modified, and we can still call non-const member functions.The object ceases to beconst
when it reaches the opening curly brace at the start of the destructor in line 29. After that the data members
can again be modified, and non-const member functions can be called.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_data_member/const_members.C

1 #include <cstdlib>
2 using namespace std;
3
4 c lass const_members {
5 c onst int i;
6 c onst int j;
7 public:
8 c onst_members(int initial_i, int initial_j): i(initial_i), j(initial_j){
9 / /++i or ++j would not compile here

10 f();
11 }
12
13 ˜const_members() {
14 //--j or --i would not compile here
15 f();
16 }
17
18 void f() {} //a non-const member function
19 };
20
21 class obj {
22 int i;
23 int j;
24 public:
25 obj(int initial_i, int initial_j): i(initial_i), j(initial_j) {
26 ++i; ++j; f();
27 }
28
29 ˜obj() {f(); --j; --i;}
30
31 void f() {} //a non-const member function
32 };
33
34 int main()
35 {
36 const_members o1(30, 40);
37 o1.f(); //will compile: o1 is not const object
38
39 const obj o2(10, 20);
40 //o2.f(); //won’t compile: o2 is a const object
41
42 return EXIT_SUCCESS;
43 }

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 2.17a:
Version 1.7 of the Rabbit Game: constant data member for classeswolf and rabbit

Let thet data member of classeswolf andrabbit be constant.They will now hav eto be initial-
ized with a colon like interval::begin . (You hav ealready done this if your homework is up-to-date.)

The data membert is a pointer. Recall from pp. 50−52 that there are two ways of making a pointer
constant. t is already constant in the sense of being a ‘‘read-only’’ ponter. Keep it constant that way, but
also make it constant in the sense of ‘‘always pointing to the sameterminal ’’ . This will keep the animal
tethered to the sameterminal throughout its life.

Do not change the data types of the arguments of the constructors of classeswolf andrabbit .
▲

▼ Homework 2.17b:
Version 1.8 of the Rabbit Game: constant data members for classterminal

No member function or friend of classterminal changes the three data members of that class.En-
force this by making themconst . See pp. 263−264 for instructions on how to initialize the data members.
▲

printed 4/8/14
8:38:59 AM

All rights
reserved ©2014 Mark Meretzky

Section 2.17 Constant Non-static Data Members 269

