
NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Summer 2013 Handout 8

▼ Homework 8.1: Concurrent Versions System (CVS)

http://www.nongnu.org/cvs/

If we put a file under the protection of CVS, the people who want to edit the file can be forced to do
so one at a time. CVS sits on top of the Revision Control System RCS. An older program similar to RCS
was the Source Code Control System SCCS.

Do not attempt this homework before I discuss it in class, or if you were absent when I discussed it in
class, or if you have not copied my.profile file into your home directory, or if you do not currently
have a file in the ˜mm64/public_html/INFO1-CE9545/bio directory (make sure that I haven’t
moved your file to thẽ mm64/public_html/INFO1-CE9545/bb directory), or if there is other due
homework which you have not handed in, or if yourvi says[Using open mode] when you launch it
(Handout 3, p. 1), or ifecho $S45 shows you nothing (Handout 2, p. 13, lines 29−30). Do not write a
lawyer joke.

Do not edit any file in the˜mm64/45/cvs directory or its subdirectories. Do not move or copy any
file into, or remove any file from, thẽ mm64/45/cvs directory or its subdirectories.

(1) Thejokes file is stored in the directorỹmm64/45/cvs/CVSROOT (the ‘‘repository’’) and its
subdirectories. Beforegiving any CVS commands, you must put the name of this directory’s parent into
the environment variable$CVSROOT. If you use CVS frequently, you can do this in your.profile file.
For environment variables, see Handout 3, p. 16; see Handout 4, p. 4.

1$ export CVSROOT=˜mm64/45/cvs

2$ echo $CVSROOT
/home1/m/mm64/45/cvs

To verify that $CVSROOTis an environment variable, not a local variable, see if it is output by theenv
program (Handout 1, p. 3, line 61).

3$ env | awk -F= ’$1 == "CVSROOT"’
CVSROOT=/home1/m/mm64/45/cvs

(2) To check out thejokes file, start in your home directory.

4$ cd
5$ pwd

The cvs checkout command should create a subdirectory namedjokesdir (if you do not already
have one) in the current directory, and should create a file namedjokes in the jokesdir directory.
Let’s anticipate four things that could prevent this.

(a) If the current directory already contains something namedjokesdir that is not a subdirectory, you
must first rename it, remove it, or move it elsewhere.

(b) If the current directory contains no subdirectory namedjokesdir , make sure you have w permis-
sion for the current directory.

(c) If the current directory already has a subdirectory namedjokesdir , make sure that the subdirec-
tory ischmod’ed to at leastrwx------ .

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 1 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

(d) If the current directory already has a subdirectory namedjokesdir , and the subdirectory contains
anything namedCVSor jokes , you must first rename them, remove them, or move them elsewhere.

6$ ls -ld jokesdir Thejokesdir directory does not yet exist.
jokesdir: No such file or directory

Thecvs checkout command should create thejokesdir directory and thejokesdir/jokes
file. Thecvs admin -l command (minus lowercase L) should lock thejokesdir/jokes file so that
no one else can edit it and commit their changes.*Execute the two cvs commands together by joining
them with a semicolon.

7$ cvs checkout jokesdir; cvs admin -l jokesdir/jokes

sh[1]: cvs: not found [No such file or directory]
sh[1]: cvs: not found [No such file or directory]

Let’s verify that we created thejokesdir directory andjokesdir/jokes file:

8$ ls -ld jokesdir

9$ ls -l jokesdir

Let’s verify that thejokesdir/jokes file is locked. Thetimes are in UT:

10$ cvs log jokesdir/jokes | more

(3) Add your joke to the bottom of thejokesdir/jokes file.

11$ vi jokesdir/jokes

(4) Unlock thejokesdir/jokes file and commit the changes.

12$ cvs admin -u jokesdir/jokes; \
cvs commit -m ’I added the joke about the $18 bills.’ jokesdir/jokes

sh[1]: cvs: not found [No such file or directory]
sh[1]: cvs: not found [No such file or directory]

Let’s verify that thejokesdir/jokes file is now unlocked, and that a new revision has been cre-
ated.

13$ cvs log jokesdir/jokes | more

Post thejokes file on the web and print it from there. Circle your joke and hand it in.

14$ cp jokes ˜/public_html
15$ cd ˜/public_html
16$ chmod 444 jokes r--r--r-- to makejokes visible on the web
17$ ls -l jokes

(5) Remove your copy of jokesdir and its contents withcvs release -d instead ofrmdir . It
will warn you if you have accidentally changed your copy of the jokes file after thecommit . Go to the
parent directory ofjokesdir .

* To get thesereserved checkouts, p. 9 ofcvs (1) says to run the Perl program
/opt/sfw/share/cvs/contrib/rcslock . But this program tries to run therlog program of the Revision Con-
trol System RCS, which we no longer have on i5.nyu.edu.

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 2 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

18$ cd
19$ pwd

20$ ls -ld jokesdir Make sure you’re in the parent directory ofjokesdir .

We hav eno altered files because we have not modified any files since thecommit .

21$ cvs release -d jokesdir -d for ‘‘delete’’

22$ ls -ld jokesdir Thejokesdir directory should be gone.
jokesdir: No such file or directory

You can give thecvs history command even after you have released the directory. You can give
thecvs log command only before you have released the directory.

23$ cvs history -m jokesdir

How I created the jokes file and put it under the protection of CVS

Don’t do this. I already did it.

1$ export CVSROOT=˜mm64/45/cvs Create the environment variable.
2$ echo $CVSROOT
3$ cvs init Create the directorỹmm64/45/cvs and its subdirectoryCVSROOT.
4$ ls -ld ˜mm64/45/cvs
5$ ls -ld ˜mm64/45/cvs/CVSROOT

6$ cd
7$ pwd

8$ mkdir jokesdir
9$ chmod 755 jokesdir
10$ ls -ld jokesdir

11$ cd jokesdir
12$ vi jokes Create thejokes file.
13$ chmod 644 jokes
14$ ls -l jokes

Copy the file(s) in the current directory (and its descendants, if any) into the directory
$CVSROOT/jokesdir .

15$ cvs import -m ’INFO1-CE9545/Y12.1005 Summer 2013 jokes file’ jokesdir vendor release

Substitute commands in vi and ed Substitute commands in sed

In vi , you must not be in insert mode when you give the commands in column 1.PressESCto make
sure that you are not in insert mode. Each of thevi commands in column 1 begins with a: and ends with
aRETURN.

For the presence or absence of the trailingg, see p. 323. For the g/bystander/ and
v/bystander/ prefixes, see p. 325.s will accept all the same prefixes that were used in front of thew
andp in Handout 6, p. 4; they in Handout 4, p. 14; and thes in Handout 3, p. 4.Perl has the sames///
commands, except that the prefix is written with the keyword if . s . See pp. 18−19 ofperlop (1); you’ll
have to giv e the argument-M/usr/perl5/man to man.

:s/old/new/ (sed has no ‘‘current line’’.)
:s/old/new/g

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 3 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

:10s/old/new/ 10s/old/new/
:10s/old/new/g 10s/old/new/g

:10,20s/old/new/ 10,20s/old/new/
:10,20s/old/new/g 10,20s/old/new/g

:1,$s/old/new/ s/old/new/
:1,$s/old/new/g s/old/new/g

:g/bystander/s/old/new/ /bystander/s/old/new/
:g/bystander/s/old/new/g /bystander/s/old/new/g

:v/bystander/s/old/new/ /bystander/!s/old/new/ p. 110 for!
:v/bystander/s/old/new/g /bystander/!s/old/new/g

:10,20g/bystander/s/old/new/ (beyond the scope of this course)
:10,20g/bystander/s/old/new/g (beyond the scope of this course)

:10,20v/bystander/s/old/new/ (beyond the scope of this course)
:10,20v/bystander/s/old/new/g (beyond the scope of this course)

:g/bystander/+1s/old/new/ (sed has no relative addressing.)
:g/bystander/+1s/old/new/g

Substitute commands to remove entirely

I didn’t bother to show the prefix (e.g.,:1,$) in front of the followings commands

s/old// Remove the firstold from the line. No space between slashes.
s/old//g Remove everyold from the line.

Substitute commands with regular expressions

You can use any regular expression in place ofold or bystander ; for example ˆold , old$,
[Oo]ld , etc. Seepp. 323−325 fors commands ined , which are the same as invi .

s/old/new/g
s/ˆold/new/
s/[Oo][Ll][Dd]/Old/g instead of 7 separate commands

s/ˆ/new/ Addnew to the start of the line.
s/$/new/ Addnew to the end of the line.

s/max/MAX/g
s/\<max\>/MAX/g Handout 6, p. 14, line 12

To write the Christmas message (Handout 5, p. 11, Homework 5.4), I created a garbage file withvi by
slapping the keyboard with the heels of my palms. Then

:1,$s/[ˆa-z]//g Remove every character except lowercase letters and blanks.
:1,$s/l//g Remove every lowercase L.
:1,$s/[ˆa-km-z]//g Do both of the above with a single command.

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 4 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Substitute commands with a bystander

To make a change on every line that starts with a#,

g/ˆ#/s/old/new/g

To make a change on every line that doesn’t start with a#,

v/ˆ#/s/old/new/g

Substitute commands with tagged regular expressions

& is a special character in the replacement, standing for a copy of the character(s) that were matched
by the pattern (pp. 323−4).For example, the& in example 2 stands for the wordtrash .

1 : 1,$s/trash/.trash/g The dot is not a wildcard here, so it needs no backslash.
2 : 1,$s/trash/.&/g
3 : 1,$s/\(trash\)/.\1/g another way to do the same thing
4 : 1,$s/-\([0-9]\{1,\}\)/(\1)/g parenthesize every negative number; H 6:17 for\{1,\}
5 perl -pe ’s/-(\d+)/($1)/g;’ easier inPerl ; H 7:11 for +

Thetrash in the patterns in the above lines 1−3 should be\<trash\> . See Handout 6, p. 14, line 12.

Only the pattern, not the replacement, is a regular expression.

The two parts of a substitute command are called the

s/ pattern/ replacement/g

Compare theawk nomenclature in Handout 4, p. 16, line 2.

grep ’\$’ search for a dollar sign

The$ and other regular expression characters are special in the pattern but not in the replacement.

1 : 1,$s/\$/dollar/g Requires a backslash.
2 : 1,$s/dollar/$/g ★ Requires no backslash. Easierto sayu for ‘‘undo’’: Handout 3, p. 3

The& is special in the replacement but not in the pattern.

3 : 1,$s/ampersand/\&/g Requires a backslash.
4 : 1,$s/&/ampersand/g Requires no backslash.

The/ is special in the pattern and in the replacement.

5 : 1,$s/half/1\/2/g Requires a backslash.
6 : 1,$s/1\/2/half/g Requires a backslash.

This / is special neither in the pattern nor in the replacement.

7 : 1,$s:half:1/2:g Use three colons instead of three slashes.
8 : 1,$s:1/2:half:g

The vi example that made me a true believer

1$ grep ’,,,,’ lines with four (or more) consecutive commas
2$ grep ’,.*,.*,.*,’ lines with four (or more) commas, not necessarily consecutive

3$ grep -i ’i.*i.*i.*i’ /usr/dict/words | more
Mississippi
primitivism

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 5 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

/* part of a C program */

typedef struct {
char field1;
int field2;
double field3;
char *field4;

} s tooge_t;

stooge_t stooge[] = {
1.11, 1, ’a’, "moe",
2.22, 2, ’b’, "larry",
3.33, 3, ’c’, "curly",
4.44, 4, ’d’, "shemp",
5.55, 5, ’e’, "Buster Keaton",

};

I typed the columns in the wrong order. The following s command invi fixes this by taking advantage of
the fact that each line has exactly four commas.

:11,2000s/ˆ\(.*,\)\(.*,\)\(.*,\)\(.*,\)$/\3\2\1\4/

’a’, 1, 1.11, "moe",
’b’, 2, 2.22, "larry",
’c’, 3, 3.33, "curly",
’d’, 4, 4.44, "shemp",
’e’, 5, 5.55, "Buster Keaton",

Suppose one of the strings contained commas as well as blanks:

5.0, 5, ’e’, "moe, larry, curly, shemp",

Once again, we will require the last character of part 4 to be a comma.But this time, it can’t be any old
comma: it has to be a comma that comes right after a double quote.And not just any old double quote: it
has to be a double quote that is not the first one on the line.

:11,2000s/ˆ\(.*,\)\(.*,\)\(.*,\)\(.*".*",\)$/\3\2\1\4/

Vi calisthenics I

The following commands can also be used insed , ed , and Perl. Remove the leading: in ed , and
remove the leading:1,$ in sed and Perl.

3
01000
00012345
123456789

1

:1,$s/ˆ0*// Remove leading zeros.

3
1000
12345
123456789

2

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 6 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

:1,$s/ˆ/000000000/ Right-justify the numbers with leading zeros (two steps).

0000000003
0000000001000
00000000012345
000000000123456789

3

:1,$s/ˆ.*\(.........\)$/\1/ Remove all but last 9 characters.
:1,$s/ˆ.*\(.\{9\}\)$/\1/ Another way to do the same thing: Handout 6, p. 9, lines 10−11.

000000003
000001000
000012345
123456789

4

:1,$s/.../&,/g Insert commas every 3 digits, non-overlapping: pp. 323−4 for&.

000,000,003,
000,001,000,
000,012,345,
123,456,789,

5

:1,$s/,$// Remove trailing comma.

000,000,003
000,001,000
000,012,345
123,456,789

6

:1,$s/ˆ[0,]*// Remove leading zeros and commas.

3
1,000
12,345
123,456,789

7

:1,$s/.*/$&.00/ Add a leading dollar sign and trailing.00 .

$3.00
$1,000.00
$12,345.00
$123,456,789.00

8

:1,$s/ˆ/***************/ Add 15 leading asterisks.

***************$3.00
***************$1,000.00
***************$12,345.00
***************$123,456,789.00

9

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 7 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

:1,$s/ˆ.*\(...............\)$/\1/ Remove all but last 15 characters; don’t need$.
:1,$s/ˆ.*\(.\{15\}\)$/\1/ Another way to do the same thing: Handout 6, p. 9, lines 10−11.

**********$3.00
******$1,000.00
*****$12,345.00
$123,456,789.00

10

:1,$s/\$\./$0./ If there’s no digit to the left of the decimal point, add one.
:1,$s/\([0-9]\)\([.,]\)/\2\1/g Deflation: move each decimal point and comma to the left.
:1,$s/\$,/*$/ Prevent$1,000.00 from becoming$,100.000
:1,$s/0$// Remove trailing zero, if there is one.

**********$.30
*******$100.00
*****$1,234.50
$12,345,678.90

11

:1,$s/\.$/.0/ If there’s no digit to the right of the decimal point, add one.
:1,$s/\([.,]\)\([0-9]\)/\2\1/g Inflation: move each decimal point and comma to the right.
:1,$s/*\(\$[0-9]\)\([0-9][0-9][0-9]\)/\1,\2/ Prevent$100.000 from becoming$1000.00
:1,$s/$/0/ Add a trailing zero.

**********$3.00
******$1,000.00
*****$12,345.00
$123,456,789.00

12

Vi calisthenics II

Yevgeniy Berezovskiy
Andrew Wong

1

:1,$s/ \{2,\}/ /g Reduce groups of 2 or more consecutive blanks to a single blank.
:1,$s/[]\{1,\}/ /g Reduce groups of 1 or more consecutive blanks and/or tabs to a single blank.

(The wildcard contains one blank and one tab.)

Yevgeniy Berezovskiy
Andrew Wong

2

:1,$s/ˆ\(.*\) \(.*\)$/\2, \1/

Berezovskiy, Yevgeniy
Wong, Andrew

3

:1,$s/\(.\).*$/\1./

Berezovskiy, Y.
Wong, A.

4

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 8 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

:1,$s/ˆ\(.\).*, \(.\)/\2\1 &/

YB Berezovskiy, Y.
AW Wong, A.

5

:1,$s/ˆ...// or u for ‘‘undo’’: Handout 3, p. 3

Berezovskiy, Y.
Wong, A.

6

:1,$s/,/------,/ Pad the last name to six characters with dashes (two steps).

Berezovskiy------, Y.
Wong------, A.

7

:1,$s/ˆ\(......\).*,/\1,/ Truncate the last name to at most 6 characters: Procrustean bed.

Berezo, Y.
Wong--, A.

8

:1,$s/./& /g Horizontal double space.
:1,$s/ $// Remove trailing blank.

B e r e z o , Y .
W o n g - - , A .

9

:1,$s/\(.\) /\1/g Remove the double space.

Berezo, Y.
Wong--, A.

10

The first command puts the tags around everything up to but not including the first comma. The sec-
ond command puts the tags around everything up to but not including the last comma.If the line has
exactly one comma, the commands do the same thing. See the three colons in Handout 8, p. 7, lines 7−8.

:1,$s:ˆ[ˆ,]*:&: Surround last name w/ pair of tags: Handout 3, p. 9, l. 50.
:1,$s:[ˆ,]*$:&:

Berezo, Y.
Wong--, A.

11

A problem case

vi Calisthenics II assumes that each line contains two names. Whatif some lines contain three?

Yevgeniy Berezovskiy

1 grep ’ˆ[ˆ]* [ˆ]*$’ Output the lines that have exactly one space.
2 grep ’ˆ[ˆ]* [ˆ]* [ˆ]*$’ Output the lines that have exactly two spaces.

3 : g/ˆ[ˆ]* [ˆ]*$/s/old/new/g Changeold to new only on lines that have exactly one space.

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 9 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

4 : g/ˆ[ˆ]* [ˆ]* [ˆ]*$/s/old/new/g Changeold to new only on lines that have exactly two spaces.

Chop off a fixed number of characters

The following commands have no effect on a line with less than three characters.

1 s /ˆ...// Remove the first three characters;ˆ is optional.
2 s /...$// Remove the last three characters;$ is required.

3 s /ˆ\(...\).*$/\1/ Remove all but the first three characters.
4 s /ˆ.*\(...\)$/\1/ Remove all but the last three characters.

5 s /ˆ\(..\).../\1/ Remove the third, fourth, and fifth characters; no effect on line with less than 5 chars.
6 s /...\(..\)$/\1/ Remove the fifth from last, fourth from last, and third from last characters

Chop off a variable number of characters

The following commands have no effect on a line that has no colons.

1 s /:// Remove the first colon.
2 s /\(.*\):/\1/ Remove the last colon.
3 s /:\([ˆ:]*\)$/\1/ Another way to remove the last colon.

4 s /:.*$// Remove everything after and including the first colon.
5 s /:.*$/:/ Remove everything after but excluding the first colon.

6 s /ˆ.*:// Remove everything up to and including the last colon.
7 s /ˆ.*:/:/ Remove everything up to but excluding the last colon.

8 s /ˆ[ˆ:]*:// Remove everything up to and including the first colon.
9 s /ˆ[ˆ:]*:/:/ Remove everything up to but excluding the first colon.

10 s/:[ˆ:]*$// Remove everything after and including the last colon.
11 s/:[ˆ:]*$/:/ Remove everything after but excluding the last colon.

12 s/:[ˆ:]*:[ˆ:]*$// Remove everything after and including the next-to-last colon.
13 s/ˆ\([ˆ:]*:\)[ˆ:]*/\1/ Remove password field of/etc/passwd ; leave 6 colons intact.

Oftenvi requires fewer carets and dollar signs thangrep :

14 s/ˆ.// Remove the first character on the line.
15 s/.// another way to do the same thing—the caret is optional

Some of the carets and dollar signs shown above are therefore not required, but it’s simpler to always put
them in.

Definitive Statement on’ Single’ , " Double" , and ‘ Back‘ Quotes

(1) Back quotes are the simplest.They can enclose only a command whose output is to become part
of a longer command.

1$ echo ‘hello‘ bad: the shell will thinkhello is the name of a program
ksh[1]: hello: not found [No such file or directory]

For example, to mail a letter to everyone in the class who is logged in,

2$ mail ‘classmates‘ < ˜/letter

More examples are in Handout 5, pp. 15−23.

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 10 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

(2) Single or double quotes make the shell treat two or more words as a single word. Inthe following
example, the quotes prevent grep from thinking that you were searching for the word To in two files
namedbe and$S45/Shakespeare.complete :

3$ grep word infile1 infile2 infile3
4$ cd $S45
5$ pwd
6$ grep ’To be’ Shakespeare.complete

7$ grep To be Shakespeare.complete | head -3
grep: can’t open be
Shakespeare.complete: (Townsman:)
Shakespeare.complete: To marry Princess Margaret for your grace,
Shakespeare.complete: So, in the famous ancient city, Tours,

8$ awk ’{print $1}’ infile {print $1} must be a single argument
9$ awk {print $1} infile
awk: syntax error near line 1
awk: illegal statement near line 1

10$ x=hello Handout 4, p. 3
11$ cf=chow fon Puts only the wordchow into $cf .
12$ cf=’chow fon’

for things in flowers ’young girls’ husbands soldiers Handout 4, p. 8

To print a file namedstarmaker with a title, page number, and date on top of each page,

13$ lpr starmaker 1937 science fiction novel by Olaf Stapledon (1886−1950)
14$ pr -l51 starmaker | lpr add page headings: minus lowercase L 51
15$ pr -h Starmaker -l51 starmaker | lpr
16$ pr -h ’Star Maker’ -l51 starmaker | lpr

For the-i option, see Handout 4, pp. 1−2; Handout 6, p. 9.

17$ pr -i’ ’1 -l1 -m -t -w80 $S45/encrypted decrypted | head -38

(3) Use single or double quotes when a string contains leading or trailing blanks or tabs:

18$ prog1 | tr : ’ ’ | prog2 Change every colon to a blank.

(4) Certain characters have special meanings for the shell, including

| < > ’ " ‘ () { } & ; $ * ? [] # \ ˜

and! in the C shell (csh (1) p. 3). For example,

19$ expr 2 + 3
20$ expr 2 ’*’ 3
21$ expr 2 * 3 A backslash can turn off the special meaning of only one character.
22$ awk ’{print $3}’ A pair of quotes can turn off the special meanings of many characters.

23$ egrep ’prochoice|prolife’ infile What would the error be without quotes?
24$ echo ’>>>>>>>>>>>>>>>>>>>>>>>>’
25$ echo ’Was it good or bad? \c’ Output a blank after the question mark.

The arguments ofgrep , egrep , sed , awk, and Perl are so rich in these special characters that they
should always be quoted for safety:

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 11 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

26$ grep ’ism$’
27$ sed ’s/:.*//’
28$ awk ’{print $2}’
29$ perl -ane ’print "$F[0]\n";’ meansawk ’{print $1}’

Single quotes can be used to surround a double, and vice versa.

30$ echo ’He said "Make my day".’
31$ echo "Monday’s child is fair of face"
32$ echo Monday\’s child is fair of face
33$ echo There are three kinds of quotes: "’" ’"’ ’‘’

#!/bin/ksh
#Output the number of single quotes in the input.
#See Handout 5, p. 11 for fold and tr -c.
#Sample use: quotecount < infile

fold -b -1 | grep "’" | wc -l
tr -cd "’" | wc -c #simpler way to do the same thing

exit 0

(5) If the value of a shell variable could be the null string, surround it with double quotes. When the
variable becomes null, the quotes will hold the variable’s place and avoid a syntax error. Examples were in
Handout 5, pp. 14, 19; Handout 7, pp. 6, 24.

read verdict
if [["$verdict" == bad]]

(6) So what’s the difference between single and double quotes? The shell normally expands all three
kinds of abbreviations:

$variables wildcards ‘ back quotes‘

echo $x rm *.c mail ‘classmates‘ < ˜/letter
echo $PATH rm file?.html if [[‘who | wc -l‘ -gt 20]]
if [[$1 == Mon]] rm file[1-6].html for filename in ‘ls -t‘

Within single quotes, however, the shell expands no abbreviations, and within double quotes the shell
expands only variables and back quotes.

34$ rm * Remove all the files in the current directory.
35$ rm ’*’ Remove only the file whose name is* .

36$ echo $HOME
/home1/a/abc1234

37$ echo ’$HOME’
$HOME

This is why we use double quotes instead of single quotes around a shell variable and/or back quotes:

if [["$verdict" == bad]]
if [["‘echo $verdict | tr ’[A-Z]’ ’[a-z]’‘" == bad]]

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 12 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Gerrymandering:
pp. 112−113, 126

1$ grep ’ˆ.[0-9]’ Sunday: lines whose second character is a digit (Homework 6.6)
2$ grep ’ˆ....[0-9]’ Monday: lines whose fifth character is a digit
3$ grep ’ˆ.......[0-9]’ Tuesday: lines whose eighth character is a digit

4$ grep ’ˆ.\{1\}[0-9]’ See Handout 6, p. 9, lines 10−11 for\{\}
5$ grep ’ˆ.\{4\}[0-9]’
6$ grep ’ˆ.\{7\}[0-9]’

7$ n=1
8$ n=4
9$ n=7

10$ grep "ˆ.\{$n\}[0-9]" $n won’t work within single quotes
11$ grep ’ˆ.\{’$n’\}[0-9]’ Gerrymander (Polish corridor): pp. 112−113, 126

12$ grep ’ˆ[ˆaeiou]*a[ˆaeiou]*e[ˆaeiou]*i[ˆaeiou]*o[ˆaeiou]*u[ˆaeiou]*$’
13$ c=’[ˆaeiou]*’ Handout 6, p. 17, Homework 6.8
14$ grep ’ˆ’$c’a’$c’e’$c’i’$c’o’$c’u’$c’$’
15$ grep "ˆ${c}a${c}e${c}i${c}o${c}u${c}\$" { curly braces} in Handout 4, pp. 9−10

#!/bin/ksh
#Output the loginname of everyone in the class whose
#login shell is not /bin/ksh.
#set -x

for loginname in ‘˜mm64/bin/roster 45‘
do

awk -F: ’$1 == "’$loginname’" && $NF != "/bin/ksh" {print $1}’ /etc/passwd
done

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/needksh

If we uncomment theset -x (Handout 5, pp. 8−9), the standard error output would show that theawk is
unaware that a shell variable was used.

16$ needksh
+ / home1/m/mm64/bin/roster 45
+ awk -F: ’$1 == "yb610" && $NF != "/bin/ksh" {print $1}’ /etc/passwd
+ awk -F: ’$1 == "ic297" && $NF != "/bin/ksh" {print $1}’ /etc/passwd
etc.

In Handout 7, p. 9, there is no need to hardwire theabc1234 into the argument ofawk.

17$ /bin/rm $(ls -l ˜/.trash | tail +2 | awk ’$3 != "’$(whoami)’" {print $NF}’)

Quoting bibliography

See p. 75 for single quotes, 85 for double quotes, 86−88 for back quotes.In ksh (1), see p. 18 for
single and double quotes, pp. 6−7 for back quotes.

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 13 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Wildcards in the shell language

The shell notation differs from regular expressions. Seepp. 26−29;ksh (1) pp. 17−18.

shell language
filename abbreviation regular expression

* . *

? .

. \ .

’*’ or * *

[abc] [abc]

[a-z] [a-z]

[!a-z] in ksh andbash [ˆa-z]

Summer 2013 Handout 8printed 5/28/13
3:23:03 PM − 14 − All rights

reserved ©2013 Mark Meretzky

