
NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Summer 2013 Handout 5

Fix this with a temporary variable (Heisenberg Uncertainty Principle)

Every time a shellscript runs a program, the program’s exit status is put into the variable$? . See p.
140;ksh (1) p. 12. And every time you use[[square brackets]] , they put a0 (for true) or a1 (for false)
into $? . Seeksh (1) pp. 19−22.

#!/bin/ksh

prog

if [[$? -eq 0]]
then

echo prog was successful.
elif [[$? -eq 1]]
then

echo prog failed in the usual way.
else

echo prog failed in an unusual way.
fi

exit 0

#!/bin/ksh

prog
s=$?

if [[$s -eq 0]]
then

echo prog was successful.
elif [[$s -eq 1]]
then

echo prog failed in the usual way.
else

echo prog failed in an unusual way.
fi

exit 0

Exit status of a pipeline

prog1 | prog2 | prog3 | prog4

The exit status of a pipeline of programs is the exit status of the rightmost program (p. 145).This lets
you say

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 1 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

if prog1 | prog2 | prog3 | prog4
then

#programs to be executed if prog4 returns exit status 0
fi

For example,

#!/bin/ksh
#Output the login name of everyone in the class who works in area code
#212. The work phone is on the 6th line of each bio file.

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

if awk ’NR == 6’ $filename | grep 212 > /dev/null
then

head -1 $filename
fi

done

exit 0

yb610
bc1478
jp3195
up244

▼ Homework 5.1: search for Friday the thirteenth

Write a shellscript namedfri13 that will output the numbers of the months and years from January
2013 to December 2017 inclusive that have a Friday the thirteenth:

1$ fri13
9 2013
12 2013
6 2014
2 2015
3 2015
11 2015
5 2016
1 2017
10 2017

Write two while loops (Handout 4, pp. 24, 29), or two for loops (ksh (1) p. 2.) Nest them as in
Handout 4, pp. 9−10. The outer loop will be

while [[$year -le 2017]]
do

Immediately after the word if in the innerwhile loop, pipe the output ofcal into a tail that will
remove the first two lines. (You get no credit if you remove only the first line. That means you can’t say
tail +2 . Don’t giv e tail a neg ative argument either.) Then pipe the output oftail into awk to
remove everything except the column of Fridays:

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 2 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

2$ awk ’{print $6}’ the sixth field
3$ awk ’{print $0}’ the entire line
4$ awk ’{print substr($0, 16, 2)}’ the 16th and 17th characters of the entire line, p. 117
5$ awk ’{print substr($3, 16, 2)}’ the 16th and 17th characters of the 3rd field

You can eliminate thetail by having awk remove the first two lines of data.The awk should also
remove every character except the sixteenth and seventeenth of each surviving line. (Or you can use the
cut in Handout 4, p. 30, ¶ (2).) Then pipe the output ofawk into agrep > /dev/null . If the grep
finds what it’s looking for,echo the variables that hold the month number and year number.

To make sure that 16 and 17 are correct for your version ofcal , try this experiment before you write
your shellscript. The experiment is not part of the shellscript.

6$ cal 1 2013 | tr ’ ’ .
...January.2013
.S..M.Tu..W.Th..F..S
.......1..2..3..4..5
.6..7..8..9.10.11.12
13.14.15.16.17.18.19
20.21.22.23.24.25.26
27.28.29.30.31

Better yet, have your shellscript output

7$ fri13
September 2013
December 2013
June 2014
February 2015
March 2015
November 2015
May 2016
January 2017
October 2017

by scalping the month name and year from the first line of the output ofcal :

8$ cal 1 2013
January 2013

S M Tu W Th F S
1 2 3 4 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

You get no credit if any line of your output begins with a blank.Useawk to remove the indentation
(Handout 4, p. 16):

9$ cal 1 2013 | awk ’NR == 1’
January 2013

10$ cal 1 2013 | awk ’NR == 1 {print $1, $2}’
January 2013

You get no credit if you use>>, $? , or ‘ back quotes‘ . You get no credit if you write[[square
brackets]] after the word if . You get no credit if you use$6 in the argument ofawk: usesubstr($0,
instead. You get no credit if you give the -i option to grep . You get no credit if you write a pipe

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 3 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

immediately before the wordif :

prog | if

prog |
if

▲

Exit status of a program with a pipe coming out of it

#!/bin/ksh

prog1 | prog2 | prog3

Only the last program in a pipeline can have its exit status examined. To examine the exit status of
prog1 andprog2 in the above example, we must run each program separately and use temporary files
instead of pipes. See the! in Handout 4, p. 29.

#!/bin/ksh

if ! prog1 > ˜/temp1
then

exit 1
fi

if ! prog2 < ˜/temp1 > ˜/temp2
then

exit 2
fi
rm ˜/temp1

if ! prog3 < ˜/temp2
then

exit 3
fi
rm ˜/temp2

exit 0

Unix error messages are not redirected by> or |

1$ cd /etc
2$ pwd

3$ grep ’root’ passwd groups
passwd:root:x:0:0:root@i5:/root:/usr/bin/bash standard output produced bygrep
passwd:jh1997:x:16423:15:Jacqueline Harootian:/home1/j/jh1997:/usr/local/etc/expiredshell
grep: can’t open groups error message produced bygrep

4$ grep ’root’ passwd groups > outfile Redirect the standard output to a file.
grep: can’t open groups Error message was not redirected.

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 4 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

5$ grep ’root’ passwd groups | wc -l Redirect the standard output to a program.
grep: can’t open groups Error message was not redirected.

2 wc - l outputs this number.

The diagram in Handout 2, p. 14, revealed only two-thirds of the truth about input and output:

scanf("%d", &i);
printf("hello\n");
fprintf(stderr, "error!\n");

prog

standard
input

standard
output

standard
error output

<

|

>

|

2>

terminal keyboard

input file

previous program

terminal screen

output file

subsequent program

terminal screen

output file

Unfortunately, every Unix language uses a different trio of words for the source and two destinations:

C C++ Perl Ruby Java Korn shell
file pointers streams filehandles streams streams filedescriptors

standard input stdin cin STDIN $stdin System.in 0

standard output stdout cout STDOUT $stdout System.out 1

standard error output stderr cerr STDERR $stderr System.err 2

The C file pointers are of data typeFILE * . The C++ streams are of classesistream and
ostream , which belong to namespacestd . The c in cin , cout , cerr stands for ‘‘character’’. The
Java streams are of classesInputStream andPrintStream , and are fields of class
java.lang.System .

How to write a Unix error message

This shellscript sends its error messages to the screen even if i ts standard output is redirected into a
file or a pipe. There must be no space embedded in the1>&2. See pp. 93, 141−142;ksh (1), pp. 22−23.

#!/bin/ksh

if [[$# -ne 1]]
then

echo $0: requires 1 command line argument 1>&2
exit 1

fi

echo I received the argument $1.
exit 0

The name of the program and its command line arguments are counted byargc in C and C++.But
only the command line arguments are counted by$# in the shell language,@ARGVin Perl,ARGV.length
in Ruby, andargv.length in Java.

On a Unix platform,EXIT_SUCCESSis another name for the number 0, andEXIT_FAILURE for
the number 1.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/arg.c

1 #include <stdio.h> /* C */
2

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 5 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

3 i nt main(int argc, char **argv)
4 {
5 i f (argc != 2) {
6 f printf(stderr, "%s: requires exactly 1 command line argument\n", argv[0]);
7 r eturn 1;
8 }
9

10 printf("I received the argument %s.\n", argv[1]);
11 return 0;
12 }

1$ gcc -o ˜/bin/arg arg.c Minus lowercase O to create˜/bin/arg .
2$ ls -l ˜/bin/arg
-rwx------ 1 abc1234 users 7276 May 28 15:19 /home1/a/abc1234/bin/arg

3$ arg hello
I r eceived the argument hello.

4$ echo $? See the program’s exit status.
0 success

—On the Web at
http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/arg.C

1 #include <iostream> //C++
2 using namespace std;
3
4 i nt main(int argc, char **argv)
5 {
6 i f (argc != 2) {
7 c err << argv[0] << ": requires exactly 1 command line argument\n";
8 r eturn 1;
9 }

10
11 cout << "I received the argument " << argv[1] << ".\n";
12 return 0;
13 }

5$ g++ -o ˜/bin/arg arg.C Create˜/bin/arg .
6$ ls -l ˜/bin/arg
-rwx------ 1 abc1234 users 8584 May 28 15:20 /home1/a/abc1234/bin/arg

7$ arg hello
I r eceived the argument hello.

8$ echo $?
0

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 6 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/perl

if (@ARGV != 1) {
print STDERR "$0: requires exactly 1 command line argument\n";
exit 1;

}

print "I received the argument $ARGV[0].\n";
exit 0;

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/arg.pl

#!/home1/m/mm64/public_html/x52.9970/local/bin/ruby

if ARGV.length != 1
$stderr.puts "#$0: requires exactly 1 command line argument"
exit 1

end

puts "I received the argument #{ARGV[0]}."
exit 0

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/arg.rb

#!/usr/local/bin/php -q
<?php

if ($argc != 2) {
$stderr = fopen(’php://stderr’, ’w’);
fwrite($stderr, "requires exactly one command line argument\n");
fclose($stderr);
exit(1);

}

echo "I received the argument " . $argv[1] . ".\n";
exit(0);
?>

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/arg.php

—On the Web at
http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/Arg.java

1 c lass Arg {
2 s tatic public void main(String[] argv) {
3 i f (argv.length != 1) {
4 System.err.println("Arg: requires exactly 1 command line argument");
5 System.exit(1);
6 }
7
8 System.out.println("I received the argument " + argv[0] + ".");
9 System.exit(0);

10 }
11 }

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 7 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Compile and run the Java program whose basename is the first argument.
#The remaining arguments, if any, are passed to the Java program itself.
#Sample use: jav Arg arg1 arg2 arg3

if [[$# -ne 1]]
then

echo $0: requires basename of Java program as argument 1>&2
exit 1

fi

if javac $1.java
then

java $* #Handout 4, pp. 22, 24 for $*
fi

Symbols for redirecting the error messages into a file

There must be no space between the2 and the>. See pp. 93−94;ksh (1) pp. 22−23.

Send standard output intogood_news , error messages intobad_news :
1$ grep ’root’ /etc/passwd /etc/groups > good_news 2> bad_news

Send standard output and error messages into one big file:
2$ grep ’root’ /etc/passwd /etc/groups > all_the_news 2>&1

For example,

3$ gcc -o ˜/bin/prog prog.c > prog.err 2>&1 C
4$ g++ -o ˜/bin/prog prog.C > prog.err 2>&1 C++

▼ Homework 5.2: trace the execution of a shellscript (not to be handed in)

The commandset -x causes a shellscript to print out each command line as it is executed, in addi-
tion to the normal output. See the textbook p. 136;ksh (1) pp. 46−50. Look upset -e , too.

#!/bin/ksh
#This shellscript is named shelly.
set -x

date
cal 5 2013
exit 0

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 8 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

1$ shelly
+ date
Tue May 28 15:20:02 EDT 2013
+ cal 5 2013

May 2013
S M Tu W Th F S

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

+ exit 0

The command lines are marked with a leading plus, stored in the variable$PS4 (‘‘prompt string 4’’)
in ksh (1) p. 17. Compare$PS1 in Handout 2, p. 13, lines 39−42.

2$ echo $PS4
+

Putset -x into one of your shellscripts. Find out if the extra output belongs to the standard output or the
standard error output. Then collect both outputs in one file.
▲

The four flavors of uniq: pp. 106−107

Duplicate lines must be adjacent in the input fed touniq ; sort is the easiest way to ensure this.
We saw uniq -d in Handout 3, p. 15;uniq with no arguments Handout 3, p. 25;uniq -c in Handout 4,
p. 18.

curly
larry
larry
larry
moe
moe

uniq -d uniq uniq -c uniq -u

larry curly 1 c urly curly
moe larry 3 l arry

moe 2 moe

uniq -c examples: pp. 107−108

The fileaccess_log is poorly designed.The month and year are delimited by slashes and a colon,
so it takes twoawk’s to isolate them.

1$ cd /var/apache2/2.2/logs
2$ head -1 access_log
::1 - - [16/Jul/2012:16:08:02 -0400] "GET / HTTP/1.1" 200 44

3$ head -1 access_log | awk -F: ’{print $1}’

4$ head -1 access_log | awk -F: ’{print $1}’ | awk -F/ ’{print $2, $3}’

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 9 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

The longest line in theaccess_log is 1,475 characters long. If this causesawk to say ‘‘record too
long’’, try the POSIX-compliant/usr/xpg4/bin/awk instead. Ifthatawk also complains, use the fol-
lowing perl in place of the two awk’s. It looks for a word of three characters, a slash, and a number of
four digits.

5$ head -1 access_log | perl -ne ’/(\w{3})\/(\d{4}):/; print "$1 $2\n";’
Jul 2012

#!/bin/ksh
#How many web hits were there for each month?

perl -ne ’/(\w{3})\/(\d{4}):/; print "$1 $2\n";’ \
/var/apache2/2.2/logs/access_log |

uniq -c #unusual not to need sort before uniq

1684 Jul 2012
42760 Aug 2012
80457 Sep 2012
86510 Oct 2012
78487 Nov 2012
94723 Dec 2012
82900 Jan 2013
93853 Feb 2013
104269 Mar 2013
91091 Apr 2013
98390 May 2013

▼ Homework 5.3: what is the busiest hour of the day?

Write a shellscript that will produce the output in the last box in Handout 1, p. 8: a table showing
how many hits there were during each hour of the day. If awk says ‘‘record too long’’, use the following
perl instead.

1$ head -1 access_log | perl -ne ’/:(\d{2}):/; print "$1\n";’
16

▲

If the following two awk’s say ‘‘record too long’’, use the following perl instead. \s+ looks for
white space;\S+ looks for non-white space.

2$ head -1 access_log | perl -ne ’/"\S+\s+(\S+)/; print "$1\n";’
/

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 10 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Output the names of the most frequently visited web pages,
#in decreasing order of how frequently they occur.
#Each name is preceded by the number of times it was downloaded

awk ’-F"’ ’{print $2}’ /var/apache2/2.2/logs/access_log |
awk ’{print $2}’ |
sort | #put identical names on adjacent lines
uniq -c | #count; only one copy of each name survives
sort -nr #decreasing numeric order: "numeric reverse"

exit 0

82508 /
26077 *
22439 /favicon.ico
11469 /˜mm64/planetarium/celx/
8795 /˜mm64/planetarium/celx/moon.png
6968 /robots.txt
5760 /˜mm64/planetarium/celx/orrery.jpg
5392 /˜cmk380/cs101/USStates.txt
5139 /˜cmk380/cs101/ProfessorSalary.txt
3728 /˜mm64/INFO1-CE9236/

#!/bin/ksh
#Output the GID number of the group with the most members.
#Assume that each user belongs only to the group whose ID number
#is the fourth field of their line in the file /etc/passwd.

awk -F: ’{print $4}’ /etc/passwd |
sort -n |
uniq -c |
sort -nr |
awk ’NR == 1 {print $2}’

exit 0

15

▼ Homework 5.4: a Christmas message

The file $S45/christmas contains a hidden message of peace and goodwill for all mankind.
Output a table in alphabetical order showing how many times each lowercase letter appears:

57 a
12 b
69 c
55 d
77 e etc.

(1) The command

tr -d ’[a-z]\n’

(which you should not use in this homework) will read in lines of input, and output them with every lower-
case letter and newline removed. -d stands for ‘‘delete’’.

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 11 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

(2) The command

tr -cd ’[a-z]\n’

(which you should use in this homework) will read in lines of input, and output them with every character
except the lowercase letters and newlines removed. -c stands for ‘‘complement’’. You will need a< to
input a file intotr ; see Handout 2, p. 23.

(3) The command

fold -b -1 minus one

will read in lines of input, and output them one character (‘‘byte’’) per line.

Use exactly onesort .
▲

▼ Homework 5.5: who is doing nothing?

Write a shellscript namedidlers that will output the login name of everyone who is running
exactly one process. Output nothing except the login names, one per line.

Let ps -Af provide the initial data, which will eventually be piped into the correct flavor of uniq .
If you output the word UID, you forgot to do something and will get no credit.You will also get no credit
if you usewho, w, finger , or ls ; or if you useawk more than once.
▲

▼ Homework 5.6: how many different colors does X Windows have?

So vital was the exact degree of his seniority in a senator’s career that elaborate—
and rigid—formulas had been devised to determine it.Senators sworn in on the
same day, for example, were ranked according to previous service in the Senate,
followed by service in the House, and then within the Cabinet.If necessary, the
holding of a governorship was factored in. And if it was still impossible to differ-
entiate between two senators, . . . ‘‘one may be declared senior to the other simply
because his state was the earlier of the two inv olved to enter the Union.’’

—Robert A. Caro,The Years of Lyndon Johnson: Master of the Senate, p. 80

The file /usr/openwin/lib/rgb.txt lists the X Windows colors, one per line, with their
red/green/blue components. The directoryX11 is uppercase X eleven.

1$ cd /usr/openwin/lib
2$ pwd

3$ ls -l rgb.txt

4$ cd
5$ pwd

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 12 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

6$ ls -l
total 648
drwxr-xr-x 3 mm64 users 3 Nov 11 2005 21
drwxr-xr-x 3 mm64 users 3 Nov 11 2005 23
drwxr-xr-x 5 mm64 users 5 Nov 11 2005 32
drwxr-xr-x 2 mm64 users 6 Nov 11 2005 40
-rw------- 1 mm64 users 6953 Apr 9 2012 42
drwxr-xr-x 4 mm64 users 4 Nov 11 2005 44
drwxr-xr-x 7 mm64 users 7 J ul 14 2009 45
drwxr-xr-x 6 mm64 users 6 Nov 11 2005 46
drwxr-xr-x 3 mm64 users 3 Nov 11 2005 47
drwxr-xr-x 3 mm64 users 3 Feb 8 2006 55
drwxr-xr-x 4 mm64 users 5 Oct 4 2007 64
drwxr-xr-x 3 mm64 users 3 Nov 11 2005 65
drwxr-xr-x 2 root root 12 Feb 18 2007 TT_DB
-rwx------ 1 mm64 users 9040 Mar 18 17:37 a.out
drwxr-xr-x 2 mm64 users 98 May 28 15:18 bin
-r-------- 1 mm64 users 6322 Nov 14 2012 dave
-rwx------ 1 mm64 users 10752 Nov 26 2012 echoserver
-rw------- 1 mm64 users 2068 Nov 26 2012 echoserver.C
drwxr-xr-x 2 mm64 users 4 May 25 11:55 gcc
-rw------- 1 mm64 users 3 May 17 18:01 j.txt
-r-x------ 1 mm64 users 56 Mar 6 15:42 junk
-r-------- 1 mm64 users 239 Mar 18 17:37 junk.C
-r-------- 1 mm64 users 2968 Jul 13 2011 letter
-r-------- 1 mm64 users 5914 Jan 12 2012 letter2
-r-------- 1 mm64 users 674 Feb 3 2012 letter3
-r-------- 1 mm64 users 2557 Feb 3 2012 letter4
-r-------- 1 mm64 users 2926 Feb 3 2012 letter5
drwx------ 2 mm64 users 5 Mar 15 2012 mail
drwxr-xr-x 3 mm64 users 3 Nov 11 2005 man
drwx------ 6 mm64 users 6 Nov 11 2005 math
-rw------- 1 mm64 users 3048 May 8 14:38 named.ca
-r--r--r-- 1 mm64 users 89 Apr 28 08:03 passwords
-r--r--r-- 1 mm64 users 42 Apr 28 07:54 passwords2
drwx------ 3 mm64 users 17 Mar 30 14:29 per
-r-xr-xr-x 1 mm64 users 1034 Jul 10 2012 post
drwxr-xr-x 72 mm64 users 202 May 28 14:50 public_html
-r-------- 1 mm64 users 798 Nov 27 2012 reappointment
-rw------- 1 mm64 users 4665 Mar 19 09:58 selden
-r--r--r-- 1 mm64 users 84049 Dec 16 08:57 std.celx
-rw------- 1 mm64 users 28006 Jan 16 10:14 string.h
-rw------- 1 mm64 users 90358 Jan 16 10:06 xutility

7$ head -6 rgb.txt

Verify that this file lists only 0 different colors even though it has lines, not counting the first. Output only
one line, containing only one number—the number of different colors.

Feed the file to

8$ awk ’NR >= 2 {print $1, $2, $3}’

to remove the first line and the names of the colors and multiple blanks before piping it tosort and the
correct flavor of uniq . How wouldawk confuse the following colors without the commas (p. 116)?

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 13 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

12 34 56 MurkyBlue
123 4 56 BrightRed

9$ awk ’NR >= 2 {print $1 $2 $3}’

You get no credit if yousort anything alphabetically anywhere in this shellscript. Use

10$ sort +0n +1n +2n

to sort in order of increasing redness, breaking ties by sorting in order of increasing greenness, breaking
further ties by sorting in order of increasing blueness. See thesort in Handout 3, p. 28, Homework 3.11.

You get no credit if you usecat or < in this shellscript. Handout 2, p. 24,★ shows how to avoid
them.
▲

▼ Homework 5.7: who are your ten biggest fans?

Every computer connected to the Internet has anIP address made of four dot-separated numbers
calledoctets,each in the range 0 to 255 inclusive. For example, the IP address ofi5.nyu.edu is
128.122.109.53 (Handout 1, p. 19):

1$ /usr/sbin/nslookup i5.nyu.edu | awk ’NR == 5 {print $NF}’
128.122.109.53

Conversely, the fully qualified domain name of128.122.109.53 is i5.nyu.edu or
i5.home.nyu.edu . See the file/etc/hosts .

2$ /usr/sbin/nslookup 128.122.109.53 | awk ’/name = / {print $NF}’
I5.HOME.NYU.EDU.

To see the IP address of each machine that has accessed one of your web pages,

3$ awk ’/˜abc1234/ {print $1}’ /var/apache2/2.2/logs/access_log | more

and be patient.If awk says ‘‘record too long’’, try the POSIX-compliant/usr/xpg4/bin/awk instead.
If that awk also complains, use

4$ perl -ane ’print "$F[0]\n" if /˜abc1234/;’ /var/apache2/2.2/logs/access_log

instead ofawk. (The subscript in the[square brackets] is zero.) As you will see from the output of the
above pipeline, there are some machines that have accessed your web pages many times.

Write a shellscript namedbiggest_fans that will output the IP addresses of the machines that are
your ten biggest fans, i.e., the machines that accessed your web pages most frequently. List them one per
line, in decreasing order of how many times each one has visited you. Precede each IP address with the
number of times that machine has visited you. Prepare the IP addresses foruniq by passing them through
the following pipeline, which we saw in Handout 3, p. 28.

5$ tr . ’ ’ | sort +0n +1n +2n +3n | tr ’ ’ .

Here are my ten biggest fans as of May 28, 2013.

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 14 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

12376 208.123.162.2
12266 192.168.66.96
7163 96.126.106.116
4126 96.242.183.10
4118 192.168.66.123
3868 68.193.205.150
3381 207.138.171.10
3261 192.168.66.95
2936 68.172.230.229
1854 24.193.121.52

▲

Saturday Night Special

Here’s how I will prevent you from moving files into or out of the
˜mm64/public_html/INFO1-CE9545/bio directory. You’ll have to put your file in the
˜mm64/public_html/INFO1-CE9545/bb directory instead, and then send me mail asking me to
move it to the ˜mm64/public_html/INFO1-CE9545/bio directory. Do not put your bio file into
any directory other than thẽmm64/public_html/INFO1-CE9545/bb directory.

1$ cd ˜mm64/public_html/INFO1-CE9545/bio
2$ pwd
/home1/m/mm64/public_html/INFO1-CE9545/bio

3$ ls -ld
drwxrwxrwx 2 mm64 users 10 May 28 15:15 .

4$ chmod 755 . Lock the files into the current directory.
5$ ls -ld
drwxr-xr-x 2 mm64 users 10 May 28 15:15 .

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 15 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This shellscript is ˜mm64/bin/saturday.night.special,
#an interactive aid for moving all the bad biographies from
#˜mm64/public_html/INFO1-CE9545/bio to
#˜mm64/public_html/INFO1-CE9545/bb.

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

clear #Clear the screen and home the cursor.

#Display the login name of the file’s owner.
#Then output an empty line.
ls -l $filename | awk ’{print $3}’
echo

#Display the required part of the biography. Number the lines.
head -12 $filename | cat -n
echo

echo ’Was it good or bad? \c’
read verdict
if [["$verdict" == bad]]
then

echo Moving $filename to ˜mm64/public_html/INFO1-CE9545/bb
mv $filename ˜mm64/public_html/INFO1-CE9545/bb
sleep 3 #Give me time to read the message.

fi
done

exit 0

Is the standard output directed to a terminal? p. 151

To make a shellscript give theclear command only when its standard output is going to a terminal,
surround theclear with the following if . Seeksh (1) p. 20. The ls program contains a similarif ; see
Handout 3, pp. 13−14.

if [[-t 1]]
then

clear
fi

read: pp. 159−160

The following read is not a program, so do not sayread (1). Instead,seeksh (1) p. 45. For legi-
bility, the prompt string should end with a blank.

#!/bin/ksh

echo ’Please type something and press RETURN: \c’
read something

echo You just typed $something.
exit 0

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 16 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Back quotes: print files in chronological order (pp. 86−88)

* is an abbreviation for an alphabetical list of the names of the files in the current directory. There-
fore the command

1$ lpr *

would print these files in alphabetical order. To print them in chronological order,

2$ ls -t
brandnew
recent
fairlyold
bewhiskered

3$ lpr brandnew recent fairlyold bewhiskered

Seeksh (1) pp. 5−6 for an easier way to print them in chronological order. ’ Single quotes’ usually lean
from upper right to lower left;‘ back quotes‘ lean from upper left to lower right. In some fonts, single
quotes are thicker at the top; back quotes are thicker at the bottom.

4$ lpr ‘ls -t‘ Start with the newest: Handout 1, p. 10.
5$ lpr $(ls -t)

6$ lpr ‘ls -tr‘ Start with the oldest.
7$ lpr $(ls -tr)

How does the printout of line 4 differ from that of line 8?

8$ ls -t | lpr

The two differences between a pipe and back quotes

1$ prog1 | prog2
2$ prog2 ‘prog1‘

(1) When connected by a pipe,prog1 andprog2 run simultaneously. They start at the same time
and end at the same time.See Handout 2, pp. 16−17. But when connected by back quotes,prog2 does
not start running until afterprog1 has finished.

(2) When connected by a pipe, the standard output ofprog1 becomes the standard input ofprog2 .
But when connected by back quotes, the standard output ofprog1 becomes the command line arguments
of prog2 .

Many programs react differently to the same words depending on whether the words were received as
standard input or as command line arguments. For example,lpr prints the words it receives as standard
input. Butit prints the contents of the files whose names it receives as command line arguments.

Print every file except a.out

ls will output the name of every file in the current directory. The pipeline

1$ ls | g rep -v a.out ‘‘ invert’’

will output the name of every file in the current directory excepta.out . The command

2$ lpr ‘ls | grep -v a.out‘

will print (the contents of) every file in the current directory excepta.out . How does this differ from

3$ ls | g rep -v a.out | lpr

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 17 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Remove the five oldest files

ls -tr will output the name of every file in the current directory in chronological order starting with
the oldest. See Handout 1, p. 10 for-tr . The following pipeline will output the names of the five oldest
files.

1$ ls -tr | head -5

The following command will remove them.

2$ rm ‘ls -tr | head -5‘

Remove the five largest files

The following command will output the names of the five largest files in the current directory.

1$ ls -l | tail +2 | sort +4nr | awk ’NR <= 5 {print $NF}’

The following command will remove them.

2$ rm ‘ls -l | tail +2 | sort +4nr | awk ’NR <= 5 {print $NF}’‘

Remove the files but not the subdirectories

Each of the two following commands will output the names of all the files in the current directory.

1$ ls -l | tail +2 | grep ’ˆ-’ | awk ’{print $NF}’
2$ ls -l | awk ’NR >= 2 && /ˆ-/ {print $NF}’ Handout 4, p. 17

3$ rm ‘ls -l | awk ’NR >= 2 && /ˆ-/ {print $NF}’‘ Remove all the files.
4$ rmdir ‘ls -l | awk ’NR >= 2 && /ˆd/ {print $NF}’‘ Remove all the subdirectories.

Send mail to every delinquent

Sincedelinquents andclassmates (Handout 3, pp. 25−26) each output a list of login names,
we canmail themletter with a single command:

1$ mail ‘delinquents‘ < letter
2$ mail ‘classmates‘ < letter
3$ mail ‘˜mm64/bin/roster 45‘ < letter

4$ mail ‘who | awk ’{print $1}’‘ < letter
5$ mail ‘who | awk ’{print $1}’ | sort | uniq‘ < letter

6$ mail ‘awk -F: ’{print $1}’ /etc/passwd‘ < letter
7$ mail ‘awk -F: ’$4 == 15 {print $1}’ /etc/passwd‘ < letter
8$ mail ‘awk -F: ’$7 == "/bin/ksh" {print $1}’ /etc/passwd‘ < letter

9$ mail ‘ls -l ˜mm64/INFO1-CE9545/homework | tail +2 | awk ’{print $3}’ | sort |
uniq‘ < letter

To make the Saturday Night Special automatically send mail to the owner of each bad biography as it is
moved to the directorỹ mm64/public_html/INFO1-CE9545/bb , insert the following immediately
before themv:

10$ mail ‘ls -l $filename | awk ’{print $3}’‘ < ˜/letter

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 18 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

11$ finger ‘delinquents‘ | more
12$ finger ‘who | awk ’{print $1}’ | sort | uniq‘ | more
13$ finger ‘awk -F: ’{print $1}’ /etc/passwd‘ | more
14$ finger ‘awk -F: ’{print $1}’ /etc/passwd | sort‘ | lpr

Make an index of everything in section 1 of the Unix manual

1$ whatis cal

1. cal(1) NAME /usr/share/man/man1/cal.1
_c_a _l - d isplay a _c_a_lendar

2$ whatis cal grep

1. cal(1) NAME /usr/share/man/man1/cal.1
_c_a _l - d isplay a _c_a_lendar

1. grep(1) NAME /usr/share/man/man1/grep.1
_g_r_e _p - s earch a file for a pattern

2. pcregrep(1) NAME /usr/share/man/man1/pcregrep.1
pcre_g_r_e_ p - a _g_r_e_p with Perl-compatible regular expressions.

3. grep(1) NAME /usr/gnu/share/man/man1/grep.1
_g_r_e_p , e _g_r_e_p , f _g_r_e _p - p rint lines matching a pattern

4. gegrep(1) NAME /usr/share/man/man1/gegrep.1
_g_r_e_p , e _g_r_e_p , f _g_r_e _p - p rint lines matching a pattern

5. gfgrep(1) NAME /usr/share/man/man1/gfgrep.1
_g_r_e_p , e _g_r_e_p , f _g_r_e _p - p rint lines matching a pattern

6. ggrep(1) NAME /usr/share/man/man1/ggrep.1
_g_r_e_p , e _g_r_e_p , f _g_r_e _p - p rint lines matching a pattern

There are many other directories of documentation files; see your$MANPATHenvironment variable.

3$ cd /usr/share/man/cat1 the digit one
4$ pwd
5$ ls | sort -df | more For -df , see Handout 1, p. 3, line 46.
accounts.ms
alias.ms
ancestry.ms
answer
arrow.ms

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 19 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

6$ ls | sed ’s/\.[0-9]$//’ | sort -df | more Remove trailing dot digit;s for ‘‘substitute’’.
accounts.ms
alias.ms
ancestry.ms
answer
arrow.ms

7$ whatis ‘ls | sed ’s/\.[0-9]$//’ | sort -df‘ | more

1. pkgask(1m) NAME /usr/share/man/man1m/pkgask.1m
pkgask - stores _a_n_s_w_e_rs to a request script

2. ckstr(1) NAME /usr/share/man/man1/ckstr.1
ckstr, errstr, helpstr, valstr - display a prompt; verify and return a
string _a_n_s_w_e_r

8$ whatis ‘ls | sed ’s/\.[0-9]$//’ | sort -df‘ | wc -l Too long to print?
9$ whatis ‘ls | sed ’s/\.[0-9]$//’ | sort -df‘ | pr -l51 | lpr minus L 51

Put the above command line 7 (without the| more) in a while or for loop to do the same for all
nine sections of the manual. (They are in the subdirectoriescat2 , cat3 , etc.)

Ensure pri vacy for a different terminal each time: p. 68

1$ tty
/dev/pts/10

Put the following chmod command in your.profile file to prevent another person from directing
the output of their programs to your screen:

#mesg y Comment out this existing line.
chmod 600 ‘tty‘ Set your terminal torw------- .

You’ll have to sayexit twice to log out:

2$ script script‘date | tr ’ ’ -‘

Back quotes in a for loop

1$ for loginname in ‘˜mm64/bin/roster 45‘ in place of Handout 4, p. 8
2$ for filename in file1 file2 file3
3$ for filename in * subdirectories as well as files
4$ for filename in ‘ls -l | awk ’NR >= 2 && /ˆ-/ {print $NF}’‘ only the files
5$ for filename in ‘ls -lt | awk ’NR >= 2 && /ˆ-/ {print $NF}’‘ start w/ newest
6$ for filename in ‘ls -ltr | awk ’NR >= 2 && /ˆ-/ {print $NF}’‘ start w/ oldest

7$ for filename in ‘ls -l | awk ’NR >= 2 && /ˆ-/ && $NF != "a.out" {print $NF}’‘
8$ for filename in ‘ls -l | awk ’NR >= 2 && /ˆ-/ && $3 == "abc1234" {print $NF}’‘
9$ for filename in ‘ls -l | awk ’NR >= 2 && /ˆ-/ && $5 >= 1000 {print $NF}’‘
10$ for filename in ‘ls -l | awk ’NR>=2 && $3=="abc1234" && $5>=1000 {print $NF}’‘

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 20 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

11$ for word in ‘cat ˜/wordlist‘ ˜/wordlist is a file containing words
12$ for word in ‘sort ˜/wordlist‘
13$ for word in ‘grep itzky ˜/wordlist | sort‘

Print on the least busy printer

#!/bin/ksh
#Print the files named as arguments. Send them to whichever
#printer is less busy: edlab or ndlab.
#A more sophisticated version would add up the sizes of the files
#waiting to be printed.
#Sample use: fastest file1 file2 file3

if [[‘lpq -Pedlab | wc -l‘ -lt ‘lpq -Pndlab | wc -l‘]]
then

echo printing $* on Ed Site edlab #see p. 83 for $*
lpr -Pedlab $*

else
echo printing $* on North Dorm ndlab
lpr -Pndlab $*

fi

exit 0

if [[‘who | wc -l‘ -gt 20 && ‘date | awk -F, ’{print $1}’‘ == Friday]]
then

echo Aw, give up: more than 20 people are logged in
echo and today is Friday.
exit

fi

Add a test to the Saturday Night Special

Why not use-ne instead of!= ?

if [[‘ls -l $filename | awk ’{print $3}’‘ != ‘head -1 $filename‘]]
then

echo The login name on line 1 is incorrect.
fi

if [["$verdict" == BAD || "$verdict" == Bad || "$verdict" == bad]]
if [["‘echo $verdict | tr ’[A-Z]’ ’[a-z]’‘" == bad]]

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 21 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Redirect a program’s output to a local variable

#!/bin/ksh

x=hello #No space on either side of the =.
echo $x #Verify that the assignment worked.

myname=‘whoami‘ #Redirect program’s output to a variable.
echo $myname #It prints abc1234.

myname=whoami #What happens if you forget the back quotes?
echo $myname #It prints the word whoami.

exit 0

Rename all the files

#!/bin/ksh
#Change the names of all of the files in the current directory from
#uppercase to lowercase--for example, AUTOEXEC.BAT to autoexec.bat.
#Change only the files’ names, not their contents.
#Sample use: rename

echo ’Are you sure you want to rename all these files? \c’
read answer

if [["$answer" != yes]]
then

exit 1
fi

for filename in *
do

echo $filename #so I can watch the progress on the screen
mv $filename ‘echo $filename | tr ’[A-Z]’ ’[a-z]’‘

done

exit 0

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 22 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Change the names of all of the files in the current directory from
#uppercase to lowercase, except when this would remove a file (e.g.,
#when there are two files named MOE and Moe).

status=0 #innocent until proven guilty

for filename in *
do

newfilename=‘echo $filename | tr ’[A-Z]’ ’[a-z]’‘
if [[-e $newfilename]] #For -e, see p. 140; ksh(1) p. 16
then

echo $0: found $filename and $newfilename 1>&2
status=1

else
echo $filename
mv $filename $newfilename

fi
done

exit $status

What are the fully qualified domain names of your biggest fans (Homework 5.7)?

1$ /usr/sbin/nslookup 128.122.109.53 | awk ’/name = / {print $NF}’
I5.HOME.NYU.EDU.

Unfortunately, our nslookup produces exit status 0 even if it couldn’t find a name for the host.

#!/bin/ksh
#Append hostname, if there is one, to each line output by biggest_fans.

biggest_fans |
while read line
do

n=‘echo $line | awk ’{print $1}’‘
ip=‘echo $line | awk ’{print $2}’‘

echo $n $ip ’\c’
/usr/sbin/nslookup $ip > ˜/out 2> ˜/err

if grep "can’t find" ˜/err > /dev/null
then

echo #Output a newline.
else

awk ’/name = / {print $NF}’ ˜/out
fi

rm ˜/out ˜/err
done

exit 0

If nslookup produced an exit status of 0 only for successful termination, we could avoid creating
˜/err :

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 23 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

if /usr/sbin/nslookup $ip > ˜/out 2> /dev/null
then

awk ’/name = / {print $NF}’ ˜/out
else

echo
fi

To identify hosts that have no names, usewhois athttp://www.geektools.com/ .

12376 208.123.162.2 208-123-162-2.cust-nwp.nuvisions.net.
12266 192.168.66.96 ND-IMAC-19.NDLAB.ITS.NYU.EDU.
7163 96.126.106.116 li363-116.members.linode.com.
4126 96.242.183.10 static-96-242-183-10.nwrknj.fios.verizon.net.
4118 192.168.66.123 ND-IMAC-06.NDLAB.ITS.NYU.EDU.
3868 68.193.205.150 ool-44c1cd96.dyn.optonline.net.
3381 207.138.171.10 ryevpn.asg.com.
3261 192.168.66.95 ND-IMAC-03.NDLAB.ITS.NYU.EDU.
2936 68.172.230.229 cpe-68-172-230-229.nj.res.rr.com.
1854 24.193.121.52 cpe-24-193-121-52.nyc.res.rr.com.

▼ Homework 5.8: Monday’s child is fair of face

Write a shellscript namedday that will output a different reminder each day of the week.For exam-
ple, on any Wednesday it will output

6:00 Unix class at 7 East 12th Street, room 228

If you don’t need to be reminded of anything, output the relevant line in the file$S45/monday . You get
no credit if you make the ☞mistake in Handout 5, p. 22.

day should accept no command line arguments, so the first order of business is to output an error
message andexit if there were any arguments. Therest ofday will be a chain of seven
if-then-elif ’s using back quotes.Format and indent your chain ofif-then-elif-else-fi
statements in exactly the same way as the last box in Handout 4, p. 20; you get no credit if there is any dif-
ference at all. Add a finalelse just in case thedate command outputs a bad word, which you must out-
put as part of the error message.You get credit only if the error message includes the bad word. Anerror
message must have the three trimmings on the error message in the shellscript in Handout 5, p. 5; you get
no credit otherwise.

(1) Theerror message must begin with the name of the program ($0), a colon, and a blank.

(2) Theerror message must be directed to the standard error output (1>&2) not the standard output.

(3) Theprogram must yield a non-zero exit status in case of error, 0 otherwise.

Don’t try to output apostrophes:the shell will think they’re single quotes and become confused.
Don’t forget Saturday and Sunday. Whenday works, put the command

day

into your.profile file.

1$ date
Tue May 28 15:22:29 EDT 2013

2$ date | awk -F, ’{print $1}’
Tue May 28 15:22:29 EDT 2013

Use a variable to avoid having to rundate andawk seven times:

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 24 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

day=‘date | awk -F, ’{print $1}’‘

if [[$day == ...
then

echo ...
elif [[$day == ...

Another way to avoid multipledate ’s andawk’s is by using acase statement instead of a chain of seven
if ’s. See pp. 134−135,ksh (1) p. 2.

You get no credit if your program requires a command line argument: it should figure out the day of
the week all by itself.You get no credit if your program has more than two fi ’s: useelif to eliminate
the need for a large number offi ’s. Do not useset .

To test the seven messages, wrap afor loop around the chain ofif-then-elif ’s, but remove the
for loop before you hand it in:

for day in Monday Tuesday Wednesday Thursday Friday Saturday Sunday Garbage
do

#day=‘date | awk -F, ’{print $1}’‘
if [[$day == Monday]]
then

...
done

▲

▼ Homework 5.9: don’t hardwir e the name of the directory into the shellscript

We hardwired the directory namẽ/public_html into the shellscriptpost in Handout 4, p. 23,
Homework 4.3. But it would be more portable forpost to read this name from thehttpd.conf file in
Handout 3, pp. 7−8, using theawk command in Handout 4, p. 18, line 4.Verify that you have permission
to read/etc/apache2/2.2/httpd.conf , and then

dirname=˜/‘awk ’$1 == "UserDir" {print $2}’ /etc/apache2/2.2/httpd.conf‘

Then change every ˜/public_html in post to $dirname . Also add1>&2 and a different exit status
number for eachexit .
▲

How not to use back quotes

Never write a pair of back quotes that are entirely occupied by oneecho :

1$ cal ‘echo 5 2013‘ ☞ 2$ cal 5 2013
3$ cal ‘echo $month $year‘ 4$ cal $month $year

Similarly, nev er use one pair of back quotes to provide all the arguments for an echo:

5$ echo ‘date‘ 6$ date
7$ rm ‘ls *.o‘ 8$ rm *.o

9$ prog > ˜/temp
10$ x=‘cat ˜/temp‘
11$ rm ˜/temp

12$ x=‘prog‘

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 25 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

▼ Homework 5.10: shell’s-eye view

Which of the following words will the shell think are names of programs, arguments, or names of
variables?

1$ blah1 blah2 blah3
2$ blah1 blah2 blah3 < blah4 > blah5
3$ blah1 blah2 blah3 | blah4 blah5 blah6
4$ blah1 blah2 blah3 && blah4 blah5 blah6
5$ blah1 blah2 blah3 || blah4 blah5 blah6

6$ blah1 blah2 ‘blah3‘
7$ blah1 ‘blah2 blah3‘
8$ blah1 ‘blah2 | blah3‘
9$ blah1 ‘blah2 && blah3‘
10$ blah1 ‘blah2 || blah3‘

11$ blah1 $blah2
12$ blah1=blah2
13$ blah1 = blah2
14$ blah1=‘blah2‘
15$ blah1 = ‘blah2‘

▲

Why a Unix program should specify no output file: pp. 130−131

#!/bin/ksh
#classmates: output login name of everyone in class who’s logged in.

˜mm64/bin/roster 45 | sort > ˜/inclass
who | awk ’{print $1}’ | sort | uniq > ˜/loggedin
comm -12 ˜/inclass ˜/loggedin
rm ˜/inclass ˜/loggedin
exit 0

#!/bin/ksh
#classmates2: output to the file ˜/classmates.out the login name of
#everyone in class who’s logged in.

˜mm64/bin/roster 45 | sort > ˜/inclass
who | awk ’{print $1}’ | sort | uniq > ˜/loggedin
comm -12 ˜/inclass ˜/loggedin > ˜/classmates.out
rm ˜/inclass ˜/loggedin
exit 0

Display the loginnames of the classmates who are logged in:

1$ classmates 2$ classmates2
3$ cat ˜/classmates.out
4$ rm ˜/classmates.out

Print the loginnames of the classmates who are logged in:

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 26 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

5$ classmates | lpr 6$ classmates2
7$ lpr ˜/classmates.out
8$ rm ˜/classmates.out

Write the loginnames of the classmates who are logged in into the file˜/people :

9$ classmates > ˜/people 10$ classmates2
11$ mv ˜/classmates.out ˜/people

Mail a letter to the classmates who are logged in:

12$ mail ‘classmates‘ < letter 13$ classmates2
14$ mail ‘cat ˜/classmates.out‘ < letter
15$ rm ˜/classmates.out

Do not write| more or | l pr at the end of a shellscript either, because the shellscript will not always
send its output directly to the screen or printer.

#!/bin/ksh
#If the standard input of this shellscript comes from a keyboard
#and the standard output of this shellscript goes to a screen,
#then filter the standard output through more.

prog |
if [[-t 1]]
then

more
else

cat
fi

An exception to this rule is a shellscript that directs it output to two or more different destinations.in
this case, the names of all but one of them must be specified.

Why a Unix program should specify no input file: pp. 130−131

#!/bin/ksh
#not_responding: output the hosts in the standard input
#that did not respond to a ping.

sort > ˜/locals

$S45/myping | sort |
comm -23 ˜/locals - |
tr ’.’ ’ ’ |
sort +0n +1n +2n +3n |
tr ’ ’ ’.’

rm ˜/locals
exit 0

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 27 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#not_responding2: output the hosts in the file ˜/not_responding.in
#that did not respond to a ping.

sort ˜/not_responding.in > ˜/locals

$S45/myping | sort |
comm -23 ˜/locals - |
tr ’.’ ’ ’ |
sort +0n +1n +2n +3n |
tr ’ ’ ’.’

rm ˜/locals
exit 0

Output the hosts in the filehosts that did not respond to a ping:

1$ not_responding < hosts 2$ cp hosts ˜/not_responding.in
3$ not_responding2
4$ rm ˜/not_responding.in

Output the hosts in the output ofprog that did not respond to a ping:

5$ prog | not_responding 6$ prog > ˜/not_responding.in
7$ not_responding2
8$ rm ˜/not_responding.in

Why a Unix program should output no header line: pp. 130−131

The intended audience of any program will usually be another program.See Edward R. Tufte, The
Visual Display of Quantitative Information,http://www.edwardtufte.com/ , Chapter 6: Data Ink
Maximization.

#!/bin/ksh
#classmates3: output login name of everyone in class who’s logged in.

echo The following people are logged in:

˜mm64/bin/roster 45 | sort > ˜/inclass
who | awk ’{print $1}’ | sort | uniq > ˜/loggedin
comm -12 ˜/inclass ˜/loggedin
rm ˜/inclass ˜/loggedin
exit 0

Count how many classmates are logged in:

1$ classmates | wc -l 2$ classmates3 | tail +2 | wc -l

Mail a letter to the classmates who are logged in:

3$ mail ‘classmates‘ < letter 4$ mail ‘classmates3 | tail +2‘ < letter

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 28 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Output login name of everyone in class who’s logged in.

if [[-t 1]]
then

echo The following people are logged in:
fi

˜mm64/bin/roster 45 | sort > ˜/inclass
who | awk ’{print $1}’ | sort | uniq > ˜/loggedin
comm -12 ˜/inclass ˜/loggedin
rm ˜/inclass ˜/loggedin
exit 0

A World Wide Web gateway

Most of the links in a World Wide Web page lead to other pages. But a link can also lead to a pro-
gram. Whenyou click on this link, the program will run and display its output in your browser. A program
run from the Web is called agateway.Put your gateways in your˜/public_html/cgi-bin directory.
The following gateway is namedclassmates .

To work correctly, a gateway must obey a set of rules called theCommon Gateway Interface, or
CGI. Seehttp://www.w3.org/CGI/ . For example, the first line of a gateway’s standard output must
begin with Content-type: . The C must be uppercase; there must be a dash, not an underscore; there
must be no space on either side of the dash; and there must be a colon, not a semicolon. The second line of
standard output must be empty. If the gateway runs a program without redirecting the program’s standard
output and standard error output (for example,echo andcommin the following gateway), then these out-
puts will be displayed in the web browser.

Since your gateway may be run by people other than you, it cannot use any of the variables created in
your .profile file, e.g., your$PATH. In your gateway you must therefore write the full pathname of
any command which is in an out-of-the-way directory, e.g. your personalbin or cgi-bin subdirectories.
Or in your gateway you can say

echo ’<P>’
echo My original ’$PATH’ was $PATH
export PATH=/home1/a/abc1234/bin:/home1/a/abc1234/public_html/cgi-bin:$PATH
echo ’
’
echo My new ’$PATH’ is $PATH

Until now, you have put all your executable files in your̃/bin directory. But your gateway must
go in your˜/public_html/cgi-bin directory.

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 29 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Gateway script to output the loginnames of the classmates logged in.

echo Content-type: text/html
echo
echo ’<HTML>’
echo ’<HEAD>’
echo ’<TITLE>Classmates logged in</TITLE>’
echo ’</HEAD>’
echo ’<BODY>’
echo ’<H1>Classmates logged in</H1>’
echo ’<PRE>’

˜mm64/bin/roster 45 | sort > /tmp/inclass$$
who | awk ’{print $1}’ | sort | uniq > /tmp/loggedin$$
comm -12 /tmp/inclass$$ /tmp/loggedin$$
rm /tmp/inclass$$ /tmp/loggedin$$

echo ’</PRE>’
echo ’</BODY>’
echo ’</HTML>’
exit 0

chmod your gateway classmates to rwxr-xr-x so that everyone in the world can execute it. In
Homeworks 1.2 and 1.3 you alreadychmod’ed your home,public_html , andcgi-bin directories to
rwxr-xr-x .

When testing your gateway, be sure to execute˜/public_html/cgi-bin/classmates , not
˜/bin/classmates :

1$ cd ˜/public_html/cgi-bin
2$ pwd

3$ classmates | more the wrong shellscript
4$ ˜/public_html/cgi-bin/classmates | more
5$./classmates | more Dot stands for your current directory, Handout 1, p. 9.

The gateway should produce the following output. For <PRE>and</PRE> , see Handout 3, p. 10,
lines 82 and 87.

Content-type: text/html

<HTML>
<HEAD>
<TITLE>Classmates logged in</TITLE>
</HEAD>
<BODY>
<H1>Classmates logged in</H1>
<PRE>
abc1234
def5678
ghi0912
</PRE>
</BODY>
</HTML>

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 30 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Write the following in your̃ /public_html/index.html file:

<P>
Click
here
to see the classmates logged in right now.

Because of the line

in the file/etc/apache2/2.2/httpd.conf , the link actually runs the gateway
/export/home/whitney/install-cgibin/cgiwrap-4.1/cgiwrap

6$ cd /export/home/whitney/install-cgibin/cgiwrap-4.1
7$ ls -l cgiwrap
-rwxr-xr-x 1 root root 67000 Oct 27 2011 cgiwrap

cgiwrap receives an environment variable named$PATH_INFOcontaining the string
abc1234/classmates , which makescgiwrap run your gateway
/home1/a/abc1234/public_html/cgi-bin/classmates .

Better yet, all you need is a relative URL as in Handout 3, p. 30, ¶ (5):

<P>
Click
here
to see the classmates logged in right now.

Click here to see the classmates logged in right now.

When you click here, the browser will render the output of the gateway as

Classmates logged in

abc1234
def5678
ghi9012

▼ Homework 5.11: write a gateway

Write a gateway that doesn’t always produce exactly the same output each time you run it. It can’t be
the gateway shown above that outputs the loginnames of the people in the class who are logged in now. It
can’t be the a stripped down version of this gateway, such as one that would output the loginnames of all
the people who are logged in now. It could output

(1) thecurrent date and time (let’s not all do this one);

(2) acalendar of the current month;

(3) apicture of the current phase of the moon (Handout 2, p. 14, line 88);

(4) thenumber of people logged into i5.nyu.edu;

(5) thegateway’s PID number;

(6) thenames and contents of all the gateway’s environment variables. Runthe env program in Hand-
out 1, p. 3, line 60; Handout 3, p. 16.

(7) thecontents of just one environment variable, e.g. the gateway’s $PATHor $REMOTE_ADDRvari-
able. Thelatter is the IP address of the host that launched the gateway. ‘‘Click here to see your IP
address.’’ A lso output the IP address’s hostname (usenslookup).

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 31 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

(8) whetheror not you’re logged into i5.nyu.edu (see ‘‘Where is Mark logged into i5.nyu.edu right
now?’’ i n his home page, and note that only a live human being, not a gateway, can give the lower-
case-m option towho. A gateway would have to get the same effect by filtering the standard output
of who throughgrep .);

(9) etc.

The gateway should not attempt to perform input—we’ll do that later. Do only output. If you’re out-
putting a picture (e.g., rows and columns of numbers and/or words, or a picture of the moon), don’t forget
to enclose it in the<PRE>and</PRE> in Handout 3, p. 10, lines 82 and 87.

Link your index.html to the gateway. Hand in a printout of yourindex.html file as rendered
by your browser; theindex.html file as displayed by your browser’sView Source ; your gateway (i.e.,
the shellscript); and the standard output of your gateway. Please circle the link in your home page that
leads to your gateway.
▲

Summer 2013 Handout 5printed 5/28/13
3:19:55 PM − 32 − All rights

reserved ©2013 Mark Meretzky

